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Abstract. Future communication systems are complex infrastructures
with virtualized software services that are updated regularly as require-
ments evolve. This paper addresses the adaptation of microservices un-
der dependency and efficiency constraints. We formalize the evolution of
microservices as a combination of two subproblems, the Microservice De-
pendency Problem and the Evolution Planning Problem, both of which
are difficult to solve optimally. We then propose a method based on the
Binate Covering Problem (BCP) with branch-and-bound, and introduce
a novel algorithm that finds the deployment steps towards a desired new
configuration. Our proposed method, DEP-DS; is then compared with
two heuristics on three sample datasets from historical radio access net-
work update records run on Kubernetes. We further show that BCP
with greedy search is faster but finds fewer solutions to the evolution
plan. Overall, DEP-DS is able to find solutions to all samples, generates
deployment plans within an average time of 1-2 seconds, and the plans
are similar to other heuristics in terms of CPU usage.
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1 Introduction

A Radio Access Network (RAN) manages wireless communication between user
devices and the core network. As RAN software grows in complexity, microservice
architectures have been adopted to split systems into independently executable
components. Despite low coupling, microservices often require integration to de-
liver full functionality, resulting in complex and hard-to-manage dependencies in
large systems. The version dependency problem arises from the independent de-
ployment of microservices. When a microservice is upgraded to a newer version,
its communication endpoints may change, and other microservices and external
systems that previously interacted with it will no longer be able to do so. To
ensure smooth transitions, multiple versions often coexist. A multi-versioning

** The work was carried out when the first author was at Ericsson AB, Linkoping.
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strategy [8] or dependency-based orchestration [I] helps manage these deploy-
ments. The goal is to deploy and maintain compatible versions without service
disruption or resource waste. Replacing a needed microservice as a result of an
update can make other service chains non-operational. Maintaining multiple ver-
sions in parallel to preserve all existing dependencies intact will inevitably waste
resources. Manual deployment is error-prone, especially in complex systems like
RAN where there may exist 10 or more distinct microservices and multiple ver-
sions of them at any point in time, making automation critical. However, algo-
rithms to perform the above task autonomously have a large state space (of all
service chains, all possible versions, and endpoints) to deal with. They still need
to perform updates with reasonable latency and strike a balance between (CPU)
resource utilization and service continuity.

This paper addresses this challenging problem by subdividing it into two
orthogonal problems for each update cycle. The first problem is to create a rep-
resentation of current dependencies that need to be maintained after a revision
of a bunch of microservices, the Microservice Dependency Problem (MDP). The
second is to construct a deployment plan for desired updates across all microser-
vice chains, the Evolution Planning Problem (EPP). Our study of the existing
literature reveals that solutions to the first problem exist; however, to our knowl-
edge, the second problem has not been characterized or solved in the context of
dependency-constrained settings, nor does an existing approach appear to ad-
dress both problems jointly. An ambitious solution to the problem would be to
optimize the solution for multiple requirements, e.g., maximizing the number of
performed updates at each cycle, minimizing the use of CPU (thereby energy) af-
ter the updates, minimizing the number of versions for each microservice, adding
constraints as to how fast an update round should be, and so on. However, solv-
ing the multi-objective optimization problem would have an infeasible overhead
in RANs due to the combinatorial problems mentioned before.

This paper is a first attempt at finding a combined solution to the above two
problems through heuristics that can be studied in an experimental setting using
realistic data. Our method leverages solutions to two algorithms, namely the
Binate Covering Problem (BCP) solved using Branch and Bound (BB) resolution
to achieve the combined goal, together with a tree-based algorithm to find the
path to the desired deployment from the current deployment. The approach uses
BCP as the vehicle to find the desired post-deployment state via the Branch and
Bound algorithm. The practical applicability of the approach is then evaluated
with historical data from a real RAN system. The contributions of this paper
are as follows:

— Formally defining the microservice dependency problem, MDP, and a heuris-
tic for the evolution planning problem, EPP, in RAN applications.

— Proposing a Dependency-based Evolution Planning and Deployment Solver
(DEP-DS) method using BCP, BB, combined with a novel algorithm, and
implementing it in a Kubernetes environment, where Kubernetes is a well-
known platform for virtualized deployments.
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— Extracting representative samples based on historical data from real RAN
application updates to use as a basis for evaluation of our method, and make
them available to other researchers.

