
Topology-aware Prioritized Patching
for EV Charging Infrastructure Vulnerabilities

Roland Plaka1 a, Mikael Asplund2 b and Simin Nadjm-Tehrani3 c

1,2,3Department of Computer and Information Science, Linköping University, Sweden
{roland.plaka, mikael.asplund, simin.nadjm-tehrani}@liu.se

Keywords: Vulnerability, Prioritization, Topology, Exploitable Path

Abstract: Modern critical infrastructures are becoming increasingly complex and exposed to cyber-attacks. As with
any digitalized system, these systems suffer from vulnerabilities that threaten overall system security. As
a result, eliminating vulnerabilities is imperative for security analysts to counteract potential future attacks.
However, vulnerability management is time-consuming and expensive because it requires testing, verification,
and validation for the patches. Therefore, there is a need to prioritize which vulnerabilities to fix first in an
efficient manner. This paper introduces a patching strategy by identifying the attack path that poses the most
severe system risk and the patches with the highest potential to mitigate this risk. The risk assessment is
based on novel metrics incorporating dynamic exploitability, impact scores, and the network topology. The
method is evaluated on a case study based on electric vehicle charging infrastructures. We collect information
on vulnerabilities, exploits, and available patches for this domain and instantiate a realistic network model
with relevant components, some of which contain vulnerabilities. Our results show that the proposed method
outperforms baseline methods to reduce overall system risk.

1 Introduction

As the usage of electric vehicles continues to grow,
there is a clear need for greater interoperability with
the energy infrastructure and an increasing reliance
on digital technologies. The digitalization of services
in electric vehicle charging infrastructure (EVCI) has
its advantages and disadvantages. On the one hand, it
improves these services, but on the other hand, it cre-
ates new opportunities for malicious actors to attack
these systems.

Some possible attack vectors are (i) Manipulation
of demand (Mad) attacks and (ii) False Data Injec-
tion (FDI) attacks, mentioned by [Kern et al., 2024],
which can pose threats to grid operation. Another
study from [Vailoces et al., 2023] highlights various
vulnerabilities in electric vehicle supply equipment
(EVSE), whose consequences could lead to physical
damage to the charging stations or user privacy issues.
[Alcaraz et al., 2023] study a scenario with public
electric vehicle charging integrated into a microgrid-
based control and identify vulnerabilities and threats

a https://orcid.org/0009-0000-5847-6317
b https://orcid.org/0000-0003-1916-3398
c https://orcid.org/0000-0002-1485-0802

using a method combining STRIDE and DREAD.
An in-depth security assessment conducted by

[Sarieddine et al., 2024] analyzes the Open Charg-
ing Point Protocol (OCPP) backend implementation
and reports various vulnerabilities, which allow an ad-
versary to hijack legitimate charging station connec-
tions with the OCPP backend, replacing them with
attacker-controlled charging stations, and enabling a
set of covert attack scenarios with a potential goal of
disrupting charging processes or launching further at-
tacks on connected systems, causing instability of the
charging network infrastructure. The implementation
of EVCI is evolving, and as the number of vulnerabili-
ties grows, it is important to prioritize the most critical
ones. Even if a patch exists for a known vulnerabil-
ity it is not always possible to immmediately apply
it. The latest research by Kenna Security and Cyentia
tracked exposed vulnerabilities at hundreds of compa-
nies and found that the monthly median remediation
rate was only 15.5 percent. A quarter of companies
remediated less than 6.6 percent of their open vulner-
abilities monthly. These findings show that vulnera-
bility remediation is complex and requires more ef-
ficient efforts specially in ecosystems dominated by
many actors and many small or medium sized enter-
prises.

As the system’s complexity increases, testing ev-
ery possible threat scenario becomes harder. Con-
sequently, the likelihood of hidden vulnerabilities
within the dependencies (such as libraries and frame-
works) between hardware and software components
rises, potentially opening new attack vectors. The
huge number of vulnerabilities is a challenge for sys-
tem security analysis, so there is a need for a smarter
method to prioritize vulnerabilities.

This paper presents a topology-aware prioritized
patching method. Our approach is valuable when
dealing with complex topologies and accessible vul-
nerability information for the used technologies. In
the context of risk management, vulnerability priori-
tization is a critical sub-process. Network topology, in
this sense, describes the interdependencies and com-
munication paths between hardware and software as-
sets.

Vulnerability prioritization is essential because
it distinguishes the risk that different vulnerabilities
pose to the system. As a result, practitioners working
on vulnerability management can allocate resources
effectively to patch the vulnerabilities and reduce the
overall risk. The main contributions in this paper are
as follows:

1. A method called Dynamic Patch Management
(DPM) for vulnerability instance prioritization to
reduce overall system risk.

2. An empirical study on vulnerabilities, exploits,
and patches in EV charging.

3. Evaluation of the proposed method using a pro-
totype implementation and scenario based on the
collected data.

The paper is structured as follows. In Section 2,
we present our proposed method by describing the
main steps in detail and a dedicated subsection where
we introduce the prerequisites. Section 3 describes
the approach for the empirical study and provides in-
sights about the collected data on vulnerabilities, ex-
ploits, and vendor patches. Section 4 shows the eval-
uation of our method on a use case, including the re-
sults in comparisons with existing methods. Section 5
discusses related work in the target domain, and sec-
tion 7 concludes the paper.

2 Dynamic Patch Management

This section introduces our proposed approach, Dy-
namic Patch Management (DPM), which ranks spe-
cific vulnerabilities based on their risk including po-
tential impact on a system and performs patches for
the most critical ones. Figure 1 shows an overview

of the DPM method. We assume as input a model
of the system that includes the network topology as
well as information about vulnerabilities. Moreover,
we rely on standard vulnerability information such
as vulnerability impact scores, as well as information
about exploitability scores for the relevant vulnerabil-
ities. With this information available, the DPM metod
is composed of three steps, as follows.

