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Abstract
Microservices are a way of splitting the logic of an application
into small blocks that can be run on different computing units
and used by other applications. It has been successful for cloud
applications and is now increasingly used for edge applications.
This new architecture brings many benefits but it makes deciding
where a given service request should be executed (i.e. its placement)
more complex as every small block needed for the request has to
be placed.

In this paper, we investigate energy-centric request placement
for services that use the microservice architecture, and specifically
whether using different energy metrics for optimization leads to
different placement strategies. We consider the problem as an in-
stance of a traveling purchaser problem and propose an integer
linear programming formulation. This formulation aims at mini-
mizing energy consumption while respecting latency requirements.
We consider two different energy consumption metrics, namely
overall or marginal energy, when applied as a measure to deter-
mine a placement. Our simulations show that using different energy
metrics indeed results in different request placements.

CCS Concepts
• Computer systems organization→ Cloud computing; • Net-
works→ Cloud computing; Network resources allocation.
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1 Introduction
The edge computing paradigm, consisting of moving computational
and storage resources to the edge of the network, is envisioned to
obtain lower latencies, increase privacy and alleviate the amount of
data sent to a distant cloud. As edge computing infrastructures are
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being deployed, the microservice architecture is subject to intensive
study, both in the cloud and at the edge. With this architecture,
services are decomposed into a chain of different functions, allowing
for higher flexibility and sharing of the function logic between
different services.

We consider a distributed edge infrastructure where each edge
device receives service requests coming from end users through
end devices. An end device can e.g. be an IoT device (a video surveil-
lance camera, a sensor), a mobile phone, a connected vehicle, etc..
The edge computing infrastructure is composed of heterogeneous
resource-limited devices. This means that functions cannot deploy
function instances on all available edge devices as this will be too
resource-hungry and also because some specific function instances
can only run on specific edge hardware. For example, somemachine
learning algorithms require GPU resources to run.

In this work, we study microservice request placement, i.e. for
a given set of function instances already deployed in the edge
infrastructure, which one(s) to select for executing a particular re-
quest, incoming at a given physical location and at a given point
in time. How to best deploy the function instances for improved
performance and how many of them should be deployed are related
placement problems which are tackled by other works [16, 22].
The request placement problem is critical to be addressed since
it is where the demand side (the application requirements) and
the supply side (the infrastructure provisioning) meet. The appli-
cation provider is interested in the requests completing in time
to guarantee a high quality of experience for its users. The edge
infrastructure provider is interested because the request placement
can be used to improve load balancing or load consolidation.

Providing (micro)services using edge computing consumes en-
ergy. As part of an effort to minimize the impact of edge computing
on energy consumption, we want to study request placements
with an energy-centric perspective. Indeed, a common optimiza-
tion objective, as many edge applications are latency-critical, is
to minimize the completion time of a service request. Instead, we
argue that there is no benefit in minimizing the service completion
time as long as it is below the deadline requirement, i.e. that its
responsiveness is good enough. Therefore, we use the deadline as
a constraint and choose to optimize with regards to energy con-
sumption only. We formulate two different energy metrics with
different underlying ideas: one considers the energy consumption
as traditionally done and the other considers the energy consump-
tion increment created by the current request being placed. Our
goal is to investigate whether the choice of energy metric results in
different placement decisions and if so, what are the characteristics
of the difference obtained and which factors influence it. As an aid
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in this investigation, we formulate the microservice request place-
ment problem as an instance of the Traveling Purchaser Problem
(TPP). The corresponding optimization problem is solved using
Integer Linear Programming (ILP).

The contributions of this paper are the following:
• We formulate two energy metrics leading to two energy-
centric placement strategies.

• We express the microservice request placement problem as a
Traveling Purchaser Problem and propose an Integer Linear
Programming formulation for it, using the two formulated
energy metrics for the two different optimization objectives.

• We analyze the obtained placements and study the impact
of the two metrics on the placement decision.

The paper is organized as follows: Section 2 presents the system
model. Section 3 describes the energymodels used and the proposed
metrics. Section 4 introduces the two problem formulations. The
evaluation is presented in Section 5. This work is discussed in
Section 6 and related works in Section 7. We conclude in Section 8.

2 System model
2.1 Edge infrastructure
The edge devices included in the considered part of the edge in-
frastructure are represented as a directed graph1 𝐺 = (𝑉 , 𝐿). Each
vertex of the graph corresponds to an edge device and each link of
the graph corresponds to a communication link between two edge
devices. Thus, we assume we have information about which edge
devices are in the system and how they are connected. Additionally,
such information may include the device current utilization level,
performance profile, and energy profile. Information about the links
may include their propagation delay and transmission power. How
this information is retrieved and where/how often this retrieval
takes place is out of the scope of this paper.

2.2 Service
The end users want to use various services. For example, an aug-
mented reality application is used to visualize an architectural
project, or the video footage of a crossing needs to be analyzed.

