Timing Interference in Multi-Core RISC-V
Systems: Security Risks and Mitigations

) - 005 AR A (04
Andreas Wrisley(™)1,3[0009-0005-2664-0043] ' Rherto
2[0000-0002-8069-6495] " Qiin Nadjm-Tehrani! [0000—0002—1485-0802]

t3 [0000—0001—9863—9985]

Guanciale
and Ingemar Séderquis

! Department of Computer and Information Science, Linképing University,
Link&ping, Sweden
{andreas.wrisley,simin.nadjm-tehrani}@liu.se
2 EECS and Digital Futures, KTH Royal Institute of Technology, Stockholm, Sweden
robertog@kth.se
3 Saab AB
ingemar.soderquist@saabgroup.com

Abstract. Modern safety-critical and real-time systems increasingly rely
on multi-core architectures, which introduce shared hardware resources
that can lead to inter-core interference. This interference poses risks to
both security and safety, enabling timing side channels and Denial of
Service (DoS) attacks. This paper presents a methodology for evaluat-
ing the memory hierarchy of hardware platforms, focusing on timing in-
terference and side-channel leakage. Using the OpenPiton platform, we
identify and characterize a cross-core covert channel and demonstrate
a proof-of-concept side-channel attack exploiting the Network-on-Chip
(NoC). Additionally, we evaluate the impact of NoC contention on the
worst-case execution time (WCET) of safety-critical applications. De-
spite exploring software-based mitigations, we find that covert channels
cannot be completely eliminated without significant performance trade-
offs.

Keywords: Side Channels - Covert Channels - NoC - Computer Archi-
tecture - WCET - Multi-Core - RISC-V

1 Introduction

Modern safety-critical and real-time systems increasingly rely on multi-core and
many-core system-on-chip (SoC) architectures to meet growing performance de-
mands. Platforms such as autonomous vehicles, industrial controllers, and avion-
ics systems require not only high computational throughput, but also strict guar-
antees of temporal isolation and predictability.

Yet, most multi-core processors incorporate multiple interconnected compo-
nents shared among processing units, leading