1. Risk calculation: The first step of the method is
to calculate the base risk level for the system. We
propose a new metric that combines vulnerability
impact with dynamic exposure data.

2. Attack simulation: In this step, we apply our pro-
posed attacker algorithm to find all the shortest at-
tack paths in the system starting from predefined
entry points.

3. Prioritized patching: The final step prioritizes
mitigating vulnerabilities based on attack paths
and the prioritization algorithm’s output. We se-
lect the one that introduces the highest risk to the
system among the generated attack paths.

Figure 1: DPM method

We now proceed to provide more details about the
necessary system model as well as the other inputs we
assume, followed by a subsection for each step in the
DPM method.

2.1 Prerequisites

System model: In our method, the topology of a sys-
tem and its set of known vulnerabilities is defined us-
ing a graph. The system S is a tuple of hosts H, links
L, vulnerabilities V and mapping c as follows :

S = ⟨H,L,V,c⟩

• H = {h1,h2, . . . ,hn}: is the set of hosts in the sys-
tem

• L: is the set of logical links connecting the hosts;
a link is a pair l = ⟨hi,hk⟩,hi,hk ∈ H and i ̸= k

• V = {v1,v2, . . . ,vm}: is the set of vulnerabilities in
the system

• c(h,v): denotes that a host h∈H contains the vul-
nerability v ∈V .

We define the following predicates over S:

• hasInitialAccess(h): denotes that a host h ∈ H is
initially accessible by an adversary.

• hasExploit(v): denotes that a vulnerability v ∈ V
has an available exploit

• isEntryPoint(h): denotes that a host h ∈ H is a
potential entry point for an attacker. This is true
when hasInitialAccess(h) = True and c(h,v) =
True for some vulnerability v ∈ V such that
hasExploit(v) = True. This means that each en-
try point must have at least one vulnerability with
an available exploit.

Vulnerability data: We assume access to Com-
mon Vulnerabilities and Exposure (CVE) data. Each
CVE describes a specific security flaw in the system’s
assets, such as software or hardware components, that
attackers could exploit. The impact score represents
the potential impact a vulnerability could have if ex-
ploited. To account for the impact of a vulnerabil-
ity exploitation, we consider threats to confidential-
ity, integrity, and availability properties using three
levels: High, Low, and None. We borrow the no-
tion of confidentiality, integrity, and availability im-
pact from [FIRST, 2019]. CVSS defines the impacts
both qualitatively as high, low, and none, but also nu-
merically.

Exploitability score: While the CVE information
also contains information about exploitability, there
are several problems with this metric, including the
static nature of scoring, which assigns the severity of
a CVE once and does not change over time. There
is need for a dynamic metric that reflects the real-
world exploitability of CVEs and adapts as new ex-
ploits emerge and systems evolve within a changing
threat landscape.

As an alternative metric, the EPPS (Exploit Pre-
diction Scoring System) [Jacobs et al., 2023] esti-
mates the likelihood of any exploitation attempt for a
given vulnerability in the next 30 days. EPSS scores
range from 0 to 1, with higher values indicating a
greater likelihood of exploitation. By incorporating
EPSS in our calculations, we can prioritize vulnera-
bilities that have a high impact and are more likely to
be exploited by attackers. We generate exploitability
scores from the open source Tesorion tool developed
by T-CERT 1.

1https://github.com/Tesorion/vulnerability-explorer

This user-friendly tool helps incident response
teams identify vulnerabilities in a particular applica-
tion and enhance it with data to calculate the likeli-
hood of exploitation using EPSS.

2.2 Risk calculation

The first step of the DPM process is to establish the
baseline system risk level. This number is calculated
using the notions of frequency and vulnerabilityRisk
as follows.

The frequency of a vulnerability v ∈V equals the
number of hosts h for which c(h,v) holds, divided
by the total number of hosts in the system as shown
in Equation 1:

Frequency(v) =
1
|H| ∑

h∈H
c(h,v) (1)

vulnerabilityRisk: denotes the risk associated
with a single vulnerability and is calculated as in
Equation 2:

vulnerabilityRisk(v) = EPSS(v)× Impact(v) (2)

Quantified values of impact used in the calculation
can for example. be chosen as follows:

• High Impact: A significant breach of any secu-
rity property. The numerical value for this level is
0.56. This is the value used in CVSS v3.0.

• Medium Impact: A minor compromise of any se-
curity property. The numerical value for this level
is 0.22. This is the value used in CVSS v3.0.

• No Impact: No considerable impact on security
properties. The numerical value for this is 0.

Finally, the systemRisk is a quantitative value
from 0 to 1 representing how much a given system
is exposed to attacks based on the frequency of vul-
nerabilities and their associated risks. The systemRisk
is calculated as in Algorithm 1 (line 2-7).

The estimation of the total system risk is obtained
by summing up the contributions from all vulnerabil-
ities. We simplify calculation of the risk by consider-
ing exposure of hosts and assuming that all hosts are
impacted by equal amounts due to known vulnerabili-
ties. Adding weights to various hosts to signify higher
impact is also possible and could be a straight forward
extension of the approach.

2.3 Attack simulation

In this subsection, we introduce a potential strategy
that an attacker could use to traverse the target sys-
tem. We illustrate this strategy by presenting the at-
tacker algorithm in more detail. Note that the attacker

https://github.com/Tesorion/vulnerability-explorer

Algorithm 1: calculateSystemRisk

Require: Set of hosts H, Set of vulnerabilities V ,
function denoting vulnerable hosts c

Ensure: systemRisk sysRisk
1: sysRisk← 0
2: for all vulnerabilities v ∈V do
3: f requency← 1

|H| ∑h∈H c(h,v)
4: epss← EPSS(v)
5: impact← impactScores(v)
6: vulnerabilityRisk← epss× impact
7: sysRisk←

sysRisk+(f requency× vulnerabilityRisk)
8: end for
9: return sysRisk

algorithm is used to identify the most critical vulner-
abilities and should not be seen as a generic model of
how attackers behave.