In this paper, the considered services are following the microser-
vice architecture, i.e. “an approach for developing a single applica-
tion as a suite of small services, each running in its own process
and communicating with lightweight mechanisms” [9]. Therefore,
a service 𝑆 can be defined as a directed acyclic graph 𝑆 = (𝐹, 𝐷)
where a vertex 𝑓 ∈ 𝐹 is one of the functions (micro services) the
service is composed of and an edge 𝑑 ∈ 𝐷 is a dataflow between
two different functions [11]. A service 𝑆 is therefore a chain of
functions connected with a sequence of edges in the same direction.
A function 𝑓 ∈ 𝐹 is associated with a computing size 𝑓 𝑠 and a
dataflow 𝑑 ∈ 𝐷 is associated with a data size 𝑑𝑠 .

In order to provide a service 𝑆 , function instances for every
function 𝑓 ∈ 𝐹 are deployed on different edge devices 𝑣 present
in the infrastructure. At most one function instance for a given
function 𝑓 is deployed on a given node 𝑣 . We therefore introduce
𝜙 = (𝑣, 𝑓 ) as a shorthand for describing the function instance for

1We choose not to use the classic E notation for edges to avoid confusion with the
edge of edge computing. Instead we use an L for “Links”.

function 𝑓 deployed on node 𝑣 . The function instances can then
handle incoming requests.

To execute a function which is a part of a service, an edge de-
vice needs to have the necessary hardware and software available.
This is why all functions may not execute on all edge devices. The
necessary software is for example provided using a dedicated con-
tainer [13]. We denote 𝑉𝑓 ⊆ 𝑉 the subset of edge devices able to
execute a given function 𝑓 , i.e. the subset of edge devices having a
function instance for function 𝑓 deployed. We consider that each
function is available on a subset of edge devices only (∀𝑓 ,𝑉𝑓 ⊂ 𝑉 )
and that every function is available on at least one edge device
(∀𝑓 ,𝑉𝑓 ≠ ∅).

2.3 Service request
The load coming to the edge infrastructure consists of service re-
quests. A service request 𝑟 = (𝑆, 𝑣𝑏 , 𝑣𝑒 , 𝜃, 𝛿) ∈ 𝑅 is defined by: the
requested service 𝑆 , the edge device receiving the request (begin-
ning device) 𝑣𝑏 ∈ 𝑉 , the edge device receiving the request answer
(end device) 𝑣𝑒 ∈ 𝑉 , the request arrival time 𝜃 , and the request dead-
line 𝛿 . The deadline 𝛿 is relative to the service request arrival time
𝜃 and corresponds to the maximum time allowed for the request to
go through all the functions comprising the service and reach the
destination device. In this work, we consider services for which it
is necessary to complete requests before the deadline, otherwise
their quality of service (QoS) is severely degraded.

2.4 Request placement
In this paper, we focus on the request placement problem. That is,
for each request 𝑟 with service 𝑆 incoming to the edge system, the
edge system has to decide on a placement 𝑝 so that the request 𝑟
will be completed before its deadline 𝛿 . We assume that 1) the edge
devices have been provisioned and 2) a set of function instances has
been placed on various edge devices in order to be able to provide
for the services asked by the end users.

When handling a given service request, deciding on which func-
tion instance (and by extension on which edge device) each of the
functions of a service 𝑆 will be executed is called placing the re-
quest. Such a service request placement is denoted 𝑝 = (𝜙1, ..., 𝜙 |𝐹 | )
where 𝜙𝑖 corresponds to the function instance chosen for executing
the 𝑖𝑡ℎ function of service 𝑆 .

For a given placement 𝑝 , the set of edge devices included in
the placement 𝑉𝑝 ⊆ 𝑉 (i.e. the ones where the selected function
instances are deployed) is denoted by 𝑉𝑝 = {𝑣 |𝜙 = (𝑣, 𝑓 ) ∈ 𝑝}.
𝐿𝑝 ⊆ 𝐿 is the set of links connecting these edge devices.

In this work, we focus on request placement taking place at one
decision point at a time, with a specific current resource utilization.
The aim is to be able to study how different optimization objectives
will influence the placement decision.

2.5 Request completion time
Once the placement 𝑝 of a service request 𝑟 is known, it is possible to
calculate the completion time of the request in order to see whether
it is below the deadline 𝛿 . The completion time is composed of two
parts: 1) the transmission time and 2) the execution time.

The transmission time depends on the link propagation delay (in
ms), the available link bandwidth (in byte/ms), and the size of the
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data (in byte) that needs to be transferred on the link. We assume
that the request utilizes all the available link bandwidth to transmit.
Therefore, the transmission time of dataflow 𝑑 with data size 𝑑𝑠 on
a given link 𝑙 is:

𝜆𝑙𝑑 = 𝑙𝑙 + 𝑑𝑠

𝑙𝑐
(1)

where 𝑙𝑙 is the propagation delay for link 𝑙 , and 𝑙𝑐 is the currently
available bandwidth for the link 𝑙 . We assume that the link(s) chosen
correspond to the shortest path between the two edge devices.