— Evaluating DEP-DS in terms of finding an evolution plan for the extracted
samples, average time to compute, and CPU usage in planned evolutions
compared to two baselines.

The structure of the paper is as follows. Section 2 describes the required
background and the relation to previous work. Section 3 presents the problem
formalization and assumptions that capture our system model. Section 4 presents
the algorithms that make up the DEP-DS method for constructing evolution
plans, and Section 5 evaluates it. The paper is concluded in Section 6.

2 Background and Earlier Work

This section reviews previous research on microservices orchestration and relates
it to our problem area and approach. We first review the works that address the
main goal, namely, the evolution planning strategy. Then we relate the prob-
lem of constructing the dependency graph for microservice updates to known
graph construction and manipulation problems. Finally, we describe the neces-
sary background on BCP and BB.

2.1 Earlier work

Although the problem of updating multiple nodes in a distributed system with
consistency requirements is an old problem in computer science, the deployment
of virtualized services in networks makes the problem more complex [10]. Re-
searchers have recognized that careful analysis of update algorithms is critical
to preventing failures in systems with high availability requirements [II]. The
problem is multi-faceted in the sense that high-availability systems need to have
several versions of each service running in parallel, meaning that a snapshot of
the system does not have a fixed number of nodes as in the classical problem.

Moreover, in addition to the functional correctness of individual updates,
the overall update process has other dimensions: the practical interoperability of
services in multiple programming languages [12], the amount of resources used
before and after updates, and the efficiency of the update process itself [13], or
the traceability of updates and return to a pre-update state[14].

Works that focus on evolution planning with some resource constraints typi-
cally end up with scalability problems as optimization within large state spaces is
not feasible in continuous evolution [I3], for example, evaluate a greedy method
on 6 worker nodes and 11 containers. In this paper, we focus on the process of
creating evolution plans with heuristics to manage the run-time scalability issue
and do not aim at finding optimum solutions.

He et al. [2] proposed a greedy-based algorithm to generate an evolution plan
that minimizes average response time while adhering to resource constraints.
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This approach prioritizes immediate gains, similar to the dependency-based or-
chestration algorithms explored in this thesis, which consider the sequence of
resource utilization and deployment operations. Such algorithms require a thor-
ough search across potential configurations to identify optimal solutions, partic-
ularly for complex microservice interactions that suffer from the combinatorial
explosion.

The microservice dependency problem parallels well-known problems in soft-
ware package management, where the objective is to assign specific package
versions that satisfy dependency constraints without conflicts [7]. Unlike tradi-
tional package managers, microservice architecture allows multiple versions to
be concurrently active, which adds complexity to dependency resolution.

The Minimum Set Cover Problem (MSCP) is a special case of the package
management problem, which is solved using various heuristic approaches, such
as the Hill Climbing algorithm proposed by Akhter [3]. MSCP is based on a
predefined universe of constraints, and solving it involves finding a minimum
number of sets that cover all elements in it. In contrast, in our case, it is unclear
which microservices should be included in the deployment, making the universe
of constraints unnecessarily large and the solution thus likely to be suboptimal.

The package management problem can be modeled as a Boolean satisfiability
(SAT) problem, where packages are represented as Boolean variables and con-
straints (dependencies/conflicts) are described as clauses, which together form
a Boolean formula in Conjunctive Normal Form (CNF). Once encoded, SAT
solvers can be used to determine whether a feasible set of packages exists that
satisfies each clause in the CNF [5]. While the SAT focuses purely on feasibility,
the Binate Covering Problem (described below) extends this by introducing a
cost minimization objective (e.g., minimizing the number of selected variables
or weighted variables). The SAT problem is NP-complete, and BCP is known to
be at least as hard as SAT because any instance of SAT can be reduced to an
equivalent instance of BCP.