We assume a rational or destructive attacker that
initially only has access to the entry points. The at-
tacker’s goal is to compromise as many hosts as pos-
sible. The constraint is that the attacker reaching
a patched host or a host with no vulnerabilities is
blocked from proceeding. To model an attacker in our
method, we utilize a breadth-first-search (BFS) strat-
egy. BFS is an algorithm for traversing or searching a
tree.

It starts at the root node (which, in our case, cor-
responds to an entry point) and explores all neigh-
bor nodes at the present depth level before moving
on to nodes at the next depth level. In this context,
BFS visits all reachable hosts from any entry point
in the network graph while recognizing cycles in the
graph to reach termination. The attacker’s purpose is
to find and attack all possible vulnerable hosts. This
approach explores all paths systematically, ensuring
that all shortest attack paths are considered.

The algorithm has three phases:

• Queue Initialization: The algorithm starts with a
queue initialized with some entry point. Each el-
ement in the queue will be a tuple containing the
current host and the path taken to reach it.

• Exploration of Neighbors: The algorithm de-
queues an element and explores its neighbors. For
each neighbor, if it hasn’t been visited (and is not
patched), it gets added to the queue, and the path
is extended.

• Completion: The process continues until all nodes
reachable from the entry point have been ex-
plored. The result is a list of possible paths an
attacker could take starting from the initial entry
point.

We model an attacker’s strategy to traverse the
network. As illustrated in Attacker Simulation Al-
gorithm 2, the attacker explores the network from
a specified entry point e, and prioritizing hosts with
high connectivity and exploitability. The algorithm
initializes three variables: R (reached hosts), Q
(queue) and P (path). R denotes a set to track vis-
ited hosts, starting with an entry point e (line 2). Q
contains a queue of pairs, where each pair consists of
a host to visit, together with the path leading to the
host from the entry point (line 3). P is a set that stores
all distinct paths explored by the attacker (line 4).

The main loop (line 5) processes elements from Q
until the queue is empty. For each iteration, the algo-
rithm pops a path from Q, and for each neighbor of
the current host, evaluates unvisited neighbors based
on the number of connections and the EPSS value.
These properties are appended to the list of candidates
C (line 6-14).

The sort(C) function, called on line 15, sorts the
candidates first by the number of connections (de-
scending), as the attacker prefers hosts with more con-
nections for lateral movement. Since the attacker per-
forms reconnaissance and discovery to understand the
target environment and they are able to identify vul-
nerabilities.

Once they have sufficient information, they can
evaluate and decide which part of the system to at-
tack. Then if two hosts have the same number of con-
nections, the attacker compares their average EPSS
scores. A higher EPSS indicates a greater likelihood
of vulnerability exploitation. If the EPSS scores are
equal, the attacker selects randomly.

The algorithm begins by selecting a candidate
from the available options (line 16) . If a candidate
is found, (line 17), it is added to the set R, which
records the hosts that have been reached, preventing
the attacker from revisiting previously explored hosts
(line 18). The selected host is then appended to the
path sequence, and a new path is created by extend-
ing the previous one with this host. The updated path
is pushed back into the queue for further exploration
(line 19).

The attacker continues exploring and extending
paths until there are no more valid candidates or all
reachable hosts have been explored. If no candidates
are found, the current path is terminated and added
to the list of paths. Once all paths have been ex-
plored, the algorithm returns the set of distinct paths,
line 20, representing the different routes the attacker
could take through the system.

Algorithm 2: Attacker Algorithm

Input: S System model, e Entry Point, V
Vulnerabilities

Output: P Set of paths
1 Initialize:
2 R←{e}; // Reached hosts
3 Q← [(e, [e])]; // Queue of hosts to

visit, with path from entry
point

4 P←∅;
// Set of completed attack paths

5 while Q ̸= [] do
6 (h, p)← Q.pop();

// Extract the current host and
the path taken to reach it

7 C← []; // Candidate hosts to
visit next

8 for each n ∈ S.neighbors(h) do
9 if n /∈ R then

10 conn← getConnections(n,S);
11 EPSS← getEpss(V,n);
12 C.append((n,conn,EPSS));

// Add candidate hosts
with their connection
and EPSS data

13 if C = [] then
14 P.add(p);

// Add the current path to
the set of paths if no new
candidates

15 sort(C);
// Sort the candidate hosts

based on chosen criteria
16 while C ̸= [] do
17 next←C.pop();

// Choose the next candidate
host

18 R.add(next);
// Mark the host as reached

19 Q.append((next, p+[next]));
// Append the next host to

the path and continue
exploring

20 return P;
// Return the set of all paths

explored by the attacker

2.4 Prioritized Patching

In this subsection, we explain what the proposed de-
fender algorithm does. The defender algorithm per-
forms patching to minimize system risk in a given

topology vulnerable to attacks.
The algorithm takes as input the system model

S = ⟨H,L,V,c⟩
described in Section 2.1 with a base risk calculated in
Algorithm 1, a set of paths, and a set of patches. It cre-
ates a dictionary named pathRisk(o) to store the sys-
tem risk value for each path after hypothetical patch-
ing. It then iterates over each attack path in P . Within
each path, the algorithm iterates over hosts that the
path traverses.