The execution time depends on the available computing capacity
of the edge device (in million of instruction (MI) per millisecond)
and the size of the function needing to be computed (in MI). Each
function instance running on the edge device gets a share of the
full capacity. This share (i.e. the available computing capacity for
the function instance) can account e.g. for the need to always have
some free capacity and thus may vary over time. We assume that
the request utilizes all the available computing capacity in the
corresponding function instance for the function execution. The
execution time of the function instance 𝜙 = (𝑣, 𝑓 ) corresponding
to function 𝑓 with computing size 𝑓 𝑠 deployed on edge device 𝑣 is
therefore calculated as follows:

𝜆𝜙 =
𝑓 𝑠

𝜙𝑐
(2)

where 𝜙𝑐 is the available computing capacity allocated to 𝜙 .
The total completion time of a service request 𝑟 to service 𝑆 =

(𝐹, 𝐷) using a given placement 𝑝 is the sum of the transmission
times and execution times for all link transfers and function execu-
tions required to complete the service request. This can be expressed
as:

Λ𝑟𝑝 =
∑︁
𝑙∈𝐿𝑝

∑︁
𝑑∈𝐷

I𝑝

𝑙𝑑
∗ 𝜆𝑙𝑑 +

∑︁
𝑣∈𝑉𝑝

∑︁
𝑓 ∈𝐹

I𝑝

𝑣𝑓
∗ 𝜆𝜙

where I𝑝

𝑙𝑑

{
1, if 𝑑 is sent over 𝑙 according to 𝑝
0, otherwise.

and I𝑝

𝑣𝑓

{
1, if 𝑓 executes on 𝑣 according to 𝑝
0, otherwise.

(3)

3 Energy-centric placement
This work places the focus on the energy footprint of placement
decisions and considers that lowering the energy consumption
should be the sole optimization objective, with performance being
a constraint.Wewant to studywhether considering different energy
metrics to optimize for can result in different placement decisions.
In this section, we present the models used as well as the studied
energy metrics and associated envisioned strategies.

3.1 Energy models
Following Baccarelli et al. [2] and Ahvar et al. [1], we model the
energy consumed by an edge device or an edge link as having both a
static part (i.e. the device/link being in the idle state) and a dynamic
part (i.e. the energy needed for processing/transmitting).

3.1.1 Edge links. The energy used by an edge link 𝑙 to service a
request through the transmission of the dataflow 𝑑 is calculated as

follows:
𝐸𝑙𝑑 = P𝐼𝐷𝐿𝐸

𝑙
∗ 𝜆𝑙𝑑︸         ︷︷         ︸

static part

+ P𝐷𝑌𝑁
𝑙

∗ 𝜆𝑙𝑑︸         ︷︷         ︸
dynamic part

(4)

where P𝐼𝐷𝐿𝐸
𝑙

is the idle power needed for maintaining the link 𝑙
(e.g. the power consumed by the NIC cards at both ends when in the
idle state) and P𝐷𝑌𝑁

𝑙
is the sum of the power needed by the link 𝑙

for transmitting from the transmitting node and receiving at the
receiving node. These are related to a wide range of characteristics
of the communication link (e.g. number of antennas) and the current
link throughput [2]. 𝜆𝑙𝑑 is the duration of using 𝑙 for transmitting
𝑑 , according to Section 2.5.

3.1.2 Edge devices. The energy consumption for an edge device 𝑣
used to service a request through the execution of the function 𝑓 is:

𝐸𝜙 = P𝐼𝐷𝐿𝐸
𝑣 ∗ 𝜆𝜙︸        ︷︷        ︸
static part

+ P𝐷𝑌𝑁
𝑣 (𝑢𝜙 ) ∗ 𝜆𝜙︸               ︷︷               ︸
dynamic part

(5)

whereP𝐼𝐷𝐿𝐸
𝑣 is the power needed for device 𝑣 to be on andP𝐷𝑌𝑁

𝑣 (𝑢𝜙 )
is the extra power needed for device 𝑣 for executing at a utilization
level of 𝑢𝜙 (that includes the execution of the function instance 𝜙).
𝜆𝜙 is the duration of executing 𝑓 on 𝑣 , according to Section 2.5.

To model the dynamic power, we use the piecewise-linear model
proposed by Ahvar et al. [1] with their measurements for the
Parasilo server. Hence, the dynamic power is written asP𝐷𝑌𝑁

𝑣 (𝑢𝜙 ) =
(𝑃𝑐𝑜𝑟𝑒𝑠

𝑗+1 − 𝑃𝑐𝑜𝑟𝑒𝑠
𝑗

) ∗ 𝑘 ∗ 𝑢𝜙 + [( 𝑗 + 1) ∗ 𝑃𝑐𝑜𝑟𝑒𝑠
𝑗

− 𝑗 ∗ 𝑃𝑐𝑜𝑟𝑒𝑠
𝑗+1 ] where

𝑗/𝑘 ≤ 𝑢𝜙 ≤ ( 𝑗 + 1)/𝑘 with 𝑗 ∈ {0, ..., 𝑘 − 1} where 𝑘 is the total
number of cores that the devices has, and 𝑃𝑐𝑜𝑟𝑒𝑠

𝑗
is the dynamic

power consumption value when j cores are utilized.
Note that P𝐼𝐷𝐿𝐸

𝑣 is the idle power of the full edge device. This
corresponds to the worst case where only one function instance is
deployed. If several function instances are deployed, one can define
variants of Equation 5 where only an apportioned chunk of the
idle power is taken into account as the energy consumption of a
given instance. Determining this chunk can be done using energy
apportionment [26]. Such variants are out of the scope of this work.

