Real-Time Evasion Detection in Tree Ensemble
Automotive Intrusion Detection Systems

Valency Oscar Colaco
Link&ping University, Sweden
valency.colaco@liu.se

Abstract—Safety-critical functions in modern vehicles rely on
electronic control units that communicate using the controller area
network (CAN) protocol, which lacks vital security features. In this
context, machine learning (ML) based intrusion detection systems
(IDSs) were proposed as a solution to improve cyber resilience
through real-time attack detection. However, these ML-IDSs must
also withstand evasion attacks that could compromise vehicular
safety. To this end, this paper addresses such attacks in misuse-
based tree ensemble IDSs and proposes a method that detects
evasion attempts. It uses the ordered set of reached leaf nodes
activated by correctly classified training samples as a normality
baseline. An autoencoder-based detector then identifies deviations
as likely evasion attempts. Our approach does not modify the
protected tree ensemble IDS, assumes no knowledge of the process
for generating adversarial examples (ensuring generalisability),
and works with any additive tree ensemble. We also prove that
it is mathematically equivalent to the state-of-the-art, which we
advance in terms of detection speed by replacing its Hamming
distance-based deviation search with an autoencoder-based model
of typical predictive behavior trained using our custom loss
function. This enhancement results in a detection process that
is orders of magnitude faster. Additionally, our method offers
nuanced insights regarding the pre-evasion attack signature prior
to the adversarial perturbation, thereby enriching the security
analysis of the features targeted during evasion attempts. The
prototype system we present, called Maverick, has a very low
prediction latency, making it 85-563x faster than the current
state-of-the-art while maintaining identical detection accuracy.
Finally, Maverick predicts the pre-evasion attack signatures of
the evasion samples with an accuracy of more than 93% and has
an average prediction time well below the message transmission
rate for CAN 2.0 and CAN FD, thereby satisfying the criteria
for an evasion-hardened & real-time automotive IDS.

I. INTRODUCTION

Modern automotive functions are controlled using a large
number of electronic control units (ECUs) that communicate
using the controller area network (CAN), which is the current
standard for in-vehicular communications [21]. However, the
CAN protocol lacks built-in security features, making it vulner-
able to adversaries [21]. While solutions based on cryptography
and encryption have been proposed to address some issues
[23], their adoption has been limited as they only provide
partial protection. As a result, they are often supplemented
with Intrusion Detection Systems (IDSs) [7]. Furthermore, in
this domain, an IDS must meet an additional requirement
beyond detecting attacks: it must operate in real-time [26] due
to the time-sensitive nature of automotive functions [22]. This
real-time detection is essential to mitigate attacks as they occur,

Simin Nadjm-Tehrani
Link6ping University, Sweden
simin.nadjm-tehrani @liu.se

preventing potential harm to vehicle occupants and other road
users. For instance, a DoS attack could overwhelm the CAN
bus, delaying or blocking safety-critical functions like braking.
Real-time detection allows for deploying swift countermeasures
to ensure the vehicle’s operational integrity.

While deep learning techniques like LSTMs or CNNs
have been used for CAN-based intrusion detection tasks,
these approaches often lack interpretability. To this end, tree
ensembles emerge as a compelling alternative due to their
interpretable (human-understandable) structures, making them
particularly suitable for use in safety-critical applications where
trust in the model’s behavior is paramount [25]. Moreover,
tree ensembles frequently outperform deep learning techniques
like CNNs and LSTMs on intrusion detection tasks [27]-[30].
However, despite their proven effectiveness, they must also
withstand evasion attacks through, for example, detection or
prevention [28]. Therefore, we propose a method to detect
evasion attacks in a misuse-based tree ensemble automotive
IDS. Our method uses the ordered set of reached leaf nodes in
the tree ensemble activated by the incoming sample, referred
to as the Output Configuration (OC) [3]. Our work is based
on the hypothesis proposed by Devos et al. [3] that adversarial
examples produce relatively different OCs in contrast to those
produced by normal samples when compared against the OCs
generated using correctly classified training examples (referred
to as the reference set). Note that we denote normal or non-
adversarial samples as those belonging to either the attack or
benign classes as long as an attacker has not perturbed them.
Once an attacker perturbs a normal sample to evade detection
(attack — benign) or to raise a false alarm (benign — attack),
a large number of which could impact IDS availability, we
deem such a sample as an adversarial example or simply, an
adversarial sample.

The OC-Score method proposed by Devos et al. [3] uses a
Hamming distance-based search across a reference set to detect
evasions. While OC-Score is the current state-of-the-art (SOTA)
in evasion detection, it has a critical flaw - extremely long
prediction times (due to its exact search), making it unsuitable
for real-time detection. Our initial attempts to address this
by replacing the exact search with an approximate nearest
neighbour (ANN) search method, such as Google’s ScaNN,
Meta’s FAISS, or Spotify’s ANNOY, yield unacceptable false
positive rates; therefore, we use principles from anomaly
detection, defining a custom loss function and utilizing the

reference set as a normality baseline to develop an autoencoder-
based evasion detector for identifying evasion attempts. This
enhancement results in a prediction time much lower than the
transmission time per packet on the CAN bus, thereby enabling
real-time detection. Our approach is orders of magnitude faster
than OC-Score and works for any additive tree ensemble. It also
does not modify the protected IDS and assumes no knowledge
about the process for generating adversarial examples (so it
generalises well). Finally, by leveraging manifold learning
with an ensemble of small autoencoders, our method can also
accurately predict the pre-evasion attack signatures (before
the adversarial perturbation or manipulation) for incoming
adversarial examples, providing evasion-informative insights
to enrich the understanding of the specific features targeted
by attackers in the evasion process. The contributions of this
work are summarized as follows:
o We present a method that:
— leverages the set of reached leaf nodes to detect evasion
attacks in real-time for automotive tree ensemble IDSs.
— uses manifold learning to predict the pre-evasion attack
signatures of the evasions in order to provide nuanced
insights into the attacker’s perturbation strategy.

