
Attacker-Defender perspectives
for Dynamic Patch Prioritisation in EV

Charging Networks

Roland Plaka1, Mikael Asplund1, and Simin Nadjm-Tehrani1

Department of Computer and Information Science, Linköping University, Sweden
{roland.plaka, mikael.asplund, simin.nadjm-tehrani}@liu.se

Abstract. Modern critical infrastructures, such as Electric Vehicle Charg-
ing Infrastructures (EVCI), are increasingly vulnerable to sophisticated
cyberattacks due to their growing complexity and digital interconnectiv-
ity. To effectively manage these vulnerabilities, strategic prioritization is
essential. Patching security vulnerabilities in large and critical systems
is a challenging process that involves multiple entities making interde-
pendent decisions. Given the ongoing patch management problem, it is
important to identify the available patches. Building on earlier work that
prioritizes patches by identifying the attacker router with highest risk,
in this work, we add an attacker-defensive perspective. Our enhanced
dynamic patch management approach automatically integrates patch
detection and patch collection, to compare the cost-benefit attributes
for various patches. We introduce a new metric named patch cost as
a function of impact, size, and effort of patching a vulnerability, as a
means of deciding the priority compared to other patches. Results show
significant improvements in resource allocation efficiency, thus revealing
efficient patching in central hosts of the network topology.

Keywords: Vulnerability, Patch, Prioritization, Topology

1 Introduction

As the adoption of electric vehicles accelerates, the charging ecosystem is be-
coming increasingly intertwined with the energy infrastructure and dependent
on digital technologies. The ongoing digitalization of charging services brings
notable advantages in terms of efficiency and functionality; however, it simulta-
neously introduces new attack surfaces that adversaries may exploit.

For example, Kern et al. [9] describe attack scenarios such as manipulation
of demand (MAD) and false data injection (FDI), both of which can jeopardize
power grid stability. Similarly, Vailoces et al. [23] analyzes weaknesses in electric
vehicle supply equipment (EVSE), highlighting consequences that range from
physical damage to privacy breaches. In another case, Alcaraz et al. [1] evaluates
public charging infrastructure integrated with microgrids, applying STRIDE and
DREAD to identify vulnerabilities and potential threats.

2 Roland Plaka, Mikael Asplund, and Simin Nadjm-Tehrani

Further work has examined the backend itself. In particular, Sarieddine et
al. [17] conducts a comprehensive security assessment of the Open Charge Point
Protocol (OCPP) server implementation, demonstrating that attackers could
impersonate legitimate charging stations. Such adversary-in-the-middle capabil-
ities may allow malicious devices to register with the backend, disrupt normal
charging operations, and escalate into more severe impacts on connected services
and grid stability.

Because EVCI deployments continue to evolve, the number of reported vul-
nerabilities is rising. Addressing all of them is rarely feasible: even when patches
are available, they cannot always be applied immediately. Evidence from indus-
try underscores this challenge. A study by Kenna Security and Cyentia shows
that the median monthly remediation rate across organizations was only 15.5%,
and one quarter of the studied firms patched fewer than 6.6% of their known
vulnerabilities. Such numbers underline the complexity of patch management,
particularly in ecosystems characterized by multiple stakeholders and the preva-
lence of small and medium-sized enterprises.

At the same time, the complexity of modern systems makes it difficult to
test every attack scenario comprehensively. Dependencies between hardware,
software, and third-party libraries can harbor latent flaws that open new attack
vectors. The sheer volume of open vulnerabilities further complicates system-
atic security analysis, reinforcing the need for prioritization strategies that can
separate the most critical issues from the less urgent.

This paper is a substantial extension of an earlier work presented at a confer-
ence, Plaka et al. [15]. For the sake of self-continment, we will present the earlier
work, including the method and the corresponding tool that is being extended,
and introduce the extension of the method in Section 3.3. In risk management
terms, prioritization is an essential activity: By identifying which vulnerabil-
ities most endanger overall system security, practitioners can allocate limited
resources toward those fixes that most effectively reduce exposure.

The contributions of this paper are as follows:

1. Extension of a Dynamic Patch Management (DPM) approach into DPM+
for vulnerability instance prioritization, aiming to minimize cumulative sys-
tem risk using a cost-benefit analysis framework that incorporates host cen-
trality and aggregated patch priority.

2. An empirical investigation into vulnerabilities, exploits, and remediation
measures affecting EV charging systems.

3. Development of an automated tool named PatchD that detects patch avail-
ability from vulnerability databases, reducing the need for manual search.

4. An evaluation of DPM+ and PatchD, showing the performance comparison
in regard with baseline works+.

The remainder of this article is organized as follows. Section 2 introduces
our methodology in detail, including prerequisites and assumptions, refinements
such as the notion of host centrality, and the newly proposed automated patch
detector tool. Section 3 presents the design of the empirical study and sum-
marizes the data gathered on vulnerabilities, exploits, and patches. Section 4

Topology-aware Prioritized Patching 3

evaluates the proposed approach on a representative use case and compares the
results with existing strategies. Section 5 reviews related work, and Section 6
concludes with a discussion of findings and future directions.

2 Dynamic Patch Management+

In this section, we describe our extended approach, called Dynamic Patch Man-
agement+ (DPM+). The objective of DPM+ is to prioritize vulnerabilities based
on the risk they pose, considering both their potential system impact and likeli-
hood of exploitation, and to patch those identified as most critical. An overview
of the method is provided in Figure 1.

DPM+ takes as input a system model that represents both the network
topology and the set of identified vulnerabilities. This model includes standard
vulnerability information, such as impact ratings and exploitability metrics. Us-
ing these inputs, the DPM+ process is organized into four steps:

1. Risk calculation: The initial step estimates the system’s baseline risk. We
introduce a unified metric that blends vulnerability impact with dynamic
exposure information. In this step we integrate the notion of host centrality
into system risk calculation.

2. Attack simulation: In this step, our attacker simulation algorithm iden-
tifies the shortest attack paths through the network, starting from defined
entry points.

3. Patch detection: In this step, the method includes detection of the avail-
able patches of the vulnerabilities collected. In addition we provide a tool
that performs the proposed method.

4. Patch prioritization: Finally, vulnerabilities are ranked according to their
occurence on the most threatening attack paths. The patching process fo-
cuses on addressing those vulnerabilities that contribute the most significant
risk to the system as a whole.

Fig. 1: Overview of the Dynamic Patch Management (DPM+) method (adapted
from [15])

4 Roland Plaka, Mikael Asplund, and Simin Nadjm-Tehrani

In the remainder of this section, we first describe the required system model
and input assumptions. We then dedicate a subsection to each of the three phases
of the DPM+ method, providing the details of their design and operation.

2.1 Prerequisites

System model: In our method, the topology of a system and its set of known
vulnerabilities is defined using a graph. The system S is a tuple of hosts H, links
L, vulnerabilities V and mapping c as follows :

S = ⟨H,L, V, c⟩

– H = {h1, h2, . . . , hn}: is the set of hosts in the system
– L: is the set of logical links connecting the hosts; a link is a pair l =

⟨hi, hk⟩, hi, hk ∈ H and i ̸= k
– V = {v1, v2, . . . , vm}: is the set of vulnerabilities in the system
– c(h, v): denotes that a host h ∈ H contains the vulnerability v ∈ V .

We define the following predicates over S:

– hasInitialAccess(h): denotes that a host h ∈ H is initially accessible by an
adversary.

– hasExploit(v): denotes that a vulnerability v ∈ V has an available exploit
– isEntryPoint(h): denotes that a host h ∈ H is a potential entry point for an

attacker. This is true when hasInitialAccess(h) = True and c(h, v) = True
for some vulnerability v ∈ V such that hasExploit(v) = True. This means
that each entry point must have at least one vulnerability with an available
exploit.