3.2 Energy metrics
We introduce two different energymetrics for calculating the energy
consumption associated with executing a function instance 𝜙 :

(1) The overall energy consumption, i.e. how much the device
will consume after placing the execution of 𝑓 on top of what
it is already executing.

(2) The marginal energy consumption, i.e. how much additional
energy does the execution of 𝑓 consumes on the device.

3.2.1 Associated envisioned placement strategies. Each of the above
two metrics is associated with an envisioned placement strategy.

For the overall energy metric, the idea is to place the requests on
the devices that will lead to the lowest energy consumption, when
looking at the total energy consumption of all devices involved in
the placement. This is inline with traditionally used energy con-
sumption metrics.

For the marginal energy metric, the idea is to favor load consol-
idation, i.e. to avoid putting load on a device which is currently
idle. Load consolidation makes it possible to gather the load on a
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few devices and switch off the other ones instead of having more
devices on but at a low utilization.

For both metrics, the idea behind considering the response time
as a constraint only and not an optimization objective, is to allow for
placement on devices that require some additional communication
but offer better characteristics with regards to the target energy
metrics than closer devices.

3.2.2 Overall energy. The overall energy consumption for an edge
device 𝑣 used to service a request through the execution of the
function 𝑓 is therefore:

𝐸𝑂
𝜙

= 𝐸𝜙 as defined in Equation 5 (6)

3.2.3 Marginal energy. The marginal energy consumption for an
edge device 𝑣 used to service a request through the execution of the
function 𝑓 depends on what was the utilization of device 𝑣 before
the execution of 𝑓 (𝑢𝑣 ). It is calculated as:

𝐸𝑀
𝜙

=

{
𝐸𝑂
𝜙
, if 𝑢𝑣 = 0

P𝐷𝑌𝑁
𝑣 (𝑢𝜙 − 𝑢𝑣) ∗ 𝜆𝜙 , otherwise.

(7)

The difference between the overall and marginal energy con-
sumption for a given execution of a function instance represents
whether we need to use a previously unused device for the execu-
tion (first line in Equation 7) or whether the function is added to
an already used device. This is useful to know because if the static
energy consumption represents an important part of the energy
consumption, then an energy-efficient placement should favor the
devices already in use instead of turning on new ones.

3.3 Request energy consumption
The request energy consumption, in a similar way to the request
completion time (see Section 2.5), has two parts: 1) the transmission
energy consumption and 2) the execution energy consumption.

Given the models from Section 3.1 and the two metrics from
Section 3.2, the total overall/marginal energy consumption of a
service request 𝑟 to service 𝑆 = (𝐹, 𝐷) with placement 𝑝 is obtained
by summing the corresponding energy consumption of all dataflow
transmissions and function executions. This is expressed as:

𝐸𝑂𝑟𝑝 =
∑︁
𝑙∈𝐿𝑝

∑︁
𝑑∈𝐷

I𝑝

𝑙𝑑
∗ 𝐸𝑙𝑑 +

∑︁
𝑣∈𝑉𝑝

∑︁
𝑓 ∈𝐹

I𝑝

𝑣𝑓
∗ 𝐸𝑂

𝜙

and 𝐸𝑀𝑟𝑝 =
∑︁
𝑙∈𝐿𝑝

∑︁
𝑑∈𝐷

I𝑝

𝑙𝑑
∗ 𝐸𝑙𝑑 +

∑︁
𝑣∈𝑉𝑝

∑︁
𝑓 ∈𝐹

I𝑝

𝑣𝑓
∗ 𝐸𝑀

𝜙

where I𝑝

𝑙𝑑

{
1, if 𝑑 is sent over 𝑙 according to 𝑝
0, otherwise.

and I𝑝

𝑣𝑓

{
1, if 𝑓 executes on 𝑣 according to 𝑝
0, otherwise.

(8)

4 Problem formulations
In this work, the request placement problem is solved for each
individual request coming to the edge.

4.1 TPP formulation
The service request placement problem can be expressed as an
instance of the Traveling Purchaser Problem (TPP) [12]. The TPP

Symbol Meaning
𝑥𝜙𝜓 Decision variable indicating whether the link be-

tween function instances 𝜙 and 𝜓 is included in
the solution

𝑦𝜙 Decision variable indicating whether the function
instance 𝜙 is included in the solution

𝑜𝜙𝜓 Decision variable indicating the order in which the
link between function instances 𝜙 and𝜓 is visited
in the solution

Φ Set of function instances
𝐹 = (𝑓1, ..., 𝑓 |𝐹 | ) Ordered list of service functions to be placed

𝜙𝑏 Beginning function instance located on device 𝑣𝑏
𝜙𝑒 End function instance located on device 𝑣𝑒

𝐸 (𝜙,𝜓 ) Energy consumption of the link between any two
function instances𝜙 and𝜓 (including zero for mod-
elling both being on the same device)

𝐸𝜙 Energy consumption of the function instance 𝜙
𝑎
𝜙

𝑓
Boolean indicating whether function instance 𝜙 is
an instance of function 𝑓 (=1) or not (=0).