2.2 Background

The binate covering problem (BCP) is a combinatorial optimization problem
that seeks to choose a minimum-cost assignment of truth values (0/1) to Boolean
variables, or literals, that satisfies a collection of clauses. Clauses can contain
complemented and uncomplemented literals. BCP is usually represented by a
binate matrix A € {—,0,1}™*", with m rows representing clauses (constraints)
and n columns representing Boolean variables, and each entry A;; is defined as:

1, if variable ¢; appears in clause r;
Aj; =40, if variable ¢; appears in in complemented form in clause r;

—, otherwise

(1)
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A variable assignment means choosing a truth value for each variable: z; =1
if the variable ¢; is selected (set to true) or ; = 0 if variable ¢; is not selected
(set to false). An assignment x; covers clause r; if it satisfies the clause according
to the matrix, ie., ; = 1 when A;; = 1 or ; = 0 when A;; = 0. Given that
each variable c; is associated with a cost w;, the objective of the BCP is to
find a variable assignment x such that all rows are covered and the total cost is
minimized: min Z;L:1 w;z; [

Solving the BCP typically starts with a preprocessing (reduction) phase be-
fore the actual search. If a row ¢ can only be covered by one variable c;, then that
variable is considered essential and must be assigned A;; in all feasible solutions.
Furthermore, a row rj is dominated by another row r; if every variable in 7; is
also present in rg, with the same sign, ie, satisfying r; automatically satisfies 7.
Removing dominated rows and all rows covered by essential variables simplifies
the matrix without losing potential solutions. Iterative approaches of such re-
ductions, for example, Gimpel’s reduction, produce a reduced covering matrix.
If the reduced matrix ends up empty, a minimal and immediate solution can be
obtained from the essential variables identified.

Suppose such a minimal and immediate solution cannot be obtained. In that
case, Branch and Bound (BB) resolution can be applied, where the problem is
partitioned into subproblems (branches), each of which is attempted to be solved
recursively to the optimal level [6]. For each subproblem, we approximate a lower
bound L on the objective value. If the current best solution is greater than or
equal to L, we conclude that this branch cannot improve upon the current best
solution and prune it. Finding the exact lower bound is as difficult as solving
the BCP itself and typically requires heuristic methods. Coudert [4] utilizes the
concept of a Maximal Independent Set (M1S), which is the largest subset of
rows such that no two rows cover the same column; it is maximal because no
additional rows can be included without violating this independence. The greedy
procedure to obtain the M IS is as follows: First, all rows with negated variables
are moved. Then, the shortest row is iteratively added to MIS (the row length
is given by |r;| = 2?21 144, ,e{0,1}} ie, the sum of all non-empty entries in that
row), is iteratively added to MTS. This process is repeated until all rows have
been removed. Finally, the lower bound is given by the sum of the weights of
each row r; € MIS, that is, the cost of the least costly variable in MIS:

L= weight(r;) = min  w; 2
nezlv;ls () r,v,ezzv;zsje‘{jl‘q”:l} ’ )
The heuristic for selecting variable ¢} in branching considers columns covering
many rows and is less costly compared to the weights of these rows, according to
Equation [3} Short rows have fewer available columns, making decisions around
them more impactful. Columns intersecting many short rows are thus favored to
prioritize solving the most constrained of the problem first [4].

1 ight(r;
cj = argmax | — Z e ?
JEL,...,n Wy ri€{jlAi;=1} |Tz|
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3 System model and Problem definition

We now formally define our problem and present the assumed model. The mi-
croservice version dependency problem can be formulated as a binary optimiza-
tion problem over a set of versioned microservices and versioned interfaces. The
dependencies between microservices are captured by their provided (and con-
sumed) interfaces to (provided by) other microservices.

Definition 1: Microservice Dependency Problem Let S = {S1,S5s,...,5n}
be the set of distinct microservices and V; = {Sj(l),S](-Q), . .,S](kj)} the set of

available versions of S;, where Sj<) denotes version ¢ of microservice S;. The
universe of deployable microservice versions can thus be defined as:

M= O v, = {SJ@
j=1

Each versioned microservice SJ(-i) € M is associated with a set of provided
interfaces Ip(Sj(-i)) C I, a set of consumed interfaces IC(SJ(.i)) C I, and a CPU

requirement cpu(S ](l)) € R*, where I denotes the universe of versioned interfaces.
We define the final deployment set as:

1<j<m 1<i<k}.

Dy={8" e M|zl =1}, (4)

j (5)

where 2@ — 1, if microservice version Sj(i) is deployed.
0, otherwise.