o We present Maverick, a prototype system that realizes
an evasion-hardened and real-time IDS that maintains the
decision accuracy of the original tree ensemble IDS.

o We demonstrate Maverick’s effectiveness using two real-
world case studies that highlight its real-time detection
capabilities, achieving detection speeds that represent an
85-563x fold increase compared to the SOTA.

The remainder of this paper is structured as follows. Section
IT compares this paper with related works. Section III presents
the background knowledge. Section IV presents the threat
model. Section V presents the proposed method. Section VI
presents the experimental evaluations. Section VII presents the
discussions, and Section VIII concludes this paper.

II. RELATED WORKS

Evasion attacks on automotive intrusion detection systems
(IDSs) have become a growing concern for cybersecurity due
to their direct impacts on vehicular safety [21]. Stefano et al.
[22] assess the robustness of automotive IDSs against evasion
attacks and assert that adversaries can significantly impair
their detection capabilities. Chen et al. [15] propose a booster-
fixer training framework for enforcing security properties in
classifiers. Their approach suffers from the issue of scalability
and follows a counterexample-guided inductive synthesis loop
in which counterexamples generated during formal verification
are used to optimize the models until the security property
is eventually satisfied. Apruzzese et al. [17] propose an
ensemble of application-specific IDSs called APPCON to defend
organisational networks, where real-time detection is generally
not a critical requirement. Vos et al. [18] propose a new class of
robust tree ensembles called GROOT to detect evasion attacks.
In another paper [19], they propose a robust relabeling scheme
based on computing the minimum vertex cover of a bipartite

graph, which optimally changes the prediction labels of decision
tree leaves to maximize adversarial robustness. Lecuyer et al.
[20] propose a certified defence based on differential privacy
to detect adversarial examples. All of these approaches offer
incremental detection improvements and are superseded by
OC-Score, which we compare against in the next paragraph.

A different category of methods in the literature use an
analysis of the internal prediction mechanisms within machine
learning models to detect adversarial examples. Sperl et al.
[16] highlight that the dense layers of deep neural networks
carry security-sensitive information. They use this information
to train a secondary neural network to detect adversarial
examples in real-time. Devos et al. [3] propose a method
called OC-Score to detect evasion attacks in tree ensembles
by analyzing the set of leaves activated by the adversarial
example in the ensemble’s constituent trees. While OC-Score
uses a Hamming distance-based approach to detect evasion
attacks, it suffers from the critical limitation of high prediction
times (due to its exhaustive search across a reference set),
making it unsuitable for use in the automotive domain. To
address this issue, our prototype, Maverick, replaces OC-
Score’s Hamming distance-based search mechanism with an
autoencoder-based detector (trained using our custom loss
function) to identify evasion attempts. This enhancement
significantly reduces prediction times by several orders of
magnitude while maintaining OC-Score’s superior detection
performance. Additionally, by leveraging small autoencoders
in a class-wise ensemble, Maverick can accurately predict the
malicious signature that the attacker(s) perturbed to evade
detection. In this paper, we consider OC-Score to be the
most relevant for comparison with our work and use it in
our evaluation in section VI.

III. BACKGROUND

In this section, we present the background knowledge on tree
ensembles, the OCs, autoencoders, CAN, and the AUTomotive
Open System ARchitecture (AUTOSAR) IDS Protocol.

A. Tree Ensembles

Tree ensembles use a collection of decision trees to make
predictions. Let F' be a tree ensemble consisting of N decision
trees, as F' = {T, ..., T }. The prediction function (f) of the
tree ensemble is then defined as,

N
flx)=p (Z ti(ﬂ)
i=1

Where p is the post-processing function (e.g., softmax) and ¢;
is the prediction function implemented by tree T;.

B. Output Configuration (OC)

Let I be a tree ensemble consisting of NV individual decision
trees, as F' = {1, ..., Tn }. The Output Configuration (OC) of
a sample x in an ensemble F is the ordered set of leaves in
each of the trees visited due to x, defined as,

oC(z) = (I*,....,1N)

Where [V are leaf identifiers.

C. Autoencoders

An autoencoder is an artificial neural network which is
trained to reconstruct its input by learning the identity function
of the original data distribution. In general, an autoencoder
trained on data from distribution D gains the capability to
reconstruct unseen instances from the same distribution. If an
incoming instance does not belong to the concepts learned
from D, then we expect a high reconstruction error [5].

D. Controller Area Network (CAN)

The Controller Area Network (CAN) is an automotive bus
technology for communication within a vehicle [8]. Multiple
CAN protocol variants exist that support different transmis-
sion speeds and payload sizes [9]. CAN 2.0 supports two
transmission speeds [10] - High Speed (ISO 11898-2, up to 1
Mbit/s), and Low Speed (ISO 11898-3, up to 125 Kbit/s) with
an average message size of 112 bits. CAN-FD (ISO 11898-1)
supports transmission rates up to 5 Mbit/s with an average
message size of 560 bits. Note that the average message size
was calculated after considering minimal bit stuffing. Based
on this information, the transmission rate for CAN Low Speed
works out to 1,116 packets per second, and that of CAN High
Speed and CAN-FD work out to 8,929 packets per second.