For each host, the algorithm examines the vulnera-
bilities it possesses. The c′ function evaluates whether
a vulnerability should be patched by evaluating its im-
pact on the current path’s risk. If a patch is applied
and it successfully reduces the risk, c′ returns 0, indi-
cating the vulnerability has been patched. Otherwise,
if no patch is available for the vulnerability, c′ returns
1, indicating that the risk from the vulnerability per-
sists on the path (line 1,2).

After simulating the patching process for all
vulnerabilities along the path, the algorithm calcu-
lates the total system risk by calling the function
calculateSystemRisk(H,V,c′) in Algorithm 1 with the
updated vulnerabilities (line 3). This function com-
putes risk based on the hosts, vulnerabilities, and the
alternative mapping c′, which depends on the vulner-
abilities patched. The calculated risk for that path is
then stored in pathRisk(o).

After calculating risk values for all generated at-
tacker paths, the algorithm identifies the path with the
highest residual risk. This is done by finding the min-
imum risk value in pathRisk(o) (line 4). Then, the
algorithms return the best path to patch, patches, and
the updated state of the system (line 5).

As shown in Algorithm 3, the defender algorithm
focuses on efficiently patching vulnerabilities to mit-
igate potential attacks. Note that the algorithm does
not consider different patches having different costs
to apply.

Algorithm 3: Defender Algorithm with Patching

Input: The system model S = ⟨H,L,V,c⟩, the
set of paths P, the set of patches F

1 for p ∈ P do
2 c′(h,v)←{

0 if h ∈ p and F patches v,
c(h,v) otherwise

3 pathRisk(o)←
calculateSystemRisk(H,V,c′)

4 chosenPath← argminp∈P pathRisk(o)
5 Apply patches to chosenPath

3 Empirical Study

This section outlines the methodology used in our em-
pirical study, focusing on the collection and analysis
of data related to vulnerabilities, exploits, and ven-
dor patches. The datasets serve as the primary inputs
for our method, enabling its application and assess-
ment. We provide insights into the types of vulner-
abilities identified, corresponding exploits, and avail-
able patches, which are integral to our approach.

While several works have examined various as-
pects of Electric Vehicle Charging Infrastructure
(EVCI) security, this study is the first to conduct
an empirical analysis of vulnerabilities, exploits, and
patches specific to EVCI assets. By mapping known
CVEs, their exploitability, and potential impacts, we
identify the most threatened components and offer in-
sights into how attackers might target EVCI systems.

This section is critical for the rest of the paper
as it provides the foundational data necessary for our
method, which is directly applied in the subsequent
analysis. Our findings are based on an architecture
similar to that described by [Alcaraz et al., 2023],
modeling an electric vehicle charging infrastructure
within a microgrid, ensuring the relevance of our
study to real-world EVCI systems.

3.1 Vulnerability collection

We start by collecting EVCI-relevant data from vari-
ous sources such as search engines and vulnerability
databases using keywords like ”OCPP,” ”charging sta-
tions,” ”CSMS,” ”EVSE,” hardware/software compo-
nents, and product names. After reviewing all the pos-
sible hits generated from our keywords, we removed
the duplicates, resulting in 46 vulnerabilities related
to EVCI with assigned CVE IDs. The severity scores
of the selected vulnerabilities range from 4.3 to 9.8.

The fact that we only found 46 EVCI-related vul-
nerabilities shows that they are underreported. Table
1 shows the EVCI components ordered by the num-
ber of reported vulnerabilities related to each compo-
nent. The analysis of this table shows that charging
stations (CSs), charging station management systems
(CSMSs), and charging station controllers (CSCs) ap-
pear to be the most frequently targeted assets. They
commonly suffer from firmware or software vulnera-
bilities, making them the primary entry points to the
system architecture.

3.2 Exploit collection

As discussed earlier, our primary focus is on the ex-
ploitability of the collected vulnerabilities. Hence, we

Table 1: Distribution of vulnerabilities in EVCI infrastruc-
ture

Asset Type Known CVEs

Charging station(CS) 21
Charging station controller(CSC) 6
Automation server(AS) 1
Electric Vehicle Supply Equipment (EVSE) 1
Charging station management system (CSMS) 6
Industrial network switches(SW) 5
Load Management System (LMS) 2
Power meter(PM) 1
Electric Vehicle(EV) 1
Industrial Gateway(GW) 1
Remote telemetry system(RTS) 1

investigate and find the available exploits in the wild
that attackers can use to hack the EVCI infrastructure.

[Yoon et al., 2023] proposed a framework to
detect exploits in the wild by collecting exploit
data from sources like Exploit-DB, Github, and
CISA, which provides Known Exploited Vulnera-
bility (KEV) information. Building on their work,
we extend this list of sources by including addi-
tional exploit databases such as Packetstorm, Coali-
tion, Sploitus, and 0day.today. By querying these
databases—comprising both the original sources from
[Yoon et al., 2023] and the additional ones we iden-
tified — we detect 11 available exploits for the col-
lected CVEs using CVE IDs and the affected products
as search entries.

Table 2 shows the identified exploits aligned with
their exploitability scores. From these two tables, we
can see that for 46 vulnerabilities, there are 10 avail-
able exploits, which means 1 in 4 detected vulnera-
bilities can be immediately exploited with the help of
online databases to damage the EVCI infrastructure.

Table 2: Released exploits in EVCI infrastructure

CVE Asset Exploit CVSS EPSS Source

2020-8006 CS Buf. Overflow 9.8 0.1 PS
2018-12634 CSC Cred. Disclosure 9.8 0.95 Sploitus
2023-28343 LMS Comm. Inject. 9.8 0.95 EDB
2022-22808 LMS CSRF 8.8 0.11 CESS
2016-5809 PM CSRF 8.8 0.22 EDB
2021-34591 CSC Priv. Esc. 7.8 0.04 CESS
2023-49955 CSMS DoS 7.5 0.05 CESS
2021-22708 CS Auth. Bypass 7.2 0.1 PS
2016-2278 AS Multiple Vuln. 7.2 0.02 0day
2022-0878 CST DoS 6.5 0.04 CESS
2020-15912 EV Relay Attack 6.5 0.1 PS

3.3 Patch collection

The patching process requires continuous monitoring
of the CVE fixes, especially those released by ven-

dors. Keeping track of the recent patches is time-
consuming because one must monitor vendor web-
sites, GitHub releases, or other communication chan-
nels. These channels are not fixed and can vary from
vendor to vendor.