Vulnerability data: Our approach assumes access to the Common Vulner-
abilities and Exposures (CVE) database (or some similar database). Each CVE
entry corresponds to a specific weakness in hardware or software components
that an attacker may leverage. To measure the consequences of exploitation, we
rely on impact scores that describe how a vulnerability affects system proper-
ties. Following the CVSS specification [6], we consider the three classical security
dimensions—confidentiality, integrity, and availability—each of which can take
the qualitative values high, low, or none. These categories are also mapped to
numeric values, enabling both qualitative and quantitative assessments.

Exploitability score: Although CVE records provide exploitability infor-
mation, the CVSS exploitability metric is static: once assigned, it remains un-
changed, even as new exploits appear or system conditions evolve. This limita-
tion highlights the need for a more dynamic measure that accurately reflects the
likelihood of exploitation in real-world contexts.

For this purpose, we integrate the Exploit Prediction Scoring System (EPSS) [7].
EPSS estimates the probability that a vulnerability will be exploited within the
next 30 days, producing a value in the range [0, 1], where higher values corre-
spond to greater risk of exploitation. Incorporating EPSS enables us to focus

Topology-aware Prioritized Patching 5

not only on vulnerabilities with high impact but also on those most likely to be
targeted.

In practice, we generate EPSS-based exploitability scores using the open-
source tool Tesorion available by T-CERT1. This tool assists security and inci-
dent response teams by enriching CVE data with predictive exploitability met-
rics, making it easier to prioritize vulnerabilities that represent the most pressing
threats.

2.2 Risk calculation

The first step of the DPM+ process is to establish the baseline system risk level.
This number is calculated using the notions of frequency and vulnerabilityRisk
as follows.

The frequency of a vulnerability v ∈ V equals the number of hosts h for
which c(h, v) holds, divided by the total number of hosts in the system as shown
in Equation 1:

Frequency(v) =
1

|H|
∑
h∈H

c(h, v) (1)

vulnerabilityRisk : denotes the risk associated with a single vulnerability
and is calculated as in Equation 2:

vulnerabilityRisk(v) = EPSS(v)× Impact(v) (2)

Quantified values of impact used in the calculation are inherited from [6] and
are illustrated as follows:

– High Impact : A significant breach of any security property. The numerical
value for this level is 0.56.

– Medium Impact : A minor compromise of any security property. The numer-
ical value for this level is 0.22.

– No Impact : No considerable impact on security properties. The numerical
value for this is 0.

Finally, the systemRisk is a quantitative value from 0 to 1 representing how
much a given system is exposed to attacks based on the frequency of vulnerabil-
ities and their associated risks. The systemRisk is calculated as in Algorithm 1
(line 2-7).

The estimation of the total system risk is obtained by summing up the con-
tributions from all vulnerabilities. In our earlier work [15], we simplified the
calculation of the risk by considering the exposure of hosts and assumed that all
hosts are subject to the same risk due to known vulnerabilities. In the current
extension of the approach, DPM+, we calculate host risk by associating weights
to various hosts to signify that some hosts have a bigger impact on the system
risk than others. In addition, we use the notion of host centrality (CT) which we
explain further in Section 2.3.

1https://github.com/Tesorion/vulnerability-explorer

https://github.com/Tesorion/vulnerability-explorer

6 Roland Plaka, Mikael Asplund, and Simin Nadjm-Tehrani

Algorithm 1: calculateSystemRisk

Require: Set of hosts H, Set of vulnerabilities V , function denoting vulnerable hosts
c, normalized host centrality CT(h)

Ensure: systemRisk sysRisk
1: sysRisk ← 0
2: for all hosts h ∈ H do
3: hostRisk ← 0
4: for all vulnerabilities v ∈ V do
5: frequency ← 1

|H|
∑

h∈H c(h, v)

6: epss← EPSS(v)
7: impact← impactScores(v)
8: vulnerabilityRisk ← epss× impact
9: hostRisk ← hostRisk + (frequency × vulnerabilityRisk)
10: end for
11: sysRisk ← sysRisk +CT(h)× hostRisk
12: end for
13: return sysRisk

2.3 Weights via Host Centrality

Here, we extend our earlier work [15], by incorporating the notion of host central-
ity (CT). Although our earlier model treated all hosts equally, in practice, some
hosts are more critical than others because not all hosts contribute equally to
system risk; some serve as critical bridges in the network and are more impactful
if compromised. An attacker who compromises such hosts can more easily reach
other parts of the network.

Host centrality is measured as the normalized centrality of each host in the
network graph, with values scaled between 0 and 1. A host with high centrality
lies on many shortest paths generated by the DPM+ search algorithm, and se-
curing such hosts can significantly reduce the attacker’s ability to move laterally.
In the context of patching, the protection of hosts with higher centrality may
stop an attacker from traversing significant portions of the network.

Incorporating host centrality thus provides a topology-aware extension, en-
abling more effective identification of vulnerabilities and hosts that attackers
could exploit.

Eq. (3) is the normalized centrality, where CT(h) is the normalized centrality
of host h, n is the total number of hosts in the network, σst is the number of
shortest paths from host s to host t, σst(h) is the number of those paths that
pass through host h. The sum is over all distinct pairs (s, t) with s ̸= h ̸= t.

CT (h) =
2

(n− 1)(n− 2)

∑
s,t∈H
s̸=h ̸=t

σst(h)

σst
(3)

This weighting is later combined with patch cost analysis in Section 4, al-
lowing us to consider both the benefit of patching(risk reduction) and the oper-
ational cost of patch deployment.

Topology-aware Prioritized Patching 7

2.4 Attack simulation

In this subsection, we outline a potential strategy that an adversary might em-
ploy to move through the target system. To illustrate this process, we describe
our attacker algorithm in detail. It is important to emphasize that the algorithm
is not intended as a comprehensive representation of attacker behavior; rather,
it serves as a tool to identify the most critical vulnerabilities within the system.

We consider an attacker that is either rational or destructive, with initial
access limited to predefined entry points. A rational attacker is a term used
in game theory and moving target defense, and is defined as an attacker who,
knowing the pay-offs to his possible choices, selects the one with the highest
pay-off. A destructive attacker tries to damage as many hosts as possible, even if
it is not optimal for stealth or persistence. In our system model, we assume that
the attacker’s objective is to compromise as many hosts as possible. Progression
is constrained, however: if the attacker encounters a host that is either patched
or free of vulnerabilities, further movement from that point is blocked.

To capture this process, our approach models the attacker’s movement using
a breadth-first search (BFS). BFS is a well-known graph traversal algorithm
that systematically explores all nodes at the current depth before proceeding
to the next. In our setting, the root node corresponds to an entry point, and
the algorithm expands outward to all neighboring hosts. The traversal continues
until all reachable hosts have been examined, while also accounting for cycles to
ensure termination.

This systematic exploration enables the attacker model to enumerate all
reachable vulnerable hosts and to uncover every possible shortest attack path
through the system. In doing so, the method highlights the vulnerabilities that,
if left unpatched, could facilitate the widest spread of compromise.

The algorithm has three phases:

– Queue initialization: The algorithm begins by initializing a queue with a
chosen entry point. Each item in the queue consists of the current host along
with the path followed to reach it.

– Neighbor traversal: At each step, an element is removed from the queue
and its neighboring hosts are examined. Any neighbor that has not yet been
visited and is not patched is appended to the queue, with the corresponding
path extended accordingly.

– Termination: This process is repeated until no further nodes can be reached
from the entry point. The output is the complete set of paths that an attacker
could potentially follow starting from the initial entry node.