Constraints Each deployment set must satisfy the following constraints:

3 2 >1, Vo€ g (C1)

S](.i)EM:’UEIp(S;”)
Given a set of required external interfaces &eq, the external interface constraint
(C1)) ensues that each v € &yoq is provided by at least one deployed microservice.

20 < 3 25, vsW e M, vo e 1.(5W) (C2)

J
0 o
S](f )GM:vGIp(S;f >)

The internal interface dependency constraint li ensures a microservice Sji- can
only be deployed if each interface it consumes is provided by at least one deployed
microservice.

CPUtotal = Z :E;Z) : CpU.(SJ(Z)) S CPUmax (CS>
S;i)GDf

The resource constraint (C3) ensures the deployment stays below a resource
quota CPU ..
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Definition 2. Evolution Planning Problem The evolution planning problem
involves transitioning a microservice-based system from an initial deployment
state Dy C M to a target deployment state D;. This transition is governed by
an Evolution Plan E P, formally represented as:

EP = (D5,...,DSy), (6)
where each deployment step DS}, is a sequence of operations: (7)
DSy ={0k,,-..,0k,}, and each operation is either (8)

_ {Deploy(SJ(-i).), deploying microservice version SJ(-i).

1 . . . . . . ;
Remove(S](- )), removing an existing microservice version Sj

Applying all operations in DSy updates the system incrementally:

Dy, = (Dg—1 Udeploys(DSy)) \ removes(DSy), where (10)
deploys(DSk) = {SS” | o, = Deploy(S."), o € DS}, } (11)
removes(DSy) = {Sj(.i) | op = Remove(SJ@), or, € DSy } (12)

Each state of the system Dy, represents a valid subset of microservice versions
deployed that satisfies predefined constraints: Dy £ C1,C2,C3,

Objective The deployment set Dy is not necessarily unique - multiple allowed
deployment sets may exist, as well as numerous EPs may exist between D
and the same final state Dy. The objective is to determine our preferred final
deployment state D; and compute EP from our current deployment state to Dy
to D¢ so that the total usage of CPU resources is minimized, reflecting the goal:
min (CPUgtal)-

4 Our proposed approach: DEP-DS

This section describes the main contribution of this work. The Dependency-
based Evolution Planning and Deployment Solver, DEP-DS, aims to solve the
microservice dependency problem and the evolution planning problem in two
stages:

— Solving the Microservices Dependency Problem: Given a universal set of
deployable microservices M, a current deployment set Dy, find a final de-
ployment set Dy such that all external interface requirements &4, internal
dependencies are satisfied while the overall system remains below a resource
quota CPUppqs. The objective is to minimize the CPU usage of Dy, given

that each microservice is associated with a cpu(SJ(»Z)). MDP is modeled as a
BCP and solved by utilizing branch and bound.

— Solving the Evolution Planning Problem: Given the calculated output Dy,
find the Evolution Plan EP consisting of a sequence of deployment steps
(deployments and removals) to transition from the current state to Dy.
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4.1 Solving the Microservice Dependency Problem

The microservice version dependency problem is addressed by first modeling it
as a Binate Covering Problem (BCP) and solving it using Branch and Bound

resolution. Each microservice version SJ@ € M corresponds to a Boolean vari-
able a:y), representing the inclusion of a microservice version, which is associated
with a column in the covering matrix. Furthermore, each microservice version
S J(Z) is associated with a cost = c;z) (e.g., CPU resource usage). Internal and ex-
ternal interface constraints are expressed as Boolean clauses over these variables
and thereby define clauses in the covering matrix. External interface constraints
yield positive clauses |13| and internal interface requirements yield implica-
tions. Internal interface dependencies imply a relationship between selected
microservices and the requirement that at least one provider for each consumed
interface must be chosen. Applying the conversion rule: P — @Q < - PV Q,
this translates into a Boolean clause with one negated literal and at least one
positive literal [14] [9].

v for all v € Ereq (13)

. @
S;z) GM:’UGIP(SJ(”):L‘J.