E. The AUTOSAR IDS Protocol

AUTOSAR is a global partnership between automotive
stakeholders for the development of automotive software. The
AUTOSAR R20-11 standard [11] sets out the specification of
an automotive IDS protocol which is described in figure 1.

Intrusion Detection
B System Reporter
(1dsR)

Qualified
Security
Event

(QSEv)

Security
Event
(SEv)

Intrusion
Detection
System

Manager
(1dsM)

‘ Security Event

‘ Memory (SEM)

Fig. 1: Structure of an Automotive IDS [12]

An automotive IDS basically consists of four parts - the
Security Event Sensor, the Intrusion Detection System Manager
(IdsM), the Intrusion Detection System Reporter (IdsR), and
the Security Event Memory (SEM). The security sensors are
software algorithms that detect a potential security event (SEv)
and report it to the IdsM. At the IdsM, the SEv then passes
through qualification filters, and becomes a Qualified Security
Event (QSEv) when certain criteria are met. This QSEv is
then passed to the IdsR which forwards it to the vehicle
manufacturer’s security operating center (SoC) which deploys
appropriate countermeasures. The SEM enables the secure
storage of security events.

IV. THREAT MODEL

We adopt a threat model that is consistent with Apruzzese et
al. [1] and Biggio et al. [2]. According to Biggio et al., the threat

model can be represented using an attacker’s goal, knowledge,
capability, and strategy. In this paper, the threat model is
specific to attacks against the automotive IDS, thus indirectly
threatening the underlying network flows and the vehicular
functions. Regarding the underlying system, we assume the
attacker goal to be safety violations like uncontrolled braking,
acceleration, or steering wheel lock-ups.

Regarding the attacks against the automotive IDS, we assume
the attacker goals to be integrity violations that happen when
the core IDS functionality of “detecting attacks” is tampered
with. We assume a grey box level of knowledge where an
attacker has knowledge about the type of detection model
along with the feature set. We also assume the attacker has
compromised one of the ECUs in the vehicle as in Zenden
et al. [7], enabling them to collect CAN messages and train
a surrogate model. Finally, since the attacker strategy is to
perform evasion attacks, we assume that the attacker is capable
of performing indiscriminate exploratory integrity attacks using
the surrogate model at the raw traffic level, also known as the
problem space [1].

V. PROPOSED SYSTEM

In this section, we present Maverick, our prototype system,
along with its architecture, components, and workflow. We also
describe how Maverick can be embedded into an automotive
networking system in line with global standards.

A. Theoretical Analysis

We use the hypothesis proposed by Devos et al. [3] that
tree ensembles produce relatively different OCs for normal
samples in contrast to adversarial examples when compared to
a reference set, as follows:

1) Notations, Assumptions, and Definitions:

« Assumption 1 (Tree Ensemble & Training): We assume

a tree ensemble of N decision trees 17,..., T, with a
prediction function f. We assume that this tree ensemble
is trained using labelled samples (z,y) € X¢rqin Where
x is the sample/vector and y is the label.

« We denote z,, as a normal (or unperturbed) vector, and
x, as an adversarial vector crafted to evade detection.

« Definition 1 (Output Configuration or OC): We recall that
in a tree ensemble of N decision trees 11, ..., T, the OC
of a sample x is the ordered set of leaves visited by x in
each tree of the ensemble, defined as,

0C(z) = (I}, ., 1)

Where [V are leaf identifiers, and [~ € N.

o We denote the reference set, which is a set of OCs
constructed using correctly classified training samples
(both attack and benign) as R = {OC(z) : (x,y) €
Xirain, f(l') = y}

o Definition 2 (Hamming Distance): Given two vectors u
and v, the Hamming distance between them, denoted by
h(u,v) is defined as the number of places where u and
v differ.

h(u,v) = Z L0,
i=1

o« Lemma 1 [3] (Samples & OCs): Given a normal sample
x, and its output configuration, o, = OC(x,) and an
adversarial example x, along with its output configuration,
04 = OC(z,), we know that,

minR h(0n, 0nn) < minR h(04, 0an)

Onn Oan

Where o,, and o,, are the OCs closest (in terms of
Hamming distance) to o,, and o, respectively.

« Definition 3 (Clipped Root Mean Square Error or CRMSE):
The clipped root mean square error is measured using
the square root of the average squared clipped absolute
difference between the corresponding elements of two
vectors © and v, defined as,

% (Z min(maz(Ju; — v;|, a), b))

i=1

CRMSE(u, v,a,b) =

Where n is the dimensionality of these vectors. a and b
are the lower and upper bounds of the clipping operation,
also known as the clipping co-efficients.

Now that we have explained our notations, assumptions, and
definitions, we can prove our theoretical assertion.

2) Equivalence of Leaf-Based Distances: We now describe
the principle idea behind our evasion detector as follows:

Theorem 1: The CRMSE for normal OCs is lower than that of
adversarial OCs when compared to their respective closest OCs
in the reference set with the clipping co-efficients set to 0 and 1.