We model an attacker’s strategy to traverse the network. As illustrated in
Attacker Simulation Algorithm 2, the attacker explores the network from a spec-
ified entry point e, and prioritizing hosts with high connectivity and exploitabil-
ity. The algorithm initializes three variables: R (reached hosts), Q (queue) and
P (path). R denotes a set to track visited hosts, starting with an entry point e
(line 2). Q contains a queue of pairs, where each pair consists of a host to visit,

8 Roland Plaka, Mikael Asplund, and Simin Nadjm-Tehrani

Algorithm 2: Attacker Algorithm

Input: S System model, e Entry Point, V Vulnerabilities
Output: P Set of paths

1 Initialize:
2 R← {e}; // Reached hosts

3 Q← [(e, [e])]; // Queue of hosts to visit, with path from entry point

4 P ← ∅;
// Set of completed attack paths

5 while Q ̸= [] do
6 (h, p)← Q.pop();

// Extract the current host and the path taken to reach it

7 C ← []; // Candidate hosts to visit next

8 for each n ∈ S.neighbors(h) do
9 if n /∈ R then

10 conn← getConnections(n, S);
11 EPSS ← getEpss(V, n);
12 C.append((n, conn,EPSS));

// Add candidate hosts with their connection and EPSS

data

13 if C = [] then
14 P.add(p);

// Add the current path to the set of paths if no new

candidates

15 sort(C);
// Sort the candidate hosts based on chosen criteria

16 while C ̸= [] do
17 next← C.pop();

// Choose the next candidate host

18 R.add(next);
// Mark the host as reached

19 Q.append((next, p+ [next]));
// Append the next host to the path and continue exploring

20 return P ;
// Return the set of all paths explored by the attacker

together with the path leading to the host from the entry point (line 3). P is a
set that stores all distinct paths explored by the attacker (line 4).

The main loop (line 5) processes elements from Q until the queue is empty.
For each iteration, the algorithm pops a path fromQ, and for each neighbor of the
current host, evaluates unvisited neighbors based on the number of connections
and the EPSS value. These properties are appended to the list of candidates C
(line 6-14).

The sort(C) function, called on line 15, sorts the candidates first by the
number of connections (descending), as the attacker prefers hosts with more
connections for lateral movement. Since the attacker performs reconnaissance

Topology-aware Prioritized Patching 9

and discovery to understand the target environment and they are able to identify
vulnerabilities.

Once they have sufficient information, they can evaluate and decide which
part of the system to attack. Then if two hosts have the same number of connec-
tions, the attacker compares their average EPSS scores. A higher EPSS indicates
a greater likelihood of vulnerability exploitation. If the EPSS scores are equal,
the attacker selects randomly.

The algorithm begins by selecting a candidate from the available options (line
16) . If a candidate is found, (line 17), it is added to the set R, which records the
hosts that have been reached, preventing the attacker from revisiting previously
explored hosts (line 18). The selected host is then appended to the path sequence,
and a new path is created by extending the previous one with this host. The
updated path is pushed back into the queue for further exploration (line 19).

The attacker continues exploring and extending paths until there are no more
valid candidates or all reachable hosts have been explored. If no candidates are
found, the current path is terminated and added to the list of paths. Once all
paths have been explored, the algorithm returns the set of distinct paths, line
20, representing the different routes the attacker could take through the system.

2.5 Patch detection

Vulnerabilities are usually unpatched when initially published. Workarounds or
hotfixes may offer temporary remediation until an official patch or upgrade is
released. The less official and permanent a patch, the higher the vulnerability
score. Remediation Level (RL) is a quantitative metric defined in [6] and is an
important factor for prioritization.

Measuring the RL is still difficult, as many CVE databases do not provide
this information and operators must invest significant manual effort. Therefore,
we introduce a new methodology to help researchers and security analysts auto-
matically extract patch information.

From the CVSS specification [6], the remediation levels are summarized in
Table 1:

Table 1: CVSS Remediation Level (RL) Values and Descriptions
RL Value Definition

Not Defined 1 Insufficient information to choose one of the other values.

Unavailable 1 No solution available or it is impossible to apply.

Workaround 0.97 An unofficial, non-vendor solution is available. Users cre-
ate their own patch or apply steps to mitigate the vul-
nerability.

Temporary Fix 0.96 A temporary official fix is available, such as a hotfix, tool,
or workaround provided by the vendor.

Official Fix 0.95 A complete vendor solution is available; an official patch
or upgrade is issued.

10 Roland Plaka, Mikael Asplund, and Simin Nadjm-Tehrani

Since there are no clear guidelines on how to automatically map each reme-
diation level, we introduce a keyword-based detection approach. The goal is to
determine whether a patch is available, and if so, classify it into one of the five
RL categories.

The framework uses both structured database fields (e.g., recommended,
countermeasure, mitigation) and unstructured text extracted from vulner-
ability advisories. Relevant keywords include:

– Not Defined (X): None; fallback if no patterns match.

– Unavailable (U): no fix, not fixed, unsupported, not available.

– Workaround (W): workaround, mitigation, disable, firewall.

– Temporary Fix (T): temporary fix, hotfix, interim solution.

– Official Fix (O): official fix, patch, upgrade, update.

The methodology consists of two phases: 1. Textual extraction scans free
text for semantically meaningful phrases (e.g., “fixed in version 2.3.1”, “no patch
available”). 2. Structural extraction parses explicit API JSON fields (e.g.,
“recommended countermeasure”).

The consolidated remediation snippet is then mapped to one of the five CVSS
RL categories using a deterministic, rule-based classifier.

PatchD tool implementation To operationalize this methodology, we devel-
oped PatchD , a Python-based framework for patch detection. PatchD automates
the collection and classification of remediation levels from the VulDB platform.

PatchD takes as input a list of CVE identifiers and an API key. It uses the
Playwright library to automate browser sessions and query the VulDB API. After
authentication, each CVE is submitted to retrieve remediation information. The
tool fetches both the API JSON fields and the corresponding HTML content for
more complete extraction.

We use BeautifulSoup [19] for HTML parsing and structure recognition. The
combined textual and structural extraction modules identify remediation snip-
pets, which are then classified into RL categories using regular expressions and
keyword matching. The classifier applies rules in deterministic order to ensure
consistency across vulnerabilities.

We now proceed to the final phase of our method, where we discuss the
extended approach used for patch prioritization.

2.6 Patch prioritization

In this subsection, we explain how patch prioritization is done including cost
and benefit analysis. Differently from the earlier work, where there was a de-
fender algorithm that detected the riskiest path with maximal risk reduction,
in the current work we adjust the patch prioritization step by introducing the
calculations of cost and benefit per patch and host.

Topology-aware Prioritized Patching 11

Fig. 2: PatchD tool framework

Cost-benefit analysis for patching Since organizations face an overwhelming
number of vulnerabilities to patch, it is hard to know which ones to prioritize.
Developers and software vendors struggle to deploy fixes quickly while making
sure the patches are sufficient. Patching may be a risky operation for several
reasons, including the fact that patches often affect numerous critical systems,
libraries, and other software used by various applications. Patches also tend to
be large and complex operations with even minor configuration variances that
can cause drastically different results.

Patches must be installed on time, balancing the risks of potential attacks
and the time required for proper patch testing, while effectively managing or-
ganizational constraints and resources. These factors can make the success rate
for patch changes much lower than that of other changes, thus requiring more
comprehensive testing.

Therefore to prioritize which patch to install first we calculate the prioriti-
zation values using the Eq. (4) which vary from [-1,1]. For ranking purpose, we
define a priority score for each patch p as below, where α ∈ [0, 1] is a weighting
factor, B denotes the benefit of applying the patch (measured as risk reduction
when patching a particular vulnerability), and C which represents the normal-
ized patch cost. In our evaluation, we set α = 0.5.

Prio(p) = α ·B − (1− α) · C (4)

In our formulation, the benefit of a patch is defined as the reduction in overall
system risk that results from applying it. More formally, for a given patch p, the

12 Roland Plaka, Mikael Asplund, and Simin Nadjm-Tehrani

benefit corresponds to the marginal contribution of p to the risk function, i.e.,
the difference between the system risk before and after its application:

B(p) = systemRiskbefore − systemRiskafter (5)

We model the cost of patching to capture the practical burden on system
operators when mitigating vulnerabilities. Patch cost is not limited to financial
expenditure; instead, it reflects the combined technical and operational effort of
deploying a patch in a live cyber-physical infrastructure such as electric vehicle
charging networks. Assuming that system operators have a testing environment
and know the time it takes to deploy a patch, we consider the following measur-
able dimensions:

1. Vulnerability impact score: Vulnerabilities of higher impact typically
require more testing and validation before deployment. We normalize CVSS
impact sub-scores into the interval [0, 1], assigning values of 0.56 for high,
0.22 for medium, and 0.1 for low severity.