𝑂 𝑓 = 𝑖 Positive integer representing the position of the
function 𝑓 in the list 𝐹

𝜆𝜙𝜓 Transmission time for the link between the func-
tion instances 𝜙 and𝜓

𝜆𝜙 Execution time for the function instance 𝜙
𝛽 Integer upper bound used when ordering the vis-

ited links. It should be greater that the number of
links contained in the service chain.
Table 1: ILP notations.

is a generalization of the well-known Traveling Salesman Problem
(TSP), where there are different marketplaces that sell a given set
of items at a given price. The problem is defined for a purchaser
that has a given list of items to buy, to find the route between the
marketplaces that minimizes both the cost of travel and purchase.

In our case, the purchaser corresponds to the service request
that has to travel to different edge devices (marketplaces) offering
the functions (items) composing the service requested (the list of
items). The approach is energy-centric and considers the costs of
travel and purchase to be the energy consumption of using a link
or an edge device, according to their descriptions in Section 3.

In order to adopt this approach, we need to add two constraints
to the generic formulation of the TPP. The first one is that there is a
given order in which the functions should be executed, so that the
service is executed properly. Secondly, it is not enough to minimize
the cost of the request placement, the placement should also meet
the request deadline to be an acceptable solution.

4.2 ILP formulation
An optimal solution to the problem can be found using integer
linear programming (ILP). Table 1 summarizes the notations used.

4.3 The infrastructure graph
In order to enforce the ordering constraint between the different
functions composing the service, we use a variable assigning an
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integer to the links that are part of the placement (in a similar way
to the work by Shameli-Sendi et al. [20]). In order to both enable a
placement to have several service instances on the same physical
node (good for load consolidation) and to allow the same edge device
to be selected for different (non-consecutive) functions, we consider
a device in the ILP infrastructure graph to be a function instance
and not a hardware device. Consequently, a link is a virtual link
between function instances, that can be mapped to a physical one.
We also represent the beginning and end devices (𝑣𝑏 and 𝑣𝑒 ) as two
specific "virtual" function instances denoted 𝜙𝑏 and 𝜙𝑒 respectively.

Note that since the nodes in the ILP graph are function instances,
it is not necessary to specify both the edge device and the function
(as a function instance is the combination of both) where referring
to a node. This means that for the completion time and energy
consumption equations (Equations 1 to 8), the subscript 𝑙𝑑 can be
replaced by the corresponding start and end function instances.

4.4 Decision variables
This formulation uses three different decision variables. 𝑥𝜙𝜓 in-
dicates whether the link between function instances 𝜙 and 𝜓 is
selected to be part of the solution. 𝑦𝜙 indicates whether the func-
tion instance 𝜙 is included in the placement. 𝑜𝜙𝜓 captures the order
of visiting the links in the solution. If the link (𝜙,𝜓 ) is not visited,
then 𝑜𝜙𝜓 = 0. If the link (𝜙,𝜓 ) is visited before the link (𝜒, 𝜁 ) then
we have 𝑜𝜙𝜓 > 𝑜𝜒𝜁 . In case the link (𝜙,𝜓 ) is visited just before the
link (𝜒, 𝜁 ) then we have 𝑜𝜙𝜓 = 𝑜𝜒𝜁 + 1.

4.5 Objective function
The objective function in this work is focusing on energy consump-
tion only. The performance requirements (here that a request should
complete before a deadline), are considered as a constraint instead
of an optimization objective. The energy consumption metric con-
sidered here is either the overall or the marginal one described
in Section 3. This work is focusing on minimizing resource use,
therefore the objective function is:

Minimize
∑︁
𝜙∈Φ

∑︁
𝜓 ∈Φ

𝐸𝜙𝜓 ∗ 𝑥𝜙𝜓 +
∑︁

𝜙∈Φ\{𝜙𝑏 ,𝜙𝑒 }
𝐸𝜙 ∗ 𝑦𝜙

The device energy consumption metric 𝐸𝜙 in the equation above
is replaced by the overall (𝐸𝑂

𝜙
) or the marginal (𝐸𝑀

𝜙
) energy con-

sumption metric depending on the one chosen for optimizing.

4.6 Constraints
The ILP formulation contains the following constraints:∑︁

𝜓 ∈Φ
𝑥𝜓𝜙 =

∑︁
𝜁 ∈Φ

𝑥𝜙𝜁 ∀𝜙 ∈ Φ \ {𝜙𝑏 , 𝜙𝑒 } (9)∑︁
𝜓 ∈Φ

𝑥𝜓𝜙 + 1 =
∑︁
𝜁 ∈Φ

𝑥𝜙𝜁 𝜙 = 𝜙𝑏 (10)∑︁
𝜓 ∈Φ

𝑥𝜓𝜙 =
∑︁
𝜁 ∈Φ

𝑥𝜙𝜁 + 1 𝜙 = 𝜙𝑒 (11)∑︁
𝜙∈Φ\{𝜙𝑏 ,𝜙𝑒 }

(𝑦𝜙 ∗ 𝑎𝜙
𝑓
) = 1 ∀𝑓 ∈ 𝐹 (12)∑︁

𝜓 ∈Φ
𝑥𝜙𝜓 − 𝑦𝜙 = 0 ∀𝜙 ∈ Φ \ {𝜙𝑏 , 𝜙𝑒 } (13)

