What can Constraint Programming contribute to an existing Optimisation application?

Patrik Eveborn, Jonas Fager

Outline

- Optimal Solutions AB
- Home Care in Sweden
- Laps Care
- The optimisation engine in Laps
- What can CP contribute to Laps

Home Care in Sweden

- By law, the local authorities have to provide visiting services to allow older people to continue living independently at home
- Wide range of services, from cleaning to medical care
- Sector employs 80,000 people, about 2% of Sweden's total workforce
- Fast growing sector due to ageing population

Visit attributes

Type of visit:

- Cleaning, washing, medical,....

Time windows

- 45 minute visit between 8.30-9.45

- 1.5 hour visit between 13.00-15.00

Skills

– Medical, language, gender

Preferences

– Same staff member

- Geographical location
 - Own house, apartment or retirement home

Staff member attributes

- Skills
- Preferred geographical areas
- Working hours
- Target workload
- Planned breaks (eg lunch)
- Home base
- Travel times between visits (by car, bike or foot)

Aims

Allocate maximum number of visits to staffMaximize Customer Quality

measured through continuity (short / long term)

Maximize Staff Quality

measured through preferences for areas, even workload etc.

Minimize travel time

Gantt-chart of visits and staff

Gent		1	Shat	Ĩ	Karts						
	Kunc	08.Jul.03									
rersona		06		09	12		15		18		
🕂 Kvist Eva			H		-	-	HHH				
+ Svensson An	na		Þ			i i	9	4			
🛨 Rönn Patrik		₽	2		H					<	
🛨 Pil Britta		Þ				1 16 3		4			
🗄 Cooke Victori	ia		H			H	-	4			
🕂 Feldt Gerd			₽)			4			
🕂 Ruder Karin			H			H	H H H	•			
🕂 Janson Greta			Þ			H H		∢			
+ Berg Emmelie		Þ		3			4				
🗄 Nilsson Gudr	un	⊳	_			H		4			

Detailed plan showing time windows

Map View

Estimating travel times

A complete travel time matrix is required for all pairs of customers for each transportation mode

Planning in Laps Care

	Gantt			Statistik		Karta	
	Detta ska planeras						<u>×</u>
arta-	Planera	Villkor		Uppdrag	Möten/Admir	ı Î	Personal
	Villkor Ta hänsyn till omr Ta hänsyn till kompetenser Parametrar Skala Uppdragslä	aden ake an angden	90 100 al	Kontakt Person ternative	5 Solutio	on?	
	•	Ť					

Solution approach

Quick response times required by the clients

Experience with Branch & Price

– Too slow

- Repeated Matching
 - Vehicle routing problems
 - Facility location problems
 - Airline scheduling

Matching problem

 $z_{ij} = \begin{cases} 1, \text{ if object } a_i \text{ is matched with object } a_j \\ 0, \text{ otherwise} \end{cases}$

$$\min w = \sum_{i \in I} \sum_{j \in J_i} d_{ij} z_{ij}$$

$$st \quad \sum_{j \in I} z_{ij} = 1, \quad i \in I$$

$$\sum_{i \in I} z_{ij} = 1, \quad j \in I$$

$$z_{ij} = z_{ji}, \quad i, j \in I$$

$$z_{ij} \in \{0,1\}, \quad i, j \in I$$

Experiences / Results

- Quick solution times (within a couple of minutes)
 - Large savings in operational planning time
 - Instead of all staff staying 30-45 minutes; only a few minutes are required \rightarrow 7% saving of total time
- Travel times
 - Savings are in the order of 20%
- Quality
 - Better combination of customer and staff member preferences
- Decreased sick leave

Modelling

CP provide a different way of describing the world into a model.

Some features of commercial OR development

Limited resources

Often incomplete problem description at startImpossible to know all constraints before you're done

Reality is the murder of a beautiful theory by hard facts

In practice it is easy to use CP to express different user demands of what is a *good* solution.

For a user it is often easier to reason in terms of CP than a pure mathematical model.

What are our goals with using CP?

Quick modelingQuick prototypingCheap

Mozart-Oz to the rescue.

Ideas can easily be tested.

The ideas can be compared.

Small fragments can be implemented in C/C++/VB.

Not only CSP

GUI is one of the most important areas.
Guided help for manual changes. Hard to visualize a solution to a complex problem.
Need an integrated solver.