More specifically, given normal and adversarial examples x,,,
X4, along with their output configurations o, = OC(z,),
0q = OC(z,), and their closest OCs 0,,,,, 04y € R according
to lemma 1 then,

CRMSE(0y, Onn, 0, 1) < CRMSE(0q, 0gn, 0, 1)
Or simply,
CRMSE(0y,, 0y) < CRMSE(0q, Oan)
Proof. From Lemma 1, we know that,
h(omonn) < h(0a70an)

From definition 2, we know that the Hamming distance between
two vectors is the number of places where the vector elements
differ as,

Hi:oni # onni}l < {i:0ai # 0ani}

Where | - | is the set cardinality. For integer vectors, the above
expression can be written as,

Yo min(maz(|on; — 0pnyl,0),1) < Y1 min(maz(|0q,; — 0an,il,0),1)

Where | - | is the absolute difference between the OC elements.
Since both sides of the expression are non-negative, we can
square them while preserving the inequality relationship as,

2 2
(Z:L:l min(max(|on,i — 0pn,il,0), 1)) < (Z:L:l min(max(|oq,; — Oan,i|,0), 1))

Dividing both sides by n and taking the square root,

2

2
\/%(Z:’:, min(maz(|on,; — Onni|,0), 1)) < \/%(Z:’:1 min(maz(|oa,; — Oan,il,0), 1))

From definition 3, the above expression can be written as,
CRMSE(0p, Onn, 0, 1) < CRMSE(0q, 0gn, 0, 1)
Or simply,
CRMSE(0y,, Onr) < CRMSE(04, 0an) []

We use this theorem for the design of Maverick, the architecture
of which will be described in the next subsection.

B. Maverick Architecture

Our method (embodied in a prototype system called Maver-
ick) relies on the core principle of anomaly detection, which,
in general, identifies events that deviate from some notion
of normality. Note that Maverick detects evasions based on
principles from anomaly detection, while the underlying IDS
is misuse-based. If we recall from section III, autoencoders are
trained to reconstruct the input = as hg(x) ~ x where hy is the
hypothesis function with model parameter 6. By using the set
of OCs produced using correctly classified training samples,
i.e., R as our baseline for normality, we deploy an autoencoder-
based evasion detector to identify deviations. These deviations
come in the form of OCs with a high reconstruction error that
correspond to evasion attacks. Figure 2 provides an overview
of our proposed system architecture.

Run-time packets
or flows
Training
Dataset
Tree
Ensemble IDS

Adversarial
Scorer

Attack Signature
Autoencoder (n)

Attack Signature
Autoencoder (1)

Pre-Evasion Attack Signature Detector

Pre-Evasion Attack Evasion Score
Signature Prediction vasl cor

Fig. 2: Maverick Architecture

The OCs generated using correctly classified training samples
represent typical predictive behaviour of the tree ensemble
IDS. Since adversarial examples exploit unusual decision paths
in tree ensembles [3] to cause intentional misclassifications,
the OCs produced from such examples deviate from typical
predictive behavior. This deviation is identified using the
evasion detector and scored in the adversarial scorer. The output
of Maverick is an evasion score, which can be considered as

the output from the security sensor (e.g., AUTOSAR R20-11).

Alternatively, one can simply set a threshold on this score
to output class predictions directly. Once the samples have
been identified as likely adversarial, they are passed to the
pre-evasion attack signature detector, which adds additional
information pertaining to the attack signature before the
adversarial perturbation. This enriches the security analysis
by providing crucial insights into which features of the CAN
messages are being targeted by attackers to evade detection.
This way, our added components make the (initially defenseless)
tree ensemble evasion-hardened and evasion-informative. We
will now explain the components of Maverick in more detail.

C. OC Mapper

This component is responsible for generating the OCs both
for the training samples, and for the runtime samples. Formally,
if « an input sample, and L; the reached leaf ID corresponding
to the 7" tree in the ensemble then,

OC-mapper(x) = (Ly,...,Ln)
Where N is the number of trees in the ensemble.

D. Evasion Detector

This component is responsible for detecting OCs associated
with evasion attacks. It consists of an autoencoder trained on
the reference set, which serves as the baseline for typical IDS
predictive behavior. We use this autoencoder-based detector
to identify deviations from the baseline in the form of high
reconstruction error OCs that correspond to evasion attacks.
From theorem 1, we know that the CRMSE for OCs from
normal samples is less than that of adversarial examples when
compared to R. We leverage this result to define a custom
loss function, training our autoencoder to specifically minimize
the CRMSE loss on R. This way, samples that deviate from
normality (learned using R) can be flagged as likely adversarial.
If we consider A as our autoencoder reconstruction function,
o as an input OC, and o, as our reconstructed OC, then,
A(0) = o,. This re-constructed OC is then passed on to the
adversarial scorer where an evasion score is computed.

E. Adversarial Scorer

This component is responsible for generating an evasion
score that quantifies the adversarial nature of the input sample.
If o = OC-Mapper(x) is an input OC, and o, = A(0) is a
reconstructed OC, then the evasion score, & = CRMSE(0, 0;.).
This score can be thresholded and converted into class
predictions, or it can be attached to the corresponding security
event (e.g., the SEv in the AUTOSAR R20-11 protocol before
it makes its way to the IdsM qualification filters).

FE. Pre-Evasion Attack Signature Detector

Once the incoming sample is identified as likely adversarial
in the adversarial scorer, it is passed to the pre-evasion attack
signature detector, which is responsible for predicting the attack
signature prior to the perturbation. This component consists of
an ensemble of small autoencoders, each trained on specific

attack signatures in the training dataset. The idea is that each
autoencoder learns the manifold of a specific attack signature,
and when adversarial samples are passed through the ensemble,
the attack signature with the lowest reconstruction error is
returned. This approach works because adversarial examples of
a given class, even after being perturbed into another class, still
retain significant features of their original manifold, thereby
returning a lower reconstruction error.