In our empirical study, we did not find many avail-
able patches published by the vendors. This shows
that not all vendors share their patches on their web-
sites; possibly because they use subscription-based
sharing with their clients via e-mails or other private
channels. We detect the following patches from one
vendor only on their website [Electric, 2025].

The vendor provides clear instructions on per-
forming the patching process and proposes mitiga-
tions. More details about various advisories can be
found in a related article [SecurityWeek, 2025].

Table 3 gives an overview of the collected patches
for a few CVEs, the impacted device, and their impact
score.

Table 3: Known CVEs with released patches

Vulnerabilities Hosts Impact Score
CVE-2021-22820 CS 0.56

CVE-2021-22730 CS 0.56

CVE-2021-22727 CS 0.56

CVE-2021-22707 CS 0.56

CVE-2021-22725 CS 0.22

CVE-2022-22808 LMS 0.22

CVE-2021-22726 CS 0.22

CVE-2021-22708 CS 0.22

CVE-2021-22818 CS 0.22

CVE-2021-22774 CS 0.22

CVE-2022-22807 LMS 0.22

CVE-2021-22773 CS 0.1

CVE-2021-22721 CS 0.1

4 Evaluation

In this section, we evaluate the DPM method and
compare its performance with 2 baseline approaches.
We aim to assess the effectiveness of our patching
strategy in reducing system risk. Specifically, we fo-
cus on how well DPM minimizes the total risk in
the system after patching vulnerabilities along the at-
tacker’s most exploitable path.

4.1 Evaluation methodology

In our evaluation method, we develop a graph-based
mesh topology to express the relationships between
the EVCI infrastructure components, as shown in Fig-
ure 2. We model the system utilizing the NetworkX

library2. NetworkX is a Python package mainly used
for the creation and analysis of the structure, dynam-
ics, and functions of complex networks. Our topology
consists of nodes and edges where nodes (i.e., hosts)
refer to the EVCI infrastructure assets. Edges repre-
sent the links between the hosts in our model. Every
host has its name and additional properties. Utilis-
ing the empirical study knowledge, we assume that
attackers can start exploiting from some of the en-
try points, e.g., ”CSC,” ”CS”, ”CSMS”, ”LMS”, and
”SW”, as they the components with the most vulner-
abilities.

We compare DPM with two baseline methods.
The first baseline for comparison is the earlier one
described by [Petho et al., 2021], which is the clos-
est method we can compare DPM with. In their work,
the authors assign weights to the links in the graph
to represent the presence of security measures. For
links connecting any type of component that does not
have any protective measures in place, the authors as-
sign weight 1 to the link. For the links connecting one
graph component with a gateway and with no security
measure in place, they assign weight 2. To ensure a
fair comparison, we have adopted the same weighing
scheme for the links in our graph, maintaining consis-
tency with their approach.

To compare DPM with a second baseline, we ap-
ply Dijkstra’s algorithm as the attacker algorithm,
seeking the shortest attack path on a simpler model.
In this case, each link is assigned a uniform weight of
1, and the attacker selects paths with the fewest hops
between hosts, regardless of security measures. After
finding the shortest paths, we apply our defender al-
gorithm to patch the vulnerabilities on the paths and
calculate the overall system risk reduction.

Figure 2: EV charging infrastructure

2https://networkx.org/

https://networkx.org/

4.2 Evaluation metric

The success of the compared methods is measured by
the relative risk reduction metric in the system risk
after patching. The system risk is quantified using
an initial score, which represents the vulnerabilities
present in the system before any patches are applied.
The formula for relative risk reduction is given by
Equation (3) as follows:

Risk Reduction (%) =
(

1−
Rpost

Rpre

)
×100 (3)

where Rpre represents the system risk before
patching, and Rpost represents the system risk after
patching. This gives a value between 0% and 100%,
where 100% represents complete risk reduction (i.e.,
no remaining risk), and 0% indicates no risk reduc-
tion.

4.3 Results

In this section we present the results of the evalua-
tion. Table 4 shows the risk reduction when apply-
ing one of the three evaluated methods starting from
a specific entry point. The entry points are all the
nodes for which we found published exploits (Table
2). DPM and the other two methods generate differ-
ent paths that are not guaranteed to be the same length
or cover the same amount of vulnerabilities. We take
into account the riskiest path for DPM and compare
only the riskiest path per algorithm and not a cumula-
tive metric of overall paths.

The results in Table 4 are divided into two cate-
gories based on how DPM compares to the other two
methods: DPM shows a significant advantage in the
first category over the other methods. For entry point
(AS), DPM achieves 79.35%, outperforming Petho et
al. and Dijkstra. In the second category, DPM outper-
forms the other methods by a small margin. For entry
point (CSMS), DPM achieves 67.97%, compared to
62.76% of Petho et al. and Dijkstra 48.16%. How-
ever, in one case, DPM’s performance is worse than
that of the other two methods. Only for entry point
(CS2) we see a small advantage when applying the
alternative methods. DPM achieves 59.85%, slightly
lower than Petho et al. and Dijkstra (62.36% each).

In Figure 3, we present the attacker path starting
from entry point CS3, highlighting the riskiest attack
path and the hosts in that path.

