
Brief solution outlines for the problems

Problem A - The Mailbox Manufacturers Problem

Composed in Linköping, Sweden.

Task

The problem was to �nd the minimum number of crackers required to �nd

exactly how many crackers a certain mailbox prototype could withstand, given

the number of available mailboxes and the use of an optimal strategy.

Solution

This is a classic application of the concept known as dynamic programming. In

that technique you express the solution to a problem in terms of solutions to the

same problem of smaller size. Then you solve the original problem by solving

the smaller problems �rst, which in their turn may be solved by considering

even smaller problems. The trick is to �nd the recurrence equation, and in this

particular problem it is indeed rather tough. Let Ti;j;k denote the number of

crackers required in the worst case to solve the problem if you have i mailboxes,

and you know that j crackers are not enough to destroy a mailbox, but k + 1

crackers will. As pointed out in the problem text, given a single mailbox which

you know will not blow up with j crackers, you have no other alternative than

testing, in order, if it holds for j + 1,j + 2,... crackers. Thus,

T1;j;k =
k(k+1)

2
�

j(j+1)

2

Now, what if you have i mailboxes and you know they resist j crackers but not

k + 1, what is the �rst number of crackers you should try on the �rst mailbox?

Let's say you try l crackers and the mailbox get wasted, then you are left with

i� 1 mailboxes, but you know that the mailbox resists j crackers but not l. On

the other hand, if the mailbox persists the explosion of the l crackers, you have

all i mailboxes intact and you know that a mailbox resists l crackers but not

k + 1. So, the worst case in the best strategy must be

Ti;j;k = min
i<l�k

(l +max(Ti�1;j;l�1; Ti;l;k))

By looping from smaller to larger values, you may easily calculate Ti;j;k in the

range asked for. A last di�culty is that in the problem you do not know an

1



upper bound on how many crackers are required to destroy a mailbox which

�ts m crackers. However, assuming that it cannot withstand m+ 1 crackers (if

they would �t) cannot help your strategy, so Ti;0;m is the correct answer for i

mailboxes.

Problem B - Parallel

Taken from ACM World Finals 1991, testdata composed in Oslo, Norway. It's

also availble from Valladolid: http://acm.uva.es/p/v2/210.html.

Task

The problem was to simulate several concurrent programs on a single processor

machine with a simple mechanism for guarding critical sections.

Solution

It is pretty straightforward what must be done, but there are a few implementa-

tion issues to deal with. You have to implement two �rst-in-�rst-out queues to

keep track of whose turn it is to run. Also, you need a shared databank contain-

ing the current values of all the variables 'a'..'z', and a global clock measuring

the runtime of the current program. This is a typical example of a "simple"

problem with a lot of details which must be remembered.

Problem C - The Piano Tuners

Composed in Lund, Sweden.

Task

The problem was to �nd out if a list of scheduled piano moves could be carried

out by a few men within the time they had previously promised, preferably by

avoiding working on the weekends.

Solution

There are several approaches to solve this problem. The simplest is perhaps

acting after the heuristic principle "the most urgent jobs �rst". The reason

why this works is best illuminated by a contradiction argument. Suppose you

have to choose between two piano moves which you may do today, but one of

them is more urgent than the other, and the optimal strategy would be to move

the second piano today, and the more urgent some later day d. Then, since

the time intervals must overlap in the region from today to day d, you may

exchange the jobs for each other, without increasing the amount of required

work! Consequently, you may safely assume that in the optimal strategy, urgent

2



jobs are handled �rst. Simulating the simple heuristic scheduling is an easy task,

once for work at weekdays only, and once for all days of the week.

Problem D - Collecting Beepers

Composed in Bergen, Norway.

Task

The problem was to �nd the shortest tour for a robot to pass by a few beepers

which should be collected and then return to the original position.

Solution

Perhaps the most well-known NP-complete problem, the 2-dimensional geomet-

ric traveling salesman problem (TSP), here in Manhattan metric. There are

more e�cient solutions than testing all permutations of the beepers and inves-

tigate how long the tour gets, but there is no need for them in this case. There

can only be at most 10 beepers, and thus at most 10! = 3628800 tours to test.

Enumerating the tours is easily accomplished by a recursive procedure. One

should of course stop investigating a tour as soon as it gets longer than the best

found so far. Adding this simple if-statement typically improve on the running

time drastically, since a lot of tour starts by visiting the same beepers in the

same order.

Problem E - Quantum

Composed in Linköping, Sweden.

Task

The problem was to investigate if it is possible to transform a binary number

of �xed length to another using a few bit-�ddling operations, and if so, to �nd

the cost of the cheapest transformation.

Solution

This is an example of the problem known as "single-source-shortest-path".

Imagine the di�erent binary words as vertices in a graph and connect two ver-

tices u; v with an arc from u to v if there is an operation transforming u to

v. Let the arc have the weight of the operation cost. The problem is perhaps

best solved with the famous algorithm named after Dijkstra, using a Heap data

structure as priority queue. Solutions using naïve priority queues may fail to

�nish within the time limit!

3



Problem F - The Goldbach Conjecture

Taken from Asian Regional 1998, testdata created in Oslo, Norway. It's also

availble from Valladolid: http://acm.uva.es/p/v6/686.html and

http://acm.uva.es/p/v5/543.html.

Task

The problem was to �nd the number of ways an even positive integer greater

than 2 could be expressed as the sum of two prime numbers.

Solution

Yet another famous problem. The simplest solution is to test all pairs of integers

who sum up to the given even integer, if they are both primes. This strategy

may possibly take too much time though. A more sophisticated approach, is to

calculate and tabulate which numbers in the given range are primes, using the

Erastothanes sieve algorithm. This algorithm is described in most mathematical

encyclopedias.

Problem G - Downpayment

Composed in Umeå, Sweden.

Task

The problem was to �nd the best way to borrow money to a�ord bying a house,

given the interest rates of several credit institutes.

Solution

Once again, a problem which is best solved using dynamic programming. Let

Mi;j denote the least amount of money your resulting loan could be after j

elapsed months, if you �nish a contract with the ith credit institute this month.

This choice make it somewhat awkward to start the dynamic programming,

since in the start of a new loan, you may choose any credit institute for free.

However, the recurrence equation for the following months are easier.

Problem H - Simpli�ed �-Calculus

Composed in Trondheim, Norway.

Task

The problem was to evaluate a single-variable �-expression.

4



Solution

The tricky part in this problem is to keep track of which variables are bound,

and which are not. The standard solution is to implement a recursive descent

parser, so that all subexpression get their own little stack. Then �nd the most

nested function and evaluate it.

5