G. Workflow

In this subsection, we present the workflow of our proposed
method. For ease of understanding, the workflow is split into
two phases: pre-deployment and post-deployment. Figure 3
shows our proposed workflow in action.

([]

- Training Dataset i Please Note:
c i The same Tree
g System | Ensemble IDS
3 Designer 1 IS used in both
% Tree Ensemble | phases.
@ IDS |
e
o -
a Maverick
OC Mapper
Tree Ensemble Evasion
DS Detector
Runtime CAN Adversarial
Messages Scorer]
. Bl || B
5 Attack Signature Attack Signature
; Autoencoder (1) Autoencoder (n)
%_ Pre-Evasion Attack Signature Detector
[
a [
g -~
o Pre-Evasion Attack Evasion Score
Signature Prediction
|
>
g
Security Event Intrusion Detection
Memory (SEM) System Manager (IdsM)
°
w a Intrusion Detection
{ Security System Reporter (IdsR) :
i Manager AUTOSAR R20-11 |

Fig. 3: Maverick Workflow in an Automotive Setting

In the pre-deployment phase, the system designer constructs
the reference set using OCs of correctly classified training
examples. This reference set is used to train the autoencoder-
based evasion detector. In the post-deployment phase, the
runtime samples are mapped to OCs using the OC Mapper.
These samples are then passed to the evasion detector and
scored using the adversarial scorer. Once the sample is
identified as likely adversarial, additional information about
the pre-evasion attack signature is added to the security event.
The final evasion score and the security event are then sent to
the IdsM & IdsR that forward it to the vehicle manufacturer’s
SOC in line with the AUTOSAR R20-11 IDS Protocol.

VI. EXPERIMENTAL EVALUATION

We present the experimental evaluation of Maverick in two
real-world case studies, and compare our method to the current

state-of-the-art method in evasion detection, i.e., OC-Score [3].

Our evaluation addresses three questions:

Q1. Can Maverick detect adversarial examples with a similar
or better accuracy than OC-Score?

What is each approach’s average prediction time associated
with detecting adversarial examples?

How accurately can Maverick discover the source of
attacker perturbations to understand evasion strategies?

Q2.
Q3.

In our experiments, we use VOTE [6], a formal verification
engine for tree ensembles based on abstract interpretation
as an oracle to generate adversarial examples. We use the
scikit-learn [13] implementation for Random Forests and the
DMLC implementation [14] for XGBoost Gradient Boosting
Machines (GBM). All experiments are conducted on a Windows
11 Machine running Ubuntu 20.04 in Windows Subsystem for
Linux mode. The machine comes equipped with an Intel Core
i7-10875H CPU and 16 GB RAM. Due to space constraints,
additional experimental settings are not shown here. However,
these settings, along with the code and data files for the
experimental outcomes presented in the tables and charts in
this section, are freely available for future repeatability at
https://github.com/va-co/maverick.

A. Datasets

In this work, we use two datasets, namely CIC-IoV-2024
[4] developed by the Canadian Institute for Cybersecurity
(CIC), and the HCRL-CAN-FD! developed by the Hacking
and Countermeasure Research Lab (HCRL) in Korea. The
first dataset includes real CAN 2.0 data from a 2019 Ford car
and focuses on spoofing & DoS attacks. The second dataset
includes real CAN-FD data from a 2021 Genesis G80 car and
focuses on flooding, fuzzing & malfunction attacks. Note that
the proportion of benign to attack samples within both these
datasets is heavily imbalanced in favor of the benign class,
mimicking real-world conditions where benign traffic vastly
outnumbers attack traffic.

B. Experimental Setup (CIC-IoV-2024)

We pre-process this dataset as follows. The category and
specific_class columns are dropped as these are typically used
for multi-class classification problems. In the label column, we
map attack and benign to 1 and O respectively. We use 5-fold

cross-validation in all our experiments for a robust evaluation.

For each iteration, the dataset is divided into five folds: the first
three folds are used to train a random forest IDS with 254 trees,
depth 10, while the fourth fold is used to train a surrogate model
that generates adversarial examples using VoTE. The fifth fold,
designated as the test set, is used exclusively for evaluation. In
subsequent iterations, these folds are shuffled cyclically, and
the process is repeated four more times. The results are then
summarized. To prevent any experimental bias, the evaluation

Uhttps://ocslab.hksecurity.net/Datasets/can-fd-intrusion-dataset

was conducted using an equal number of randomly selected
test samples and adversarial examples.

Regarding the spoofing attack, adversarial examples were
generated by only perturbing the data bits (as this attack
typically targets a specific CAN arbitration ID). In the DoS
attack, both the CAN arbitration ID & data bits are perturbed.

C. Experimental Setup (HCRL-CAN-FD)

We pre-process this dataset as follows. All the hexadecimal
values are converted to decimal. The timestamp column is
replaced by a new column called dTIME that measures the
time difference between CAN messages of the same arbitration
ID. The R and T labels are mapped to 0 and 1 respectively, and
the DLC column is dropped. In this case study, we use the same
5-fold cross-validation strategy as mentioned in the previous
case study. The only difference is that the tree ensemble IDS
is an XGBoost GBM with 254 trees with a maximum depth
of 10.

Regarding the flooding, fuzzing, and malfunction attacks,
adversarial examples were generated by only perturbing the
data bits. This is because the malfunction attack was targeted
at a specific CAN arbitration ID, the flooding attack already
used a high-priority CAN arbitration ID, and the fuzzing attack
already used random CAN arbitration IDs.