We now proceed to investigate how the risk reduc-
tion increases with the number of patches increasing.
We select 3 cases where DPM outperforms the base-
line methods with a significant risk reduction, one

Entry DPM Petho et al. Dijkstra
CS3 80.00% 74.16% 74.16%
AS 79.35% 46.71% 46.69%
PM1 74.38% 59.80% 59.78%
LMS 65.98% 46.58% 46.77%
PM2 60.86% 46.77% 46.77%
CSMS 67.97% 62.76% 48.16%
EV2 67.97% 62.36% 62.36%
CS1 66.34% 60.68% 60.68%
CST 66.34% 60.68% 60.68%
CSC 65.84% 64.52% 64.52%
PM3 65.67% 60.15% 60.15%
CS2 59.85% 62.36% 62.36%

Table 4: Evaluation of DPM, Petho et al., and Dijkstra for
different entry points

Figure 3: An example highlighting the riskiest attack path
starting from entry point CS3.

where DPM is slightly better and one where is slightly
worse.

Figure 4 presents the relative risk reduction for en-
try point (AS) across three methods: DPM, Petho et
al., and Dijkstra. As the number of patches increases,
DPM demonstrates the most significant improvement
in risk reduction, reaching a peak of 79.35%. Petho et
al. and Dijkstra show a more gradual increase, with
their maximum risk reduction at 46.71% and 46.69%.
DPM outperforms the other two methods because it
applies patches incrementally, aiming to maximize
risk reduction with every step, resulting in a higher
number of patches applied, compared to the other two
methods, which identify fewer vulnerabilities to patch
along the identified riskiest path.

Figure 5 illustrates the results for entry point
EV2. DPM achieves the highest reduction, peaking
at 67.9% after 29 patches. Petho et al. reaches 62.3%
after 26 patches, and Dijkstra also reaches 62.3%, but

with lower effectiveness than DPM and Petho et al.
Overall, DPM slightly outperforms the other meth-
ods.

The findings for entry point CS2 are shown in
Figure 6. DPM shows a significant increase in risk
reduction, peaking at approximately 59.8% after 16
patches. Petho et al. reach 62.3% after 23 patches,
while Dijkstra also approaches 62.3%, but with a
slightly slower rate of increase.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
0

10

20

30

40

50

60

70

80

90

100

Number of patches

R
is

k
R

ed
uc

tio
n

DPM
Petho.et.al
Dijkstra

Figure 4: Relative Risk Reduction for entry point AS

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

10

20

30

40

50

60

70

80

90

100

Number of patches

R
is

k
R

ed
uc

tio
n

DPM
Petho.et.al

Dijkstra

Figure 5: Relative Risk Reduction for entry point CSMS

5 Related Work

In this section, we examine previous works on vulner-
ability prioritization.

5.1 Topology-aware prioritization

[Petho et al., 2021] analyzed vulnerability levels in
in-vehicle communication networks using undirected
graph representations. Edges represent connections

0 2 4 6 8 10 12 14 16 18 20 22 24
0

10

20

30

40

50

60

70

80

90

100

Number of patches

R
is

k
R

ed
uc

tio
n

DPM
Petho.et.al
Dijkstra

Figure 6: Relative Risk Reduction for entry point CS2

between components, with protection levels modeled
as resistance-like parameters. Security is evaluated
by summing the shortest paths between nodes, deter-
mined via a generalized Dijkstra’s algorithm. Unlike
DPM, their approach initializes the starting node with
zero weight and iteratively updates cumulative edge
weights (protection costs) to identify minimal-cost
paths. The study offers a structured method for quan-
tifying network security based on component protec-
tion and interconnections. However, while their anal-
ysis includes various topologies, EVCI networks are
considerably larger and involve more entities and in-
terdependencies compared to single-vehicle network
sizes they demonstrated on.

[Alperin et al., 2019] presented a data-driven ap-
proach for a vulnerability assessment system that re-
lies on the feature extraction from the information
provided in the description of both CVEs and ex-
ploits. Their approach customizes vulnerability pri-
oritization by considering the likelihood that specific
threats will target a network, using historical threat in-
telligence to make these predictions. This approach to
path prioritisation can in principle be combined with
our topology-aware approach and the selection of the
instance to patch first. However, if new exploits ap-
pear, it is not clear how/when their re-evaluation of
the overall threat risk should be initiated.

IoT-PEN [Yadav et al., 2020], a penetration test-
ing framework for IoT systems that follows a client-
server architecture in point, star, and mesh topology,
was introduced to discover the possible ways an at-
tacker can breach the target system using graphs. IoT-
PEN focuses on detecting multi-host and multi-stage
attacks and recommending patch priorities on CVE
severity-based critical vulnerabilities. In contrast, our
approach focuses on minimizing system risk by evalu-
ating attacker paths, prioritizing patches based on ex-
ploitability. While both approaches aim to enhance
security, our method addresses vulnerabilities in the

most critical attack paths, based on their exploitabil-
ity.

5.2 Non-graph based prioritization

[Farris et al., 2018] proposed a vulnerability man-
agement strategy named VULCON based on perfor-
mance metrics such as time-to-vulnerability remedia-
tion and total vulnerability exposure. Their optimized
approach reduces long-term risk on the network, even
if it doesn’t fix as many vulnerabilities overall, fo-
cusing on the most dangerous ones rather than ad-
dressing the highest number. Similarly, [Jung et al.,
2022] present a context-aware vulnerability prioriti-
zation model that calculates temporal-enabled vulner-
ability scores of CVEs and visualizes them. However,
their work generally requires expert knowledge and
time to validate the detected vulnerabilities. [Wu
et al., 2022] propose an OS-aware vulnerability pri-
oritization approach that employs differential severity
analysis, utilizing techniques such as static program
analysis and natural language processing to assess the
severity of vulnerabilities for specific Linux and An-
droid systems. Lastly, PatchRank [Yadav and Paul,
2019] considers SCADA system interdependencies
and ranks nodes’ vulnerabilities using CVSS scores
and their potential impact.