∑︁
𝜙∈Φ

𝑥𝜙𝜓 ≤ 1 ∀𝜓 ∈ Φ (14)∑︁
𝜓 ∈Φ

𝑥𝜙𝜓 ≤ 1 ∀𝜙 ∈ Φ (15)

𝑜𝜙𝜓 ≤ 𝛽 ∗ 𝑥𝜙𝜓 ∀𝜙 ∈ Φ,∀𝜓 ∈ Φ (16)∑︁
𝜓 ∈Φ

𝑜𝜓𝜙 =
∑︁
𝜓 ∈Φ

(𝑜𝜙𝜓 + 𝑥𝜙𝜓 ) ∀𝜙 ∈ Φ \ {𝜙𝑏 , 𝜙𝑒 } (17)∑︁
𝜓 ∈Φ

𝑜𝜓𝜙 + 𝛽 =
∑︁
𝜓 ∈Φ

(𝑜𝜙𝜓 + 𝑥𝜙𝜓 ) 𝜙 = 𝜙𝑏 (18)

(
∑︁

𝛼∈Φ\{𝜙𝑒 }
𝑜𝛼𝜙 ) − 𝑥𝜙𝜓 − 𝛽 ∗ 𝑦𝜙 + 𝛽 ≥

(
∑︁

𝛼∈Φ\{𝜙𝑒 }
𝑜𝛼𝜓 ) − 𝛽 ∗ 𝑦𝜓 + 𝛽 ∗

∑︁
𝛼∈Φ\{𝜙𝑒 }

𝑥𝛼𝜓

∀𝜙,𝜓 ∈ Φ \ {𝜙𝑏 , 𝜙𝑒 }, 𝜙 ≠ 𝜓,

∀𝑓 , 𝑘 ∈ 𝐹, 𝑓 ≠ 𝑘,𝑂 𝑓 = 𝑂𝑘 − 1, 𝑎𝜙
𝑓
= 𝑎

𝜓

𝑘
= 1

(19)

∑︁
𝜙∈Φ

∑︁
𝜓 ∈Φ

𝜆𝜙𝜓 ∗ 𝑥𝜙𝜓 +
∑︁

𝜙∈Φ\{𝜙𝑏 ,𝜙𝑒 }
𝜆𝜙 ∗ 𝑦𝜙 ≤ 𝛿 (20)

∑︁
𝜙∈Φ

𝑥𝜙𝜙 = 0 (21)

𝑥𝜙𝜓 ∈ {0, 1} ∀𝜙,𝜓 ∈ Φ (22)
𝑦𝜙 ∈ {0, 1} ∀𝜙 ∈ Φ \ {𝜙𝑏 , 𝜙𝑒 } (23)

𝑜𝜙𝜓 ∈ N, 0 ≤ 𝑜𝜙𝜓 ≤ 𝛽, ∀𝜙,𝜓 ∈ Φ (24)
Constraint 9 ensures that for any function instance 𝜙 , there is

one edge going in and out the function instance. For the special
cases of the source (Constraint 10) and destination (Constraint
11), a virtual incoming (respectively outgoing) edge is added to
them. Constraint 12 ensures that only one function instance is
selected per function to be placed and that the function instance
selected can actually run this function. Constraint 13 ensures that
if a function instance is chosen to be included in the solution, then
it has to be on the solution path. Constraints 14 and 15 ensure
the solution does not include any cycle. This is needed since the
ordering constraint can only assign one order number to each link,
hence cycles are impossible. Constraint 16 ensures that if a link
is not selected, the value of the corresponding 𝑜𝜙𝜓 is set to 0. If
a link is selected, the corresponding ordering variable 𝑜𝜙𝜓 is less
than 𝛽 . Constraint 17 is used to calculate the values of 𝑜𝜙𝜓 for
each selected link. The special case of the start node is covered in
Constraint 18. Constraint 19 ensures that the functions are placed in
the indicated order. The order is specified by𝑂 , where if𝑂𝑙 = 𝑂𝑘−1,
it means that the function 𝑙 is placed before function 𝑘 and that
the function instance 𝜙 where 𝑦𝜙 ∗ 𝑎𝜙

𝑙
= 1 is visited before the

function instance𝜓 where 𝑦𝜓 ∗ 𝑎𝜓
𝑘
= 1. Constraint 20 ensures that

the latency corresponding to the selected path (i.e. a set of function
instances connected through ordered links) is below the latency
requirement, i.e. the deadline of the service request. Constraints 22
and 23 indicate that the decision variables are binary. Constraint
24 indicates that the decision variable is a positive integer.
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5 Evaluation
The proposed ILP formulation is implemented and evaluated. The
question this evaluation should answer is: do the two optimization
objectives actually lead to different placement decisions?

5.1 Edge system
The edge system considered in this evaluation has the same topol-
ogy as the Abilene network [8]. The distances between the edge
devices are scaled to correspond to a scenario where all the edge
devices are spread within a neighborhood of a city. The propaga-
tion delay between two edge devices is taken as proportional to the
distance between these two devices.