D. Evaluation Metrics

We evaluate the detection performance of Maverick and
OC-Score using the following metrics - Accuracy (Acc.), F1-
Score (F1-Sc.), Area under the receiver-operating characteristic
curve (AUC), Matthews’s Correlation Coefficient (MCC), True
Positive Rate (TPR), True Negative Rate (TNR), False Positive
Rate (FPR), & False Negative Rate (FNR). The evaluation
of the pre-evasion attack signature detection is done using
balanced accuracy along with macro-averaged precision, recall
and F1-Score. Finally, we measure the minimum, maximum,
average, and standard deviation of the prediction times per
method in ps for 10 experimental runs.

E. Detection Performance

The task is to correctly classify samples in both adversarial
and non-adversarial scenarios. First, we present the summarized
detection performance of the tree ensemble IDSs on their
test sets in table I. This serves as a reference evaluation
criterion, assessing OC-Score and Maverick on their ability
to maintain the accuracy of the original IDS decisions whilst
being subjected to both adversarial & non-adversarial scenarios.

Tree Ensemble IDS | Acc.
1.000
1.000

TPR
1.000
1.000

TNR | FPR
1.000 | 0.000
1.000 | 0.000

FNR
0.000
0.000

Case Study
CIC-IoV-2024
HCRL-CAN-FD

Random Forest

XGBoost GBM

TABLE I: Baseline Tree Ensemble IDS Performance

From the results in tables II and III, we see that both OC-
Score and Maverick maintain similar detection performance in
both adversarial and non-adversarial scenarios in the context
of the two case studies.

In Table III, Maverick demonstrates slightly lower perfor-
mance in iteration 4, which is attributed to the autoencoder

OC-Score
Tteration Acc. F1-Sc. AUC Mcc TPR TNR FPR FNR
1 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000
2 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000
3 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000
4 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000
5 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000
Précis | 1000 + 0.000 | 1000 + 0.000 | 1.000 + 0.000 | 1.000 4 0.000 | 1.000 4 0.000 | 1.000 % 0.000 | 0.000 £ 0.000 | 0.000 + 0.000
Maverick
Tteration Acc. F1-Sc. AUC Mcc TPR TNR FPR FNR
1 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000
2 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000
3 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000
4 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000
5 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000
Précis | 1000 + 0.000 | 1000 + 0.000 | 1.000 + 0.000 | 1.000 4 0.000 | 1.000 4 0.000 | 1.000 % 0.000 | 0.000 £ 0.000 | 0.000 + 0.000

TABLE II: Detection Performance Comparisons (CIC-IoV-2024)

not having fully converged. While training the autoencoder for
an additional five epochs could have achieved convergence,
we chose not to unfairly influence or bias the experimental
outcomes through this additional training, ensuring consistency
in our evaluation process. Furthermore, the lower performance
is evident only in the third decimal place, indicating that it
should not have a significant impact on the overall results.

OC-Score
Iteration Acc. F1-Sc. AUC Mcc TPR TNR FPR FNR
1 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000
2 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000
3 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000
4 1.000 1.000 1.000 0.999 1.000 0.999 0.001 0.000
5 1.000 1.000 1.000 0.999 1.000 0.999 0.001 0.000
Précis | 1.000 = 0.000 | 1.000 + 0.000 | 1.000 + 0.000 | 1.000 &+ 0.000 | 1.000 0,000 | 1.000 = 0,000 | 0.000 £ 0.000 | 0.000 £ 0.000
Maverick
Iteration Acc. F1-Sc. AUC Mcc TPR TNR FPR FNR
1 1.000 1.000 0.999 0.999 1.000 0.999 0.001 0.000
2 1.000 1.000 1.000 0.999 1.000 0.999 0.001 0.000
3 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000
4 0.998 0.998 0.997 0.995 0.998 0.997 0.003 0.002
5 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000
Précis | 0999 = 0001 | 0999 + 0.001 | 0999 &+ 0.001 | 0998 + 0002 | 0999 = 0.001 | 0999 = 0001 | 0.001 = 0.001 | 0.000 % 0.001

TABLE III: Detection Performance Comparisons (HCRL-CAN-FD)

In the next subsection, we show that this maintained level
of performance comes with significant timing improvements.

F. Runtime Performance

The prediction times for both methods in their respective case
studies is shown in table IV. Note that a 4 indicates compliance
with the detection-timing requirements on an automotive CAN-
based IDS, while a £3 signifies non-compliance.

Method Case Study | Min. (us) | Max. (us) | Avg. (us) | SD (us) | CANLS | CANHS | CAN FD
OC-Score 6084.27 6412.64 6298.64 126.15

CIC-ToV-2024
Maverick 7039 79.07 74.32 258
0C-Score 2079560 | 33560.07 | 31538.58 | 113843

HCRL-CAN-FD
Maverick 5256 63.06 55.77 3.00

TABLE IV: Prediction Time Comparisons

Recall from section III, that an automotive IDS should be
able to process CAN 2.0 Low Speed (LS) packets at 896us
per packet, and CAN 2.0 High Speed (HS) packets at 112us
per packet. Regarding CAN-FD, this timing requirement is
112us per packet. From table IV, we see that Maverick’s
average prediction times of 74us and 56us meet this real-time
prediction requirement of automotive IDSs. In comparison,
the average prediction times for OC-Score are 6299us and
31539us respectively, and that would make Maverick 85-563x
faster. We believe the iteration over the reference set (for OC-
Score) likely explains the significantly longer prediction times.