2. Patch size: Larger patch binaries imply longer download, verification, and
installation times. We normalize the patch size by dividing by the maximum
patch size observed in our data set (e.g. 5.4 GB), which yields values in [0,1].

3. Installation effort:The operational mode of patching strongly affects cost.
Manual patching requires technician involvement (e.g., local EVSE updates),
while remote patching is automated via the CSMS. We assign normalized
values of 1.0 (manual) and 0.5(remote).

This interpretation quantifies the added value of each patch in terms of its
direct impact on risk reduction, thereby supporting a principled prioritization
of patches.

The overall patch cost is then calculated as a weighted combination of these
factors, I(v), S(v), and E(v) are the normalized impact, size, and effort for
vulnerability v, and wI , wS , wE are weights reflecting their relative importance.

C(v) = wI · I(v) + wS · S(v) + wE · E(v) (6)

The formulation balances benefit and cost equally. A patch with a higher
risk reduction benefit and lower cost will obtain a higher priority value. Positive
scores indicate that the expected security gain outweighs the associated effort,
whereas negative scores signal that the patch is relatively costly compared to
the benefit achieved.

After being able to compute patch priority, then we extend our calculation to
identify the hosts that need to be patched first. The calculation allows operators
to prioritize which host in the topology needs to be patched first. We introduce
the notion of host priority. Host priority is computed using Eq. (7), and is derived
by integrating two components: host centrality denoted as Centrality(h) and the
patch priority denoted as Prio(pi), representing the normalized priority value of
patch pi associated with host h, where m is the number of patches applicable to
host h.

Topology-aware Prioritized Patching 13

HostPriority(h) = Centrality(h)×
(m∑

i=1

Prio(pi)
)

(7)

The outcome of the above formulation is that we can quantify each host in
the network with a score, which says which hosts are the most critical to patch
first, so in practice a host with high centrality and high patch priorities will get
the highest value, meaning patching it yields the largest security benefit for the
overall system.

3 Empirical Study

This section describes the methodology adopted in our empirical study, with
a focus on how data concerning vulnerabilities, exploits, and vendor patches
were collected and analyzed. These datasets represent the essential inputs to
our approach, forming the basis for its application and evaluation. We further
examine the nature of the identified vulnerabilities, the corresponding exploits,
and the patches available, as these elements are central to our method.

Although prior research has investigated various aspects of Electric Vehicle
Charging Infrastructure (EVCI) security, to the best of our knowledge this is the
first work to empirically analyze vulnerabilities, exploits, and patches specifically
in relation to EVCI assets. By mapping known CVEs to their exploitability and
potential impacts, we highlight the components most at risk and offer insights
how adversaries might attempt to compromise EVCI systems.

This section provides the foundation for the remainder of the paper, as the
empirical data gathered here directly supports the analysis in subsequent sec-
tions. Our study is grounded in an architecture inspired by Alcaraz et al. [1],
which models an electric vehicle charging infrastructure embedded within a mi-
crogrid, thereby ensuring that the evaluation remains representative of real-world
EVCI deployments.

This section is critical for the rest of the paper as it provides the founda-
tional data necessary for our method, which is directly applied in the subsequent
analysis.

3.1 Vulnerability collection

We start by collecting EVCI-relevant data from various sources such as search
engines and vulnerability databases using keywords like ”OCPP,” ”charging sta-
tions,” ”CSMS,” ”EVSE,” hardware/software components, and product names.
After reviewing all the possible hits generated from our keywords, we removed
the duplicates, resulting in 46 vulnerabilities related to EVCI with assigned CVE
IDs. The severity scores of the selected vulnerabilities range from 4.3 to 9.8.

The fact that we only found 46 EVCI-related vulnerabilities shows that they
are underreported. Table 2 shows the EVCI components ordered by the num-
ber of reported vulnerabilities related to each component. The analysis of this

14 Roland Plaka, Mikael Asplund, and Simin Nadjm-Tehrani

table shows that charging stations (CSs), charging station management systems
(CSMSs), and charging station controllers (CSCs) appear to be the most fre-
quently targeted assets. They commonly suffer from firmware or software vul-
nerabilities, making them the primary entry points to the system architecture.

Table 2: Vulnerability distribution in EVCI (adapted from Plaka et al. [15])

Asset Type Known CVEs

Charging station(CS) 21
Charging station controller(CSC) 6
Automation server(AS) 1
Electric Vehicle Supply Equipment (EVSE) 1
Charging station management system (CSMS) 6
Industrial network switches(SW) 5
Load Management System (LMS) 2
Power meter(PM) 1
Electric Vehicle(EV) 1
Industrial Gateway(GW) 1
Remote telemetry system(RTS) 1

3.2 Exploit collection

As discussed earlier, our primary focus is on the exploitability of the collected
vulnerabilities. Hence, we investigate and find the available exploits in the wild
that attackers can use to hack the EVCI infrastructure.

Yoon et al. [30] proposed a framework to detect exploits in the wild by
collecting exploit data from sources like Exploit-DB, Github, and CISA, which
provides Known Exploited Vulnerability (KEV) information. Building on their
work, we extend this list of sources by including additional exploit databases
such as Packetstorm, Coalition, Sploitus, and 0day.today. By querying these
databases—comprising both the original sources from Yoon et al. [30] and the
additional ones we identified — we detect 11 available exploits for the collected
CVEs using CVE IDs and the affected products as search entries.

Table 3 shows the identified exploits aligned with their exploitability scores.
From these two tables, we can see that for 46 vulnerabilities, there are 10 avail-
able exploits, which means 1 in 4 detected vulnerabilities can be immediately
exploited with the help of online databases to damage the EVCI infrastructure.

3.3 Patch collection

The patching process requires continuous monitoring of the CVE patches, es-
pecially those released by vendors. Keeping track of the recent patches is time-
consuming because one must monitor vendor websites, GitHub releases, or other
communication channels. These channels are not fixed and can vary from vendor
to vendor.

Topology-aware Prioritized Patching 15

Table 3: Published exploits in EVCI (adapted from Plaka et al. [15])

CVE Asset Exploit CVSS EPSS Source

2020-8006 CS Buf. Overflow 9.8 0.1 PS
2018-12634 CSC Cred. Disclosure 9.8 0.95 Sploitus
2023-28343 LMS Comm. Inject. 9.8 0.95 EDB
2022-22808 LMS CSRF 8.8 0.11 CESS
2016-5809 PM CSRF 8.8 0.22 EDB
2021-34591 CSC Priv. Esc. 7.8 0.04 CESS
2023-49955 CSMS DoS 7.5 0.05 CESS
2021-22708 CS Auth. Bypass 7.2 0.1 PS
2016-2278 AS Multiple Vuln. 7.2 0.02 0day
2022-0878 CST DoS 6.5 0.04 CESS
2020-15912 EV Relay Attack 6.5 0.1 PS

In our initial empirical study, we did not find many available patches (13 in
total) published by the vendors. This fact shows that not all vendors share their
patches on their websites; possibly because they use subscription-based sharing
with their clients via e-mails or other private channels. We detected the follow-
ing patches from one vendor only on their website of security notifications [4].
The vendor provides clear instructions on performing the patching process and
proposes mitigations. More details about various advisories can be found in a
related article on ICS advisories [18].

In this paper, we extended our investigation by reviewing the literature and
the state-of-the-art, with the goal to find more available patches. Previous works
around patches fall into two threads: (i) patch detection, finding the precise fixing
commits for disclosed vulnerabilities, and (ii) patch prioritization, deciding what
to fix first and executing patch workflows.

Patch datasets and automated localization: PatchDB builds a large
security patch dataset by combining NVD-linked patches, GitHub commits in
the wild, improving ML-based patch identification [24]. Beyond datasets, sev-
eral systems automate the mapping from CVEs to fixing commits. PatchScout
locates patches over repository commits using vulnerability–commit correlation
features (ID, location, type, text), achieving high coverage with low manual ef-
fort [22].Another work, VCMatch extends the idea with semantic features. Tracer
constructs a multi-source reference network (NVD, vendor advisories, GitHub,
etc.) and traces patches across sources, covering more CVEs than heuristic base-
lines while complementing industrial vulnerability databases [26].