Compared to all the above works, we use a
topology-aware approach combined with attack-path
selection algorithms to simulate attacker behavior.
Additionally, we leverage EPSS to rank vulnerabili-
ties based on exploitability, providing a dynamic and
up-to-date view. Our method addresses vulnerabil-
ities in distributed systems and demonstrates its ef-
fectiveness in EV charging networks, where a single
subsystem vulnerability can have cascading effects on
connected systems.

[Ma et al., 2024] introduce a new tool named Vul-
Net, which provides priority ranking for the depen-
dencies in software libraries and associated vulnera-
bilities and overcomes other platforms such as Maven
Repository (MVN) and Open Source Insights (OSI).
They rank the vulnerabilities based on severity and
dependencies based on dependency depth. However,
their research is limited only to software library de-
pendencies and not other systems, and they use the
CVSS metric score to assign severity. Moreover, they
do not discuss any attack-path selection approach.

5.3 Graph-based prioritization

In their work, [Olswang et al., 2022] main contri-
butions are prioritizing vulnerability patches and at-
tack graph visualization to assist in decision-making.

Their primary focus is estimating a node’s importance
within a graph. Their method is based on the number
of attacks that pass through a specific vulnerability on
a specific device. In contrast, DPM focuses on the
number of vulnerabilities in each host and the likeli-
hood of exploiting that particular vulnerability.

[Stergiopoulos et al., 2022] present a method
for automatically analyzing complex attack graphs in
multi-cloud infrastructures. Their proposed tool pri-
oritizes existing vulnerabilities, explores the effect of
system states on the overall network, and suggests
which system states, vulnerabilities, and configura-
tions have the most significant overall risk to the
ecosystem. They use Edmond’s algorithm to create
a directed tree from a root node that connects to ev-
ery node in the graph, modeling potential attack paths.
The root represents the attacker’s end goal, which dif-
fers from DPM that uses the BFS algorithm, and in
our case, the roots are entry points. We want to see
the riskiest path the attacker can take from various
nodes. Moreover, we utilize the EPSS score, which
differs from their work, which uses CVSS.

[Pirani et al., 2022] developed an attack graph
model for a network’s vulnerability and topology
that minimizes attack success likelihood with mini-
mum cost. They study connectivity measures of sev-
eral vehicle platoon topologies and reveal how these
measures affect the ability of distributed algorithms
to reject communication disturbances, detect cyber-
attacks, and be resilient against them. However, the
authors focus solely on network topologies but do not
discuss vulnerabilities. They do not address specific
weaknesses in the software, hardware, or protocols
that attackers could exploit, which limits their study’s
application in practical cybersecurity scenarios.

5.4 Attack-path prioritization

[Stellios et al., 2021] propose a target-oriented and
source-driven methodology to assess the attack paths
against critical assets. By extending CVSS metrics of
CVEs, they use vulnerability vectors to assess attack-
path scenarios, whereas we use EPSS, which repre-
sents updated information regarding the exploitability
of the CVEs. [Yang et al., 2023] propose a method
for the risk assessment of IoT hosts based on attack
graphs. Their approach involves generating attack
graphs and quantifying both the atomic attack prob-
ability and vulnerability impact value based on mul-
tiple vulnerability attributes. The criticality of a host,
referred to as its ”asset value,” is determined through
a method, which combines expert scoring with the
host’s role in the network topology. However, they do
not focus on the vulnerability prioritization process.

Table 5: Comparison of Various Vulnerability Assessment Approaches Based on Specific Criteria

Authors Topology-aware Distributed System Dynamic Attack Path Selection
[Petho et al., 2021] Yes Yes (In-vehicle) No Yes

[Rencelj Ling and Ekstedt,
2023]

No Yes (ICS) No No

[Yang et al., 2023] Yes Yes (IoT) No Yes

[Wu et al., 2022] No No No No

[Yoon et al., 2023] No Yes (ICS) Yes No

[Jacobs et al., 2023] No No Yes No

[Farris et al., 2018] No No No No

[Jung et al., 2022] No No No No

[Stergiopoulos et al., 2022] Yes Yes (Large-scale networks) No Yes

[Yadav et al., 2020] Yes Yes (IoT) No Yes

[Olswang et al., 2022] Yes Yes (Enterprise) No Yes

[Yadav and Paul, 2019] Yes Yes (SCADA) No No

[Stellios et al., 2021] Yes Yes (IoT) No Yes

[Ma et al., 2024] No Yes (Maven and OSI libraries) No No

Our work (DPM) Yes Yes (EV charging) Yes Yes

5.5 Summary

We summarise the related work in Table5, in which
we consider four selection criteria for vulnerability
prioritization: topology-aware, distributed systems,
dynamic, and attack-path. The column ”Topology-
aware” indicates whether other works consider the
network topology when prioritizing vulnerabilities.
The column ”Distributed System” indicates whether
the analysis considers a networked system with inter-
connected nodes, where vulnerabilities may impact
multiple components across the system, or if it as-
sumes an isolated, standalone environment. The un-
derlying reason is that the EV charging infrastruc-
ture is distributed, where information is processed in
several systems. The column ”Dynamic” indicates
whether other works employ methods or metrics that
dynamically adapt to CVE exploitability, account-
ing for new exploits and evolving threat landscapes,
thereby providing a real-time and context-aware anal-
ysis of vulnerabilities. Next, on column ”Attack Path
Selection” we review whether the related works pri-
oritize vulnerabilities based on possible attack-paths.
This work is the only one that meet all the criteria in
the analysis.