All the edge devices and links in the system have the same
characteristics with regards to processing/transmitting capacity, as
well as the same energy profile. The energy values are taken from
the measurements performed by Ahvar et al. [1].

5.2 Service
The edge service considered in this evaluation is composed of four
functions that are executed sequentially. We consider that the same
device that issues the request waits for the result, meaning that the
execution result has to be transmitted back to the beginning device
after the service request execution is completed. An example of
such a service is a mixed reality application where service requests
contain images that have to be decoded (F1), analyzed to create a
virtual representation of the scene (F2), modified with the addition
of virtual elements (F3) and encoded (F4), before being sent back to
the initial (issuing) device for rendering to the end user [23].

Moreover, the number of function instances for each function
and their localization is predefined. We recall that where to place
them and how many of them should be placed is out of the scope
of this paper. In this evaluation, two function instances are initially
deployed for each of the functions on two different edge devices
and the edge devices chosen are different for the different functions.

5.3 Load scenario
The load in the evaluation consists of different utilization levels for
the edge devices and communication links. These utilization lev-
els indicate which share of the total computation/communication
capacity is available for the request being placed. Each function
instance gets up to one core of computing capacity. For this evalu-
ation, the utilization levels (in percentage) are decided randomly
using a Normal distribution with a standard deviation of 10.

5.4 Evaluation approach
The evaluation presented in this article consists of 40 runs per load
level. Each run corresponds to a different random load scenario.
The load level varies between 0 and 100 in steps of 10. In all runs, we
place one request using our ILP formulation, both when minimizing
overall energy consumption and also marginal energy consumption.
These are named Overall and Marginal for short. The beginning
device for the request is always the same. An extended evaluation,
including additional load scenarios and varying the number of
function instances or beginning device, is available online [24, 25].

The evaluation is performed on a Surface Laptop 5 equipped with
an Intel Core i7-1265U CPU (2.7 GHz) and 16GB of RAM. Version
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Figure 1: Categorization of the placements for a given request
with varying load.

Optimization objective Overall energy Marginal energy
Request completion time 92 ms 90 ms
Overall energy consumed 2240 J 2289 J
Marginal energy consumed 906 J 850 J
Solver execution time 220 ms 70 ms
Table 2: Evaluation results for one request placement.

11.0.3 of the Gurobi Optimizer is used as the optimization solver.
Parameter details, the code used for running the evaluation as well
as the result files are provided as an artifact [24].

5.5 Outcomes
Figure 1 shows the number of times per load level in which the
placement is infeasible/the same/different between the two opti-
mization objectives. On this figure, it can be seen that it is indeed
the case that optimizing for different objectives will lead to differ-
ent placement decisions. How often this is the case varies strongly
between the load levels (from 0% to 70%).

We now look into a specific run in order to analyze it in depth.
The aim is to identify potential factors influencing the two objec-
tives leading to different placement solutions. The specific run is
randomly chosen among the 40 runs obtained for the load level 50%
where the placement solution differs with respect to the two opti-
mization objectives. This was the run with number 12. We select
this load level as it represents a case when the edge infrastructure
is neither underloaded nor overloaded. When the infrastructure is
underloaded, there will be more devices that are idle, and hence, it is
easier to find placements that differ between the two objectives (this
is confirmed by Figure 1). When the infrastructure is overloaded,
the number of placements that still meet the deadline requirements
is limited, hence it is less likely that the placement will be different
between the two objectives. It is therefore interesting to look at
load levels that are in between.

As seen in Table 2, the different optimization objectives lead to
similar request completion times. Regarding the energy metrics,
the Overall alternative leads to 2.2% less overall energy consumed
(- 49 J) than the Marginal one and the Marginal alternative leads to
6.6% less marginal energy consumed (- 56 J) than the Overall one.
To understand the actual decisions better, the placement solutions
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obtained are analyzed from the logs to understand how the differ-
ence appears. The placement solution differs in the following way
between the different optimization objectives: functions 1, 3, and 4
are placed in the same function instances for both objectives, only
the placement of function 2 is different. The difference in energy
consumption shown in Table 2, which is small but non-negligible,
is therefore the result of only one of the four functions being placed
in a different way.

In the logs, we look deeper at the placement, and especially the
placement of F2. It is placed on device 5 in the Overall case, and on
device 7 in the Marginal case. For the run considered, the devices 5
and 7 differ in the following ways: 1) device 5 is less loaded than
device 7, 2) the links used when choosing device 5 are less loaded
than when using device 7, and 3) the latency on the links used when
choosing device 5 is higher than when using device 7.

Therefore, the Overall energy metric seems to be able to leverage
the time remaining to the deadline to pick edge devices located
further away (leading to a higher completion time) but with lower
utilization, and hence lower overall energy consumption. On the
contrary, the Marginal energy metric favours a placement that is
using edge devices with a higher utilization and closer.

To understand the logic behind the Marginal placement, it is
useful to look at the considered power profile for edge devices. It
is shown in Figure 2. The highlights correspond to the devices 5
(in blue) and 7 (in yellow), where the start of the highlight is the
utilization before the function instance is placed and the end, the
utilization after the placement. It can be seen that the increase in
power is larger when placing on device 5 than on device 7, hence
the choice of the Marginal alternative to place on device 7.