O] (i) () ()

—|$j \% (\/S;.f,)GM:UGIP(SJ(.f/))zj/ ) ,VSJ S M, Yv € Ic(SJ ) (14)

We calculate the lower bound L as the sum of the costs of all variables cover-

ing a row in the Maximal Independent Set (MIS): L =3 cy1s 2 gtcp cg-z),
J Tk

where R,, = {S]@ € M|Ak7S(i) = 1}. This differs slightly from Equation where
only the least costly variables of each row in the MIS were added to the lower
bound. Since no complemented rows, i.e., internal dependencies, are included
in MIS, we are likely to get a lower bound far from the actual lower bound
using Equation 2] Thus, this decision leads to faster convergence. We adapt the
heuristic selection for case splitting as explained by Coudert [4] (Equation [3]) to

select microservice Sj(f:) to branch on. Redefining the variables to represent our
system’s resources and dependency relationships gives the following:

i 1 ight
6 —argmax | =y Teshire) | (15)
J %) ) |7k
Sj eM J TkeRS('i)
J

where
RS;i) = {’I“k S M|Ak,S](.i)}

4.2 Solving the Evolution Planning Problem

Algorithm [I] computes a valid Evolution Plan EP for transitioning a microser-
vice from a current deployment state Dy to a target deployment state D, where
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each deployment state D, € {Dy, D1,...,Ds_1,D;} is reached by applying a
sequence of deployment operations according to Equation [f] This process be-
gins by identifying the required changes, specifically the microservices to add
and to_remove by comparing Dy, with D;. This is preceded by identifying
the allowed Add and Remove operations to transition from D, ..., to D, ez:. The
algorithm is recursively applied until D¢y = Dy, and finally outputs a cor-
rect EP that the Kubernetes operator can follow to reach the desired system
configuration.

Algorithm 1 FindEvolutionPlan

Require: Do, D¢, M, CPUpax, EP < ||

Ensure: EP deployment plan from Dy to Dy

: Dcurr < DO

to_add < Dy \ Deurr > Identifying required changes
to_remove < Dcurr \ Dy

removable < FINDSAFETOREMOVE(to_remove, Deurr)

for all Sj(f,) do
DS = DS U Remove(S; )
Dewsr ¢ Deurs \ S'7)

to_remove < to_remove \ S’J(.f/)
end for
: deployable «+— FINDSAFETODEPLOY (to__add, Deurr;, CPUmax)
: for all Sj(f ) in deployable do
CPUproj < Ygep... cpu(S) + cpu(Si”)
if CPUpr0; < CPUpax then
DS =DSu Deploy(SJ(-f )
Deurr ¢ Do U S
to_add < to_add \ S](.f/)
else
removable < FINDSAFETOREMOVE(to_remove, Deurr)
for all S}’ do
DS =DSU Remove(Sj(.f,))
(@)
DCUI’I’ <7 DCUI'I' \ S]/

to_remove < to_remove \ Sj(.f/)

end for
end if
: end for
: EP.append(DS)
: if Dewrr = Dy then return EP
: end if
: FINDEVOLUTIONPLAN(Dg, Df, M, CPUmax, EP)

—_ =
—_

—= = =

H
o

— =

R
e o 9

NSRRI
© %D T LN
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FindSafeToRemove A microservice SJ@ € Dgyyr 18 considered safe to remove
if it has no future or current dependencies, meaning that none of the interfaces
it provides are required as external interfaces or consumed by any microservices
in Deyrpr or Dy. Formally, this holds if

S AL(SY) = B and I,(S7) N Ereq = 0 for all S} € to_add U Dy

SJ(-Z) € D yrr 18 also safe to be removed if, for each v € Ip(Sj(-Z)) = (), it must
be provided by another microservice in the deployment or only consumed by
microservices that are themselves redundant.

Suppose that the above conditions are not met individually. Then a set of mi-
croservices R C D, might still be jointly removable if they form a dependency
cycle and collectively satisfy the constraints, as shown by Algorithm

Algorithm 2 FindSafeToRemove

Require: to_remove, Deyrr
Ensure: Set of removable microservices
1: removable < ()
2: for all SJ(.2> € to_remove do
3: if No S;.f” in Deurr U Dy depends on any v € Ip(SJ(i)) and v ¢ Ereq then

4: removable < removable U {SJ(.i>}
5

else if Allv € Ip(S](-”) are either provided by others or only used by redundant
services then .
6: removable < removable U {SJ@}
7 end if
8: end forreturn removable

FindSafeToDeploy A microservice S’](-i) € D yrr is considered safe to deploy

if, for each v € IC(S]@), it must be provided by another microservice in D¢y,
and the system remains within the CPU quota CPU,,4,. Similarly to finding
safe microservices to remove, there might exist cycles of microservices that can
be deployed jointly, as described by Algorithm