6 Conclusions

This paper introduces a topology-aware dynamic
patch management method to enhance the cyberse-
curity of Electric Vehicle Charging Infrastructure.
Unlike traditional approaches, our method leverages
changes in vulnerability exploitability for efficient
risk reduction. It improves risk mitigation by iden-
tifying the most vulnerable attack paths and priori-

tizing vulnerabilities based on exploitability and im-
pact. Our empirical study on charging infrastructure
vulnerabilities revealed 46 vulnerabilities that need
prompt patching to avoid risks to energy infrastruc-
tures.

The results show that our method significantly re-
duces risk across various access locations, outper-
forming other methods, including closely related al-
gorithms. Its design maximizes risk reduction, espe-
cially when prioritization is crucial and patches are
limited.

Future work could explore how DPM can be made
more efficient for reapplication to a new domain. We
can also consider investigating and developing a mea-
surement to quantify the costs of patching different
vulnerabilities.

REFERENCES

Alcaraz, C., Cumplido, J., and Trivino, A. (2023).
Ocpp in the spotlight: threats and countermea-
sures for electric vehicle charging infrastructures
4.0. International Journal of Information Secu-
rity.

Alperin, K., Wollaber, A., Ross, D., Trepagnier, P.,
and Leonard, L. (2019). Risk prioritization by
leveraging latent vulnerability features in a con-
tested environment. In Proceedings of the 12th
ACM Workshop on Artificial Intelligence and Se-
curity.

Electric, S. (2025). Cybersecurity security notifica-
tions. Schneider Electric Cybersecurity.

Farris, K. A., Shah, A., Cybenko, G., Ganesan, R.,
and Jajodia, S. (2018). Vulcon: A system for

vulnerability prioritization, mitigation, and man-
agement. ACM Transactions on Privacy and Se-
curity (TOPS).

FIRST (2019). CVSS v3.0 Specification Document.
Forum of Incident Response and Security Teams
(FIRST). Accessed: 2024-11-18.

Jacobs, J., Romanosky, S., Suciu, O., Edwards, B.,
and Sarabi, A. (2023). Enhancing vulnerability
prioritization: Data-driven exploit predictions
with community-driven insights. In 2023 IEEE
European Symposium on Security and Privacy
Workshops (EuroS&PW).

Jung, B., Li, Y., and Bechor, T. (2022). Cavp: A
context-aware vulnerability prioritization model.
Computers & Security.

Kern, D., Krauß, C., and Hollick, M. (2024). Attack
analysis and detection for the combined electric
vehicle charging and power grid domains. In
Proceedings of the 19th International Confer-
ence on Availability, Reliability and Security.

Ma, Z., Mondal, S., Chen, T.-H., Zhang, H., and Has-
san, A. E. (2024). Vulnet: Towards improving
vulnerability management in the maven ecosys-
tem. Empirical Software Engineering.

Olswang, A., Gonda, T., Puzis, R., Shani, G., Shapira,
B., and Tractinsky, N. (2022). Prioritizing vul-
nerability patches in large networks. Expert Sys-
tems with Applications.

Petho, Z., Khan, I., and Torok, Á. (2021). Analysis
of security vulnerability levels of in-vehicle net-
work topologies applying graph representations.
Journal of Electronic Testing.

Pirani, M., Baldi, S., and Johansson, K. H. (2022).
Impact of network topology on the resilience of
vehicle platoons. IEEE Transactions on Intelli-
gent Transportation Systems.

Rencelj Ling, E. and Ekstedt, M. (2023). Estimating
time-to-compromise for industrial control sys-
tem attack techniques through vulnerability data.
SN Computer Science.

Sarieddine, K., Sayed, M. A., Torabi, S., Attallah, R.,
Jafarigiv, D., Assi, C., and Debbabi, M. (2024).
Uncovering covert attacks on ev charging in-
frastructure: How ocpp backend vulnerabilities
could compromise your system. In Proceedings
of the 19th ACM Asia Conference on Computer
and Communications Security.

SecurityWeek (2025). Ics patch tuesday advisories
published by siemens, schneider electric, aveva,
cisa. SecurityWeek.

Stellios, I., Kotzanikolaou, P., and Grigoriadis, C.
(2021). Assessing iot enabled cyber-physical at-

tack paths against critical systems. Computers &
Security.

Stergiopoulos, G., Dedousis, P., and Gritzalis, D.
(2022). Automatic analysis of attack graphs for
risk mitigation and prioritization on large-scale
and complex networks in industry 4.0. Interna-
tional Journal of Information Security.

Vailoces, G., Keith, A., Almehmadi, A., and El-
Khatib, K. (2023). Securing the electric vehi-
cle charging infrastructure: An in-depth analysis
of vulnerabilities and countermeasures. In Pro-
ceedings of the Int’l ACM Symposium on Design
and Analysis of Intelligent Vehicular Networks
and Applications.

Wu, Q., Xiao, Y., Liao, X., and Lu, K. (2022). {OS-
Aware} vulnerability prioritization via differen-
tial severity analysis. In 31st USENIX Security
Symposium (USENIX Security 22).

Yadav, G. and Paul, K. (2019). Patchrank: Ordering
updates for scada systems. In 2019 24th IEEE
International Conference on Emerging Tech-
nologies and Factory Automation (ETFA).

Yadav, G., Paul, K., Allakany, A., and Okamura,
K. (2020). Iot-pen: An e2e penetration testing
framework for iot. Journal of Information Pro-
cessing.

Yang, H., Yuan, H., and Zhang, L. (2023). Risk
assessment method of iot host based on attack
graph. Mobile Networks and Applications.

Yoon, S.-S., Kim, D.-Y., Kim, G.-G., and Euom, I.-
C. (2023). Vulnerability assessment framework
based on in-the-wild exploitability for prioritiz-
ing patch application in control system. In In-
ternational Conference on Information Security
Applications.