Risk-driven prioritization and automation: ILLATION learns adver-
sary patterns (motivation/ability) and tunes risk with network constraints (ser-
vice presence and host reachability) via neurosymbolic reasoning to produce
network-specific vulnerability rankings [31]. An empirical study of automated
patch management proposes an executable workflow (pre-deployment review for
cumulative/dependent patches, deployment/verification with error handling, and
a feedback loop to prioritize after failures), showing reduced human effort and
shorter remediation time [11]. A recent SLR on software security patch man-
agement highlights that research is focused on prioritization. In contrast, patch

16 Roland Plaka, Mikael Asplund, and Simin Nadjm-Tehrani

information retrieval, testing, and post-deployment verification remain underex-
plored, underscoring the need for end-to-end human-in-the-loop automation [3].

Figure 3 emphasizes overall patch availability of 45 CVEs found by our au-
tomated tool PatchD, where 33 patches are released by official vendors and pro-
vided instructions such as software upgrade/update. For 6 vulnerabilities marked
with T, there are temporal countermeasures such as using firewall. As indicated
in the chart the tool did not detect any workaround at all. The remaining 6
CVEs has no mitigation known in the VulDB database. The numbers show that
our tool is a promising concept that can be used to detect the available patches
in vulnerability databases. Our limitation is that many trusted vulnerability
databases tend to block the API requests when they are done with short time
intervals, therefore we had to run the tool several times and wait for the output
which sometimes it takes longer than expected. It is also possible to extend the
search space by integrating other APIs in the tool, which can be interesting to
investigate in a future work.

Fig. 3: Counts by remediation level (RL)

Table 4 gives an overview of the detected and collected patches and difference
among results is remarkable.

Table 4: Comparison between manual and automated effort
Host with Patch Manual detection Automated detection

CS 11 19

LMS 2 2

SW - 1

CSC - 4

CSMS - 5

EV - 1

RTS - 1

Topology-aware Prioritized Patching 17

4 Evaluation

In this section, we evaluate the DPM+ method and compare its performance
with 2 baseline approaches. We aim to assess the effectiveness of our patch-
ing strategy in reducing system risk. Specifically, we focus on how well DPM+
minimizes the total risk in the system after patching vulnerabilities along the at-
tacker’s most exploitable path. As defined in Section 2.3, host centrality weights
are integrated into our prioritization model. In this section, we evaluate their
impact.

4.1 Evaluation methodology

In our evaluation method, we develop a graph-based mesh topology to express
the relationships between the EVCI infrastructure components, as shown in Fig-
ure 4. We model the system utilizing the NetworkX library2. NetworkX is a
Python package mainly used for the creation and analysis of the structure, dy-
namics, and functions of complex networks. Our topology consists of nodes and
edges where nodes (i.e., hosts) refer to the EVCI infrastructure assets. Edges
represent the links between the hosts in our model. Every host has its name and
additional properties. Utilising the empirical study knowledge, we assume that
attackers can start exploiting from some of the entry points, e.g., ”CSC,” ”CS”,
”CSMS”, ”LMS”, and ”SW”, as they the components with the most vulnerabil-
ities.

We compare DPM+ with three baseline methods. The first baseline for com-
parison is our earlier work DPM. Next is the one described by [13], which is the
closest method we can compare DPM+ with. In their work, the authors assign
weights to the links in the graph to represent the presence of security measures.
For links connecting any type of component that does not have any protective
measures in place, the authors assign weight 1 to the link. For the links con-
necting one graph component with a gateway and with no security measure in
place, they assign weight 2. To ensure a fair comparison, we have adopted the
same weighing scheme for the links in our graph, maintaining consistency with
their approach.

To compare DPM+ with a third baseline, we apply Dijkstra’s algorithm as
the attacker algorithm, seeking the shortest attack path on a simpler model. In
this case, each link is assigned a uniform weight of 1, and the attacker selects
paths with the fewest hops between hosts, regardless of security measures. After
finding the shortest paths, we apply our defender algorithm used in our earlier
work to patch the vulnerabilities on the paths and calculate the overall system
risk reduction.

4.2 Evaluation metric

The success of the compared methods is measured by the relative risk reduction
metric in the system risk after patching. The system risk is quantified using an

2https://networkx.org/

https://networkx.org/

18 Roland Plaka, Mikael Asplund, and Simin Nadjm-Tehrani

Fig. 4: EV charging infrastructure (adapted from [15])

initial score, which represents the vulnerabilities present in the system before any
patches are applied. The formula for relative risk reduction is given by Equation
(8) as follows:

Risk Reduction (%) =

(
1− Rpost

Rpre

)
× 100 (8)

where Rpre represents the system risk before patching, and Rpost represents
the system risk after patching. This gives a value between 0% and 100%, where
100% represents complete risk reduction (i.e., no remaining risk), and 0% indi-
cates no risk reduction.

In our experiments, we use the parametres shown at Table5

Topology-aware Prioritized Patching 19

Table 5: Parameters for patch cost calculation
Parameter Description

I(v) Normalized impact of vulnerability v

S(v) Normalized size of the patch for vulnerability v

E(v) Normalized effort required to apply the patch for vulnerability
v

wI Weight reflecting the relative importance of impact (0.4 in our
experiments)

wS Weight reflecting the relative importance of patch size (0.3 in
our experiments)

wE Weight reflecting the relative importance of patching effort (0.3
in our experiments)

C(v) Overall patch cost for vulnerability v, re-normalized to [0, 1] for
comparability

Finally, C(v) is re-normalized to [0, 1] to allow comparability across vulnera-
bilities. The formulation enables us to capture not only what needs to be patched
(high-impact CVEs) but also how costly it is to do so under real operational con-
straints.

4.3 Results

In this section, we present the results of the evaluation. Table 6 shows the risk
reduction when applying one of the four evaluated methods starting from a
specific entry point. The results in DPM+ are calculated from a centrality-aware
risk reduction perspective, while the remaining three methods are calculated
from a centrality-blind risk reduction perspective. The entry points are all the
hosts for which we found published exploits (Table 3). DPM+, along with the
other three methods, generates different paths that are not guaranteed to be the
same length or cover the same amount of vulnerabilities. We consider the riskiest
path with the highest impact on security, integrating the centrality metric for
hosts in DPM+, and then compare it.

The results in Table 6 are divided into two categories according to how DPM
+ compares with the other three methods: DPM+ shows a significant advantage
in all 9 entry points, and in 3 entry points performs slightly worse than the
other methods. For entry point (CS3), DPM+ achieves 93.82% in risk reduction,
outperforming DPM, Petho et al. and Dijkstra. In the second category, DPM
outperforms the other methods by a small margin. For the entry point (CSMS),
DPM+ achieves 89.25%, compared to 67.97% of DPM, 62.76% of Petho et al.
and Dijkstra 48.16%. However, in the entry point EV2, CS1, and CST case, the
DPM + performance is worse than that of the other three methods.

We now proceed to investigate how the risk reduction increases with the
number of patches increasing. We select cases where DPM+ outperforms the
baseline methods with a significant risk reduction.

20 Roland Plaka, Mikael Asplund, and Simin Nadjm-Tehrani

Entry DPM+ DPM Petho et al. Dijkstra

CS3 93.82% 80.00% 74.16% 74.16%

AS 97.67% 79.35% 46.71% 46.69%

PM1 87.52% 74.38% 59.80% 59.78%

LMS 88.67% 65.98% 46.58% 46.77%

PM2 84.33% 60.86% 46.77% 46.77%

CSMS 89.25% 67.97% 62.76% 48.16%

EV2 61.66% 67.97% 62.36% 62.36%

CS1 61.65% 66.34% 60.68% 60.68%

CST 61.65% 66.34% 60.68% 60.68%

CSC 88.01% 65.84% 64.52% 64.52%

PM3 92.19% 65.67% 60.15% 60.15%

CS2 87.72% 59.85% 62.36% 62.36%

Table 6: Evaluation of DPM+,DPM, Petho et al., and Dijkstra for different entry
points

Figure 5 presents the relative risk reduction for entry point (CS3) across
four methods: DPM+, DPM, Petho et al., and Dijkstra. DPM+ demonstrates
the most significant improvement in risk reduction, reaching a peak of 93.82%.
Petho et al. and Dijkstra show a more gradual increase, with their maximum
risk reduction at 74.16%. DPM+ outperforms the other three methods because
it applies patches while considering host centrality, aiming to maximize risk
reduction.

0 2 4 6 8 10121416182022242628303234
0

10

20

30

40

50

60

70

80

90

100

Number of patches

R
is
k
R
ed

u
ct
io
n
(%

)

DPM+

DPM

Petho.et.al

Dijkstra

Fig. 5: Relative Risk Reduction for entry point CS3

Figure 6 illustrates the results for entry point CSMS. DPM+ achieves the
highest reduction, peaking at 89.25% after applying 32 patches. DPM achieves

Topology-aware Prioritized Patching 21

67.97%, Petho et al. reaches 62.3%, and Dijkstra also reaches 48.16%. Overall,
DPM+ slightly outperforms the other methods.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

10

20

30

40

50

60

70

80

90

100

Number of patches

R
is
k
R
ed

u
ct
io
n

DPM+

DPM

Petho.et.al

Dijkstra

Fig. 6: Relative Risk Reduction for entry point CSMS

The findings for entry point CS2 are shown in Figure 7. DPM+ shows a
significant increase in risk reduction, peaking at approximately 87.72% after 19
patches. DPM reaches approximately 60%, Petho et al. reach 62.3% after 23
patches, while Dijkstra also approaches 62.3%, but with a slightly slower rate of
increase.

0 2 4 6 8 10 12 14 16 18 20 22 24
0

10

20

30

40

50

60

70

80

90

100

Number of patches

R
is
k
R
ed

u
ct
io
n

DPM+

DPM

Petho.et.al

Dijkstra

Fig. 7: Relative Risk Reduction for entry point CS2

Here, we proceed with new results from the extended content. As we intro-
duced in Section 3, we analyzed calculated the patch priorities. Figure 8 shows

22 Roland Plaka, Mikael Asplund, and Simin Nadjm-Tehrani

the distribution of normalized patch priorities in all analyzed CVEs. The y-axis
spans from −0.5 to 0.5, capturing high-priority (positive) and low-priority (neg-
ative) patches. The yellow box indicates the interquartile range (IQR), while the
red horizontal line marks the median priority. Most patches are distributed in
the negative range, indicating a higher patching cost relative to benefit. A few
outliers above zero suggest vulnerabilities where patching yields high benefit per
unit cost. This reinforces the need for prioritization: defenders should focus first
on patches above the median red line (positive priority).

Fig. 8: Distribution of CVE Patch Priorities

We compute the CT of hosts in the topology, and as shown in Figure 9, the
centrality of host CS1, SW1, CSC is highest among all hosts. It is easily detected
by looking at the representative values. By incorporating CT into our patch
prioritization logic, we explicitly account for the hosts that have the highest
priority when it comes to patch installation.

Topology-aware Prioritized Patching 23

Fig. 9: Host Centrality in the Network Topology

Fig. 10: Host Patch Priority in the Network Topology

Figure 10 provides a different approach to patch management, showing that
the combination of host centrality and patch priority, as in the equation (7),
can reveal the actual central hosts that should be prioritized when the available
patches are released or exist. In our case, relying only on patch priority may
not show the most urgent host to patch, since in the Figure 9 the host with the
highest centrality was the host named CS1; however, after computing (7), the
host named CS2 takes a higher priority.

5 Related Work

In this section, we examine previous works on vulnerability prioritization.

24 Roland Plaka, Mikael Asplund, and Simin Nadjm-Tehrani

5.1 Topology-aware prioritization

Petho et al. [13] examined vulnerability levels within in-vehicle communication
networks by employing undirected graph models. In their representation, edges
capture the interconnections between components, and protection levels are ex-
pressed through resistance-like parameters. Security is quantified by summing
the shortest paths between nodes, which are calculated using a generalized form
of Dijkstra’s algorithm. In contrast to our DPM method, their approach be-
gins with a zero weight at the source node. It iteratively accumulates edge
weights—interpreted as protection costs—to determine the lowest-cost paths.
This provides a systematic way of assessing security based on component safe-
guards and connectivity. Nevertheless, their evaluation is limited to relatively
small single-vehicle topologies, whereas EVCI environments are considerably
larger and involve more actors and dependencies.

Alperin et al. [2] proposed a data-driven vulnerability assessment framework
that extracts features from CVE and exploit descriptions. Their system tai-
lors prioritization by estimating the likelihood that particular threats will tar-
get a network, relying on historical threat intelligence for prediction. While this
method of path prioritization could be integrated with our topology-aware strat-
egy to guide patch selection, it remains unclear how and when their threat risk
assessment should be updated in response to newly emerging exploits.

Another relevant contribution is IoT-PEN [28], a penetration testing frame-
work for IoT infrastructures supporting point, star, and mesh topologies in a
client–server design. IoT-PEN models potential attacker movements through
graphs to uncover multi-host and multi-stage attacks and recommends patch
priorities primarily based on CVE severity. Our approach differs in that it em-
phasizes reducing overall system risk by evaluating attacker paths and prioritiz-
ing vulnerabilities according to their exploitability. While both techniques share
the objective of improving resilience, our method specifically targets weaknesses
within the most critical attack paths, thereby addressing vulnerabilities most
likely to be exploited.

5.2 Non-graph based prioritization

Farris et al. [5] introduced VULCON, a vulnerability management framework
that leverages performance indicators such as time-to-remediation and total vul-
nerability exposure. Their optimization strategy focuses on reducing long-term
network risk by addressing the most dangerous vulnerabilities, even if this means
fixing fewer issues overall.

In a similar vein, Jung et al. [8] proposed a context-aware vulnerability prior-
itization model that generates time-sensitive vulnerability scores for CVEs and
presents them through visualizations. However, their approach often requires
significant expert involvement to validate the identified vulnerabilities. Wu et
al. [25] developed an operating-system-aware prioritization method that applies
differential severity analysis, combining static program analysis with natural lan-
guage processing to evaluate vulnerabilities in Linux and Android environments.

Topology-aware Prioritized Patching 25

PatchRank, proposed by Yadav et al. [27], considers interdependencies within
SCADA systems and ranks node vulnerabilities using CVSS-based severity scores
together with their potential impact.

In contrast to these approaches, our work incorporates topology-awareness
and attack-path selection algorithms to emulate adversarial movement through
the system. We also integrate EPSS to dynamically rank vulnerabilities based
on their exploitability, offering a more adaptive and real-time perspective. This
makes our method particularly well-suited for distributed infrastructures such
as EV charging networks, where a single compromised subsystem can trigger
cascading effects on interconnected components.

More recently, Ma et al. [10] proposed VulNet, a tool that prioritizes vul-
nerabilities in software libraries by analyzing dependency depth, outperforming
platforms like Maven Repository (MVN) and Open Source Insights (OSI). Their
method ranks vulnerabilities primarily through CVSS scores and dependency
structures, but it is limited to software library ecosystems and does not consider
broader systems or attack-path modeling.

5.3 Graph-based prioritization

Olswang et al. [12] contributed by proposing a framework for vulnerability
patch prioritization combined with attack graph visualization to support se-
curity decision-making. Their method emphasizes assessing the significance of
nodes within a graph, where importance is determined by the number of attacks
that traverse a given vulnerability on a specific device. In contrast, our DPM
approach evaluates the overall number of vulnerabilities per host and considers
the probability that each can be exploited.