5 Experimental evaluation

The experimental setup was based on a conceptual architecture that splits an
existing multi-version RAN application into 14 microservices, each available in
different versions, collectively supporting 48 interfaces designed by Ericsson AB
for Cloud Deployment and managed by Kubernetes. A local Kubernetes clus-
ter served as the test environment for the evaluation, with each microservice
represented as a Kubernetes Deployment and interfaces as Kubernetes Services.
A Custom Resource Definition (CRD) of the kind deployment update was es-
tablished and outlined in a manifest file, specifying the universe of deployable
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Algorithm 3 FindSafeToDeploy

Require: to_add, Dcyrr, CPUmax
Ensure: Set of deployable microservices
1: deployable < 0

2: for all SJ(2> € to_add do

3: if Allv e IC(Sy)) are provided by some S]<.f/> € Deyrr then
: CPUproj < D sep,. CPU(S) + cpu(Sﬁ”)

4

5 deployable <+ deployable U {S;i)}
6: end if

7: end forreturn deployable

microservices M, their supported interface versions, and the external interface
requirements &r.qy. The CRD enabled the implementation of the operator pat-
tern, a software extension to Kubernetes that listens to custom resource modi-
fications and updates the environment. The data provided includes the amount
of resources (CPU and memory) that every microservice consumes, measured
beforehand in internal laboratories. Based on that, suitable requests and limits
are set for each microservice to use at runtime. These values are always specified
in advance and not adjusted during run-time. Kubernetes uses these requests
and limits to allocate resources to each container accordingly.

5.1 Generation of problem instances

Interface samples for problem instances were selected based on historical system
data, which contained a total of 4261 time-stamped interface updates over eight
years. Problem instances are created based on the assumption that updates to the
external interfaces typically drive a system upgrade. The samples were generated
by organizing the data into weekly and daily samples, capturing each update
to the external interface. A total of 67 interface samples were generated: 51
weekly samples from 2022, as this year represents the highest update frequency
with 40 (out of 48) distinct interface updates; 16 daily samples from February
2024, as this month contains the most samples with external interface updates.
Furthermore, the microservices supporting the newly upgraded interfaces were
sampled in three ways, with varying levels of complexity, as follows.

— Large: This sample presents the largest and most complex search space,
where all providers and consumers of interfaces that are subject to an up-
grade are upgraded to support the new version. This implies that the minimal
solution typically involves one version of each microservice,

— Medium: All providers are upgraded. Among consumers, half are randomly
selected to be upgraded to support the new version.

— Small: All providers are upgraded. For each updated interface, exactly one
consumer is randomly selected to be upgraded. If a microservice consumes
multiple updated interfaces, it is upgraded to support only the selected one.
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Our intuition is that while medium and smaller problem instances are easier
to solve due to the smaller search space, their final solution will likely be less
resource-efficient. Since not all microservices are upgraded, multiple versions
usually need to coexist in the final deployment to satisfy dependencies, resulting
in a solution that consumes more CPU than a solution to the large sample.

Each sample s € S thus generates three problem instances, giving a total of
3-67 = 201 instances. Each problem instance serves as an input to the algo-
rithm, where the initial deployment state Dy consists of one version of each mi-
croservice, the set of required interfaces &;.4 is extended to include the updated
interfaces in the corresponding interface sample. For each sample, the universe of
deployable microservices M is then extended to include the microservice versions
selected by the sampling scheme.

The interface sample that constitutes the Large problem instances is available
for sharing with the research community and can be found in Appendix C, Table
C.1 of the author’s previous work, which forms the basis of this paper [15].

5.2 Baselines and evaluation metrics

In addition to DEP-DS, two baseline algorithms, Ideal Dependency Resolver
and Scheduler (IDRS), and Dependency Resolver and Scheduler with Stratified
Pruning (DRS-SP), were implemented for the evaluation:

1. Ideal Dependency Resolver and Scheduler (IDRS): A tree-based algorithm to
find all EPs from Dy to any valid deployment state Dy, which then chooses
the EP that minimizes the total system resource usage (CPU request).