G. Pre-Evasion Attack Signature Detection

The task is to predict the pre-evasion attack signatures in a
multi-class setting given detected adversarial examples.

Case Study Accuracy | Precision | Recall | F1-Score
CIC-IoV-2024 0.933 0.960 0.933 0.938
HCRL-CAN-FD 1.000 1.000 1.000 1.000

TABLE V: Pre-Evasion Attack Signature Detection Performance

From the results in table V, we see that Maverick can predict
these signatures with an accuracy of more than 93%.

VII. DISCUSSIONS

In this section, we present some insights into Maverick’s
construction scalability, threats to validity & applicability.

A. Construction Scalability

Although Maverick offers good, real-time detection, it
comes at the cost of fairly high construction times (21-199
minutes) due to the training of the autoencoder. However, we
would like to point out that this cost is one-off and happens
offline. Moreover, the autoencoder training in our experiments
was done without a GPU (which typically has hundreds of
computational cores for parallelization or specialized tensor
cores to dramatically speed up the training process).

B. Resource Demands and Threats to Validity

Firstly, when using Maverick, it is important to note that it
uses a single large autoencoder which consumes a fair bit of
RAM. This issue can be mitigated by utilizing an ensemble
of smaller autoencoders as demonstrated by Mirsky et al. [5].
Secondly, an adversary could poison the reference set during
Maverick’s autoencoder training, thereby distorting the notion
of normality for the evasion detector. This can be addressed by
implementing data provenance techniques to ensure the integrity
& authenticity of the reference set. Thirdly, an adversary
could attempt to compromise the latent space of Maverick’s
autoencoder to undermine its detection capabilities. Although
this attack is less likely, as it requires administrative access
to the autoencoder’s internal mechanisms, we believe it is
important for potential users to be aware of this risk.

C. Autoencoder Re-training

As new attack signatures are added to the training set
and the tree ensemble IDS is re-trained, the autoencoder in
Maverick must also be re-trained. Similarly, re-training becomes
necessary in response to concept drift or when the notion of
normality in the system changes. Techniques such as Transcend
[24] used in conjunction with Maverick can help optimally
determine when the autoencoder needs to be re-trained vis-a-vis
the aforementioned challenges.

D. Sensitivity to Variations in Traffic Compositions

For answering evaluation question Q1 in section VI, we
used an equal ratio of adversarial to non-adversarial samples
to prevent any experimental bias. This balanced approach was
crucial, as a system overly sensitive to adversarial samples
could result in a surge of false positives, while a system

heavily optimized for non-adversarial samples might fail to
detect adversarial samples leading to a surge in false negatives.
However, in realistic security scenarios, adversarial evasion
attacks may account for a smaller proportion of the total traffic,
with the remaining traffic consisting of non-adversarial or
normal (benign and attack) samples. To check the sensitivity,
we gradually vary the proportion of adversarial samples from
0% to 10% in increments of 1%, while systematically reducing
the proportion of non-adversarial samples from 100% to 90%,
and confirm that Maverick’s detection performance remains
consistent® across these varying traffic compositions, validating
its effectiveness in realistic deployment scenarios.

VIII. CONCLUSION & FUTURE WORKS

This paper explores how to detect evasion attacks in tree-
ensemble-based automotive IDSs. Our approach doesn’t modify
the protected IDS, is independent of the evasion attack
generation process, and works with any additive tree ensemble.
It also preserves the detection accuracy of the underlying IDS
and detects evasions with a very low overhead in terms of
real-time performance, 85-563x faster than the state-of-the-art.
Additionally, it provides key insights for an enriched security
analysis regarding the evasion strategies used by attackers.

Future works include exploring this idea for different classes
of machine learning models beyond tree ensembles. For
instance, analyzing the activation patterns in neural networks
to detect anomalies and their application to IDSs in other
contexts is worth exploring. Also, extending this work to detect
adversarial sequences is an idea worth investigating.

ACKNOWLEDGEMENTS

This work was partially supported by the Wallenberg Al,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation.

REFERENCES

[1] Apruzzese, G., Andreolini, M., Ferretti, L., Marchetti, M., & Colajanni, M.
(2022). Modeling realistic adversarial attacks against network intrusion
detection systems. Digital Threats: Research and Practice (DTRAP).

[2] Biggio, B., Corona, I., Nelson, B., Rubinstein, B.I., Maiorca, D., Fumera,
G., Giacinto, G., & Roli, F. (2014). Security evaluation of support
vector machines in adversarial environments. Support vector machines
applications, 105-153.

[3] Devos, L., Perini, L., Meert, W., & Davis, J. (2023, September). Detecting
evasion attacks in deployed tree ensembles. In Joint European conference
on machine learning and knowledge discovery in databases.

[4] Neto, E. C. P, Taslimasa, H., Dadkhah, S., Igbal, S., Xiong, P., Rahman,
T., & Ghorbani, A. A. (2024). CICIoV2024: Advancing realistic IDS
approaches against DoS and spoofing attack in IoV CAN bus. Internet
of Things, 26, 101209.

[5] Mirsky, Y., Doitshman, T., Elovici, Y., & Shabtai, A. (2018). Kitsune: an
ensemble of autoencoders for online network intrusion detection. arXiv
preprint arXiv:1802.09089.

[6] Tornblom, J., & Nadjm-Tehrani, S. (2019). An abstraction-refinement
approach to formal verification of tree ensembles. In Computer Safety,
Reliability, and Security: SAFECOMP 2019 Workshops, WAISE, Turku,
Finland, September 10, 2019, Proceedings 38 (pp. 301-313).