Stergiopoulos et al. [21] introduced an automated method for analyzing com-
plex attack graphs in multi-cloud environments. Their tool prioritizes vulnera-
bilities, examines how different system states influence the broader network, and
identifies which states, weaknesses, and configurations present the most signifi-
cant overall risk. The authors rely on Edmond’s algorithm to generate a directed
spanning tree rooted at the attacker’s ultimate target. Our DPM approach dif-
fers in two key aspects: we model attacks from entry points using a breadth-first
search (BFS) algorithm to uncover the riskiest attack paths, and we incorporate
EPSS scores to reflect exploitability dynamics, whereas their analysis is based
solely on CVSS metrics.

Pirani et al. [14] presented an attack graph framework that integrates net-
work vulnerabilities and topology to minimize the probability of attack success
at minimal cost. Their study explores connectivity measures across multiple
vehicle platoon topologies, demonstrating how these measures affect resilience,
detection, and disturbance rejection in distributed algorithms. However, their
analysis remains focused on connectivity structures and does not address con-
crete vulnerabilities in software, hardware, or protocols. This limits its applica-
bility in practical cybersecurity settings, where specific weaknesses exploited by
adversaries must be considered.

26 Roland Plaka, Mikael Asplund, and Simin Nadjm-Tehrani

5.4 Attack-path prioritization

Stellios et al. [20] introduce a source-driven, target-oriented methodology for
evaluating attack paths against critical assets. Their approach extends CVSS
metrics by employing vulnerability vectors to analyze potential attack scenar-
ios. In contrast, our work relies on EPSS, which provides continuously updated
information on the exploitability of CVEs.

Yang et al. [29] present a risk assessment framework for IoT hosts using attack
graphs. Their method constructs attack graphs and quantifies risk by combining
the probability of individual attacks with vulnerability impact values derived
from multiple attributes. Host criticality, or ”asset value,” is determined through
a hybrid approach that integrates expert judgment with the host’s role in the
overall topology. However, their study does not explicitly address vulnerability
prioritization, which is a central focus of our work.

Table 7: Comparison of Various Vulnerability Assessment Approaches Based on
Specific Criteria (adapted from [15])
Authors Topology-aware DS Dynamic Attack Path

[13] Yes Yes (In-vehicle) No Yes

[16] No Yes (ICS) No No

[29] Yes Yes (IoT) No Yes

[25] No No No No

[30] No Yes (ICS) Yes No

[7] No No Yes No

[5] No No No No

[8] No No No No

[21] Yes Yes (Company networks) No Yes

[28] Yes Yes (IoT) No Yes

[12] Yes Yes (Enterprise) No Yes

[27] Yes Yes (SCADA) No No

[20] Yes Yes (IoT) No Yes

[10] No Yes (Maven and OSI libraries) No No

Our work (DPM) Yes Yes (EV charging) Yes Yes

5.5 Summary

We summarize the related literature in Table 7, where four criteria are used to
compare vulnerability prioritization approaches: topology-awareness, distributed
system support, dynamic adaptation, and attack-path consideration. The col-
umn Topology-aware indicates whether the method incorporates the network
topology when ranking vulnerabilities. Distributed System (DS) specifies if the
approach models interconnected systems in which vulnerabilities may affect mul-
tiple components, or whether it assumes isolated, standalone environments. This
distinction is crucial since EV charging infrastructures are inherently distributed,
with information processed across several subsystems. The column Dynamic
highlights whether the method leverages metrics that evolve with exploitabil-
ity information, thereby reflecting newly discovered exploits and changes in the

Topology-aware Prioritized Patching 27

threat landscape to enable real-time, context-aware assessments. Finally, the col-
umn Attack Path Selection captures whether vulnerabilities are prioritized by
analyzing potential attacker paths. Among the surveyed works, our approach is
the only one that satisfies all four criteria.

6 Conclusions

This paper introduces a centrality and cost-aware dynamic patch management
method to enhance the cybersecurity of Electric Vehicle Charging Infrastructure.
Unlike traditional approaches, our method leverages changes in vulnerability ex-
ploitability for efficient risk reduction. It improves risk mitigation by identifying
the most vulnerable attack paths and prioritizing vulnerabilities based on ex-
ploitability and impact. Our empirical study on charging infrastructure vulner-
abilities revealed 45 vulnerabilities that need prompt patching to avoid risks to
energy infrastructures.

The results show that our method significantly reduces risk across various
access locations, outperforming other methods, including closely related algo-
rithms. Its design maximizes risk reduction, especially when prioritization is
crucial and patches are limited.

In conclusion, we extend the previous work through four key modifications:
redefining risk calculation with a host centrality metric, adding a Patch Detection
step, enriching patch inputs via automated collection with the PatchD tool, and
enhancing patch prioritization through cost–benefit analysis.

Our study findings indicate that integrating cost-benefit analysis for patches
and their host centrality can support prioritizing patch installation and optimiz-
ing the use of available resources. Moreover, our approach is applicable and can
be extended to any domain; therefore, vendors and operators who struggle to
prioritize patches can see our work as an improvement of patch management by
developing a measurement to quantify the costs of patching different vulnerabil-
ities.

ACKNOWLEDGEMENT

This work was supported by Vinnova through the project CYREC: Cybersecu-
rity for Resilient Energy Communities of the Future (2023-02987) and also by
the RICS centre on Resilient Information and Control Systems funded by the
Swedish Civil Contingencies Agency (MSB).

References

1. Alcaraz, C., Cumplido, J., Trivino, A.: Ocpp in the spotlight: threats and counter-
measures for electric vehicle charging infrastructures 4.0. International Journal of
Information Security (2023). https://doi.org/10.1007/s10207-023-00698-8

https://doi.org/10.1007/s10207-023-00698-8
https://doi.org/10.1007/s10207-023-00698-8

28 Roland Plaka, Mikael Asplund, and Simin Nadjm-Tehrani

2. Alperin, K., Wollaber, A., Ross, D., Trepagnier, P., Leonard, L.: Risk prioriti-
zation by leveraging latent vulnerability features in a contested environment. In:
Proceedings of the 12th ACM Workshop on Artificial Intelligence and Security
(2019). https://doi.org/10.1145/3338501.3357365

3. Dissanayaka, N., coauthors: Software security patch management: A systematic
literature review of challenges. Information and Software Technology (2022)

4. Electric, S.: Cybersecurity security notifications. Schneider Electric Cy-
bersecurity (2025), https://www.se.com/ww/en/work/support/cybersecurity/

security-notifications.jsp

5. Farris, K.A., Shah, A., Cybenko, G., Ganesan, R., Jajodia, S.: Vulcon: A system
for vulnerability prioritization, mitigation, and management. ACM Transactions
on Privacy and Security (TOPS) (2018). https://doi.org/10.1145/3196884

6. FIRST: CVSS v3.0 Specification Document. Forum of Incident Response and Se-
curity Teams (FIRST) (2019), accessed: 2024-11-18

7. Jacobs, J., Romanosky, S., Suciu, O., Edwards, B., Sarabi, A.: Enhancing vul-
nerability prioritization: Data-driven exploit predictions with community-driven
insights. In: 2023 IEEE European Symposium on Security and Privacy Workshops
(EuroS&PW) (2023). https://doi.org/10.1109/EuroSPW59978.2023.00027

8. Jung, B., Li, Y., Bechor, T.: Cavp: A context-aware vulnerability prioritization
model. Computers & Security (2022). https://doi.org/10.1016/j.cose.2022.
102639

9. Kern, D., Krauß, C., Hollick, M.: Attack analysis and detection for the com-
bined electric vehicle charging and power grid domains. In: Proceedings of the
19th International Conference on Availability, Reliability and Security (2024).
https://doi.org/10.1145/3664476.366451

10. Ma, Z., Mondal, S., Chen, T.H., Zhang, H., Hassan, A.E.: Vulnet: Towards im-
proving vulnerability management in the maven ecosystem. Empirical Software
Engineering (2024). https://doi.org/10.1007/s10664-024-10448-6

11. Mehri, V.A., Arlos, P., Casalicchio, E.: Automated patch management: An empir-
ical evaluation study. Technical report / preprint (2023)