2. Dependency Resolver and Scheduler with Stratified Pruning (DRS-SP): A
modification of IDRS that utilizes a stratified sampling technique to sample
child nodes based on their size. Each node represents one or more deployment
stage, and the size is denoted by the number of microservices to be deployed
in that stage. If the size exceeds 30, this approach partitions and chooses the
10 largest, 10 in the middle, and 10 smallest child nodes.

The following metrics were used for evaluation and calculated for all three
samples in each algorithm setting:

1. Success Rate: The ratio of the successfully solved problem instances.

2. Resource Efficiency (C'PU,,q): The average CPU request, that is, the sum
of the CPU requests for microservices in each of the problem instances that
the algorithm successfully solved, divided by the number of solved ones.

3. Average Response Time (T,.4): Average time taken to produce an evolution
plan (for the problem instances that the algorithm successfully solved).

5.3 Evaluation outomes

Table [I] shows a comparative evaluation of the three algorithms with the data
created using the three sampling strategies (Large, Medium, Small), and in total
for the three samples.
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Table 1: Evaluation outcomes

Large|Medium|Small| Total
Success Rate
IDRS 84% | 95.6 % | 97% 192.5%
DRS-SP 97% 97% 97% 97.0%
DEP-DS 100%| 100% [100% |100%
Tavg(s)
IDRS 15.10 | 11.90 0.35 | 9.11
DRS-SP 0.92 0.95 1.15 | 1.00
DEP-DS 2.46 0.69 0.2 | 1.15
CPUqyg(mCPU)
IDRS 480.80| 530.00 [532.58(512.20
DRS-SP 480.69| 533.77 [532.58(515.59
DEP-DS 480.00| 530.23 [534.23(514.47

Based on the success rate, Ty,y and C'PUgyg, the main findings are that
while the algorithms have similar performance in terms of CPUg,q, DEP-DS
is the only algorithm capable of resolving all problem instances (success rate
100% for all samples), and with a shorter response time compared to IDRS and
DRS-SP.

Overall, as seen in the CPU,,, section of the table, IDRS can explore larger
search spaces and identify solutions with lower CPU consumption in smaller
problem instances. However, it faces scalability issues as problem complexity
increases, as evidenced by a decreased success rate for instances in the Large
sample.

In addition, we tried to see if DEP-DS could be made even faster by adopting
a greedy resolution instead of branch and bound. It turned out that it would
be faster to resolve all three instances, but at the cost of a lower success rate
(86%, 95%, and 86% for Large, Medium, and Small, respectively) compared to
the third row in the table (100% for all instances).

Moreover, DEP-DS running with greedy search gave a CPU,,, that grew
substantially for all three samples (624.52, 613.57, and 615.56 for Large, Medium,
and Small, respectively). This suggests that a greedy approach is ideal when
fast evolution plan generation is prioritized, although it may come with higher
resource usage. Given that our objective was to minimize the CPU usage, DEP-
DS outperforms the greedy approach given that the response time, row 6 of
Table 1 is acceptable even for the large sample.

6 Conclusions and Future works

This research shows that DEP-DS is a promising method for solving the Mi-
croservice Dependency Problem and the Evolution Planning Problem, evidenced
by its perfect success rate and good resource efficiency during evaluation. DEP-
DS effectively balances solution quality, making it more suitable for larger, more
intricate instances.
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When solving MDP and EPP, our first priority was to find something work-
able, leaving room for improvement when it comes to optimizing the branch and
bound algorithm (through a lower bound calculation and heuristic selection),
and even other heuristics to replace branch and bound.

We found that obtaining relevant data to base the evaluation on was in
itself a major challenge. To obtain historical data for prototypes evaluated by
researchers is not an easy task, and we were able to solicit authentic data to
illustrate that the solutions would be workable in a real context. The samples
that were selected according to the criteria in Section 5 are shared with the
research community, and we welcome new approaches that use the same data
and novel algorithms to further this work.

The problem instances were generated from calendar days with external in-
terface updates and selected based on predicted difficulty. They are therefore to
be seen as an approximation to the worst-case scenarios based on historical data.
Studying scenarios based on other samples that would be more representative
of an average day would be another problem to look at. This could be done,
for example, by choosing days at random, which would be another direction for
future work. Further studies on real-world conditions, such as failures, latency,
and dynamic resource changes are needed.
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