[71 Zenden, 1., Wang, H., Iacovazzi, A., Vahidi, A., Blom, R., & Raza, S.
(2023, April). On the Resilience of Machine Learning-Based IDS for
Automotive Networks. In 2023 IEEE Vehicular Networking Conference
(VNC) (pp. 239-246). IEEE.

2 Tables confirming this are available with our code.

[8]
[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

Specification, C. A. N. (1991). Bosch. Robert Bosch GmbH, Postfach.
Oberti, F., Savino, A., Sanchez, E., Casasso, P., Parisi, F., & Di Carlo,
S. (2024). CAN-MM: Multiplexed Message Authentication Code for
Controller Area Network Message Authentication in Road Vehicles. IEEE
Transactions on Vehicular Technology.

Shen, Y., Cui, J., Zhong, H., Zhang, J., Bolodurina, I., & He, D. (2024).
A Two-Layer Dynamic ECU Group Management Scheme for In-Vehicle
CAN Bus. IEEE Transactions on Intelligent Transportation Systems.
Specification of an Intrusion Detection System Protocol. (2000).
www.autosar.org/fileadmin/standards/R20- 11/FO/AUTOSAR_PRS_
IntrusionDetectionSystem.pdf

Vector. (2020). Detecting Cyber-Attacks With Automotive Intrusion
Detection Systems. https://www.vector.com/at/en/know-how/security/
automotive-intrusion-detection-systems

Pedregosa, F. (2011). Scikit-learn: Machine learning in python Fabian.
Journal of machine learning research, 12, 2825.

Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree
boosting system. In Proceedings of the 22nd acm sigkdd international
conference on knowledge discovery and data mining (pp. 785-794).
Chen, Y., Wang, S., Qin, Y., Liao, X., Jana, S., & Wagner, D. (2021,
November). Learning security classifiers with verified global robustness
properties. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security (pp. 477-494).

Sperl, P., Kao, C. Y., Chen, P, Lei, X., & Bottinger, K. (2020, September).
DLA: dense-layer-analysis for adversarial example detection. In 2020
IEEE European Symposium on Security and Privacy (EuroS&P).
Apruzzese, G., Andreolini, M., Marchetti, M., Colacino, V. G., & Russo,
G. (2020). AppCon: Mitigating evasion attacks to ML cyber detectors.
Symmetry, 12(4), 653.

Vos, D., & Verwer, S. (2021, July). Efficient training of robust decision
trees against adversarial examples. In International Conference on
Machine Learning (pp. 10586-10595). PMLR.

Vos, D., & Verwer, S. (2022, September). Adversarially robust decision
tree relabeling. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases (pp. 203-218).

Lecuyer, M., Atlidakis, V., Geambasu, R., Hsu, D., & Jana, S. (2019,
May). Certified robustness to adversarial examples with differential
privacy. In 2019 IEEE symposium on security and privacy (SP) (pp.
656-672). IEEE.

Cerracchio, P, Longari, S., Carminati, M., & Zanero, S. (2024).
Investigating the Impact of Evasion Attacks Against Automotive Intrusion
Detection Systems. In Symposium on Vehicles Security and Privacy
(VehicleSec) 2024 (pp. N-A).

Longari, S., Noseda, F.,, Carminati, M., & Zanero, S. (2023, June).
Evaluating the Robustness of Automotive Intrusion Detection Systems
Against Evasion Attacks. In International Symposium on Cyber Security,
Cryptology, and Machine Learning (pp. 337-352).

Wolf, M., Weimerskirch, A., & Wollinger, T. (2007). State of the art:
Embedding security in vehicles. EURASIP journal on embedded systems.
Jordaney, R., Sharad, K., Dash, S. K., Wang, Z., Papini, D., Nouretdinov,
I., & Cavallaro, L. (2017). Transcend: Detecting concept drift in malware
classification models. In 26th USENIX security symposium.

Colaco, V., & Nadjm-Tehrani, S. (2023). Formal Verification of Tree
Ensembles against Real-World Composite Geometric Perturbations. In the
Workshop on Artificial Intelligence Safety 2023 (SafeAl 2023) co-located
with the Thirty-Seventh AAAI Conference on Artificial Intelligence.
Rajapaksha, S., Kalutarage, H., Al-Kadri, M. O., Petrovski, A., &
Madzudzo, G. (2023, February). Improving in-vehicle networks intrusion
detection using on-device transfer learning. In Symposium on vehicles
security and privacy (Vol. 10).

Mehta, J., Richard, G., Lugosch, L., Yu, D., & Meyer, B. H. (2023).
DT-DS: CAN intrusion detection with decision tree ensembles. ACM
Transactions on Cyber-Physical Systems, 7(1), 1-27.

Apruzzese, G., Colajanni, M., Ferretti, L., & Marchetti, M. (2019, May).
Addressing adversarial attacks against security systems based on machine
learning. In 2019 11th international conference on cyber conflict (CyCon)
(Vol. 900, pp. 1-18). IEEE.

Resende, P. A. A., & Drummond, A. C. (2018). A survey of random
forest based methods for intrusion detection systems. ACM Computing
Surveys (CSUR), 51(3), 1-36.

Zhang, C., Jia, D., Wang, L., Wang, W., Liu, F., & Yang, A. (2022).
Comparative research on network intrusion detection methods based on
machine learning. Computers & Security, 121, 102861.