12. Olswang, A., Gonda, T., Puzis, R., Shani, G., Shapira, B., Tractinsky, N.: Prior-
itizing vulnerability patches in large networks. Expert Systems with Applications
(2022). https://doi.org/10.1016/j.eswa.2021.116467

13. Petho, Z., Khan, I., Torok, Á.: Analysis of security vulnerability levels of in-vehicle
network topologies applying graph representations. Journal of Electronic Testing
(2021). https://doi.org/10.1007/s10836-021-05973-x

14. Pirani, M., Baldi, S., Johansson, K.H.: Impact of network topology on the re-
silience of vehicle platoons. IEEE Transactions on Intelligent Transportation Sys-
tems (2022). https://doi.org/10.1016/j.trc.2017.04.012

15. Plaka, R., Asplund, M., Nadjm-Tehrani, S.: Topology-aware prioritized patching
for ev charging infrastructure vulnerabilities. In: VEHITS. pp. 113–124 (2025)

16. Rencelj Ling, E., Ekstedt, M.: Estimating time-to-compromise for industrial control
system attack techniques through vulnerability data. SN Computer Science (2023).
https://doi.org/10.1007/s42979-023-01750-z

17. Sarieddine, K., Sayed, M.A., Torabi, S., Attallah, R., Jafarigiv, D., Assi, C., Deb-
babi, M.: Uncovering covert attacks on ev charging infrastructure: How ocpp
backend vulnerabilities could compromise your system. In: Proceedings of the
19th ACM Asia Conference on Computer and Communications Security (2024).
https://doi.org/0.1145/3634737.3644999

https://doi.org/10.1145/3338501.3357365
https://doi.org/10.1145/3338501.3357365
https://www.se.com/ww/en/work/support/cybersecurity/security-notifications.jsp
https://www.se.com/ww/en/work/support/cybersecurity/security-notifications.jsp
https://doi.org/10.1145/3196884
https://doi.org/10.1145/3196884
https://doi.org/10.1109/EuroSPW59978.2023.00027
https://doi.org/10.1109/EuroSPW59978.2023.00027
https://doi.org/10.1016/j.cose.2022.102639
https://doi.org/10.1016/j.cose.2022.102639
https://doi.org/10.1016/j.cose.2022.102639
https://doi.org/10.1016/j.cose.2022.102639
https://doi.org/10.1145/3664476.366451
https://doi.org/10.1145/3664476.366451
https://doi.org/10.1007/s10664-024-10448-6
https://doi.org/10.1007/s10664-024-10448-6
https://doi.org/10.1016/j.eswa.2021.116467
https://doi.org/10.1016/j.eswa.2021.116467
https://doi.org/10.1007/s10836-021-05973-x
https://doi.org/10.1007/s10836-021-05973-x
https://doi.org/10.1016/j.trc.2017.04.012
https://doi.org/10.1016/j.trc.2017.04.012
https://doi.org/10.1007/s42979-023-01750-z
https://doi.org/10.1007/s42979-023-01750-z
https://doi.org/0.1145/3634737.3644999
https://doi.org/0.1145/3634737.3644999

Topology-aware Prioritized Patching 29

18. SecurityWeek: Ics patch tuesday advisories published by siemens, schnei-
der electric, aveva, cisa. SecurityWeek (2025), https://www.securityweek.com/
ics-patch-tuesday-advisories-published-by-siemens-schneider-electric-aveva-cisa/

19. Shaw, A.: Beautiful soup: Build a web scraper with python (2021), https:

//realpython.com/beautiful-soup-web-scraper-python/

20. Stellios, I., Kotzanikolaou, P., Grigoriadis, C.: Assessing iot enabled cyber-physical
attack paths against critical systems. Computers & Security (2021). https://doi.
org/10.1016/j.cose.2021.102316

21. Stergiopoulos, G., Dedousis, P., Gritzalis, D.: Automatic analysis of attack graphs
for risk mitigation and prioritization on large-scale and complex networks in indus-
try 4.0. International Journal of Information Security (2022). https://doi.org/
10.1007/s10207-020-00533-4

22. Tan, X., Zhang, Y., Mi, C., Cao, J., Sun, K., Lin, Y., Yang, M.: Locating the secu-
rity patches for disclosed OSS vulnerabilities with vulnerability-commit correlation
ranking. In: Proc. ACM CCS (2021)

23. Vailoces, G., Keith, A., Almehmadi, A., El-Khatib, K.: Securing the electric ve-
hicle charging infrastructure: An in-depth analysis of vulnerabilities and counter-
measures. In: Proceedings of the Int’l ACM Symposium on Design and Analysis of
Intelligent Vehicular Networks and Applications (2023)

24. Wang, X., Wang, S., Feng, P., Sun, K., Jajodia, S.: Patchdb: A large-scale security
patch dataset. In: Proc. IEEE/IFIP DSN (2021)

25. Wu, Q., Xiao, Y., Liao, X., Lu, K.: {OS-Aware} vulnerability prioritization via
differential severity analysis. In: 31st USENIX Security Symposium (USENIX Se-
curity 22) (2022)

26. Xu, C., Chen, B., Lu, C., Huang, K., Peng, X., Liu, Y.: Tracking patches for open
source software vulnerabilities. In: Proc. ACM ESEC/FSE (2022)

27. Yadav, G., Paul, K.: Patchrank: Ordering updates for scada systems. In: 2019 24th
IEEE International Conference on Emerging Technologies and Factory Automation
(ETFA) (2019). https://doi.org/10.1109/ETFA.2019.8869110

28. Yadav, G., Paul, K., Allakany, A., Okamura, K.: Iot-pen: An e2e penetration testing
framework for iot. Journal of Information Processing (2020). https://doi.org/10.
2197/ipsjjip.28.633

29. Yang, H., Yuan, H., Zhang, L.: Risk assessment method of iot host based on at-
tack graph. Mobile Networks and Applications (2023). https://doi.org/10.1007/
s11036-023-02198-4

30. Yoon, S.S., Kim, D.Y., Kim, G.G., Euom, I.C.: Vulnerability assessment framework
based on in-the-wild exploitability for prioritizing patch application in control sys-
tem. In: International Conference on Information Security Applications (2023).
https://doi.org/10.1007/978-981-99-8024-6_10

31. Zeng, Z., Huang, D., Liu, X., Deng, Y., Vadnere, N., Xie, Y.: Illation: Improving
vulnerability risk prioritization by learning from network. IEEE Trans. Dependable
and Secure Computing (2024)

https://www.securityweek.com/ics-patch-tuesday-advisories-published-by-siemens-schneider-electric-aveva-cisa/
https://www.securityweek.com/ics-patch-tuesday-advisories-published-by-siemens-schneider-electric-aveva-cisa/
https://realpython.com/beautiful-soup-web-scraper-python/
https://realpython.com/beautiful-soup-web-scraper-python/
https://doi.org/10.1016/j.cose.2021.102316
https://doi.org/10.1016/j.cose.2021.102316
https://doi.org/10.1016/j.cose.2021.102316
https://doi.org/10.1016/j.cose.2021.102316
https://doi.org/10.1007/s10207-020-00533-4
https://doi.org/10.1007/s10207-020-00533-4
https://doi.org/10.1007/s10207-020-00533-4
https://doi.org/10.1007/s10207-020-00533-4
https://doi.org/10.1109/ETFA.2019.8869110
https://doi.org/10.1109/ETFA.2019.8869110
https://doi.org/10.2197/ipsjjip.28.633
https://doi.org/10.2197/ipsjjip.28.633
https://doi.org/10.2197/ipsjjip.28.633
https://doi.org/10.2197/ipsjjip.28.633
https://doi.org/10.1007/s11036-023-02198-4
https://doi.org/10.1007/s11036-023-02198-4
https://doi.org/10.1007/s11036-023-02198-4
https://doi.org/10.1007/s11036-023-02198-4
https://doi.org/10.1007/978-981-99-8024-6_10
https://doi.org/10.1007/978-981-99-8024-6_10

	Attacker-Defender perspectives for Dynamic Patch Prioritisation in EV Charging Networks