These initial observations are inline with the envisioned strate-
gies associated with the different metrics (see Section 4.5), and give
directions for further studies of factors influencing the different
placement decisions. Several such studies are available online [25].

6 Discussion
The goal of this work was to investigate whether using different
energy metrics as optimization objectives could lead to different
energy-saving microservice request placement decisions, according
to different strategies. To perform this study, we formulate the prob-
lem as an ILP and solve it optimally for a small-scale problem. This
method is used for several reasons. First, the choice of a small-scale
edge infrastructure and microservice deployment serves several
purposes: 1) it is easier to analyze the outcomes as the solution
space is limited, 2) it demonstrates the relevance of the idea in small
setups while suggesting that it is even more useful for larger setups,
and 3) it allows to solve the problem optimally in a reasonable time.
Solving the problem optimally allows the conclusion to be drawn

on the actual optimal and not some approximation. It is therefore a
useful tool for understanding the proposed approach.

Of course, to implement this approach of using energy metrics
to achieve a given placement strategy in practice, solving the ILP
using a solver is not feasible as it takes too long to execute. Even if
the solver execution time for performing the evaluation presented
was short (mostly in the range of hundred milliseconds, up to a
few seconds), it is still too important considering that the service
considered has a deadline at 100 ms. Since the problem is formulated
as a TPP instance, it is possible to use the numerous very good (meta-
) heuristics which have been developed for such problems. Example
of these are tabu search or Ant Colony Optimization. The model
presented in this work can then be used a a reference to know how
close to optimality these heuristics perform.

7 Related works
The microservice architecture [4] is being extensively considered in
the neighboring field of cloud computing. It is a cornerstone of both
the cloud-native [5] and serverless [11] computing. Several surveys
have presented the microservice works in cloud computing, includ-
ing focusing on anomaly detection [21] or practical dimensions such
as Kubernetes scheduling [3]. Microservices are also increasingly
used in the edge computing paradigm. The fine-grained modularity
they offer is for example an asset for IoT applications [14].

Microservice request placement is tackled by Shameli-Sendi et
al. [19, 20]. They also use a TPP formulation for simultaneously
placing multiple service requests in a cloud environment. Contrary
to this work, they do not consider energy, nor that the request
placement has to meet a deadline. They also assume that all devices
are able to provide all function instances, which is not the case in
edge and therefore in our work.

Schneider et al [18] study placement problems at the edge and
propose a solution for service coordination, which they define as
combining the online scaling, placement, scheduling and routing of
a service request. Their solution uses distributed deep reinforcement
learning. They do not consider energy and assume that you can
add function instances to serve the request.

Wang et al. [27] study the placement of function instances and
requests in the context of the Internet of Vehicles. They present
a two-layer system including three algorithms to 1) place the ser-
vice requests to devices, 2) enable different service requests to use
the same function instance and 3) reduce the number of service
instances when they are not needed anymore. Instead, we focus on
the first layer to understand how optimizing towards energy instead
of performance can be used for different placement strategies.

Russo Russo et al. [17] propose a microservice request place-
ment also with two levels. The first level is a simple heuristic algo-
rithm that places every incoming request according to a probability
distribution. The second level is optimizing these probabilities at
regular time intervals. The optimization is performed using linear
programming considering monetary cost and resource availability
constraints. The aim is to maximize the requests satisfying their
response time requirements. Contrary to our work, the energy
consumption is not considered. Moreover, the optimization has a
different purpose as it is not directly performing the placement.
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There are several works considering energy consumption within
edge computing, e.g. [6, 7, 10, 15]. To evaluate the proposed meth-
ods and techniques, relevant energy models are required. Baccarelli
et al. [2] propose models for the energy consumption of both de-
vices and communication links. Their focus is on virtualized and
multi-core devices in the context of 5G. Similarly, Ahvar et al. [1]
propose energy models for different types of so-called cloud-related
architectures. It also includes models for both the devices and the
communication links. Their aim is to compare different types of
architectures (more or less distributed) with regards to their energy
consumption. To the best of our knowledge, no study considers
energy-centric microservice request placement.

8 Conclusion
In this work, we propose and investigate an energy-centric ap-
proach to place microservice requests: optimizing for different en-
ergy metrics. We formulate the problem as an instance of the TPP
problem and solve the corresponding ILP as a tool to study the
effect of different metrics and variations in the problem space.

Our evaluation suggests that optimizing using the two proposed
energy metrics does lead to the envisioned placement strategies. In
both cases, the completion time is a leverage to select devices that
are most suitable for the objective but located further away. Higher
heterogeneity in the system load and number of available func-
tion instances are factors leading to different placement decisions
between the two objectives.

While our work initiates the study of energy metrics for energy-
centric placement strategies, more work remains in the area. For
example, a two-tier placement strategy combining the two opti-
mization objectives based on the current system state would be
interesting to develop. Moreover, alternative fast decision strate-
gies for finding a good enough solution should be looked into to
implement the approach in practice.
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