
Problem B

Parallel computer simulator

source: parallel.*

Programs executed concurrently on a uniprocessor system appear to be
executed at the same time, but in reality the single CPU alternates between
the programs, executing some number of instructions from each program
before switching to the next. You are to simulate the concurrent execution
of up to ten programs on such a system and determine the output that
they will produce.

The program that is currently being executed is said to be running,
while all programs awaiting execution are said to be ready. A program
consists of a sequence of no more than 200 statements, one per line,
followed by an end statement. The statements available are listed below.

Statement type Syntax
Assignment hvariablei = hconstanti

Output print hvariablei
Begin mutual exclusion lock

End mutual exclusion unlock

Stop execution end

A hvariablei is any single lowercase alphabetic character and a hconstanti
is an unsigned decimal number less than 1000. There are only 26 variables
in the computer system, and they are shared among the programs. Thus
assignments to a variable in one program affect the value that might be
printed by a different program. All variables are initially set to zero.

Each statement requires an integral number of time units to execute.
The running program is permitted to continue executing instructions for
a period of time called its quantum. When a program’s time quantum
expires, another ready program will be selected to run. Any instruction
currently being executed when the time quantum expires will be allowed
to complete.

Programs are queued first-in-first-out for execution in a ready queue.
The initial order of the ready queue corresponds to the original order of
the programs in the input file. This order can change, however, as a result
of the execution of lock and unlock statements.

The lock and unlock statements are used whenever a program wishes to
claim mutually exclusive access to the variables it is manipulating. These

3



statements always occur in pairs, bracketing one or more other statements.
A lock will always precede an unlock, and these statements will never
be nested. Once a program successfully executes a lock statement, no
other program may successfully execute a lock statement until the locking
program runs and executes the corresponding unlock statement. Should a
running program attempt to execute a lock while one is already in effect,
this program will be placed at the end of the blocked queue. Programs
blocked in this fashion lose any of their current time quantum remaining.
When an unlock is executed, any program at the head of the blocked queue
is moved to the head of the ready queue. The first statement this program
will execute when it runs will be the lock statement that previously failed.
Note that it is up to the programs involved to enforce the mutual exclusion
protocol through correct usage of lock and unlock statements. (A renegade
program with no lock/unlock pair could alter any variables it wished,
despite the proper use of lock/unlock by the other programs.)

Input specifications

The first line of the input file consists of seven integers separated by
spaces. These integers specify (in order): the number of programs which
follow, the unit execution times for each of the five statements (in the order
given above), and the number of time units comprising the time quantum.
The remainder of the input consists of the programs, which are correctly
formed from statements according to the rules described above.

All program statements begin in the first column of a line. Blanks
appearing in a statement should be ignored. Associated with each
program is an identification number based upon its location in the input
data (the first program has ID=1, the second has ID=2, etc.).

Output specifications

Your output will contain the output generated by the print statements as
they occur during the simulation. When a print statement is executed,
your program should display the program ID, a colon, a space, and the
value of the selected variable. Output from separate print statements
should appear on separate lines. A sample input and correct output is
shown below.

Sample input

3 1 1 1 1 1 1

a = 4

print a

lock

b = 9

print b

4



unlock

print b

end

a = 3

print a

lock

b = 8

print b

unlock

print b

end

b = 5

a=17

print a

print b

lock

b = 21

print b

unlock

print b

end

Output for sample input

1: 3

2: 3

3: 17

3: 9

1: 9

1: 9

2: 8

2: 8

3: 21

3: 21

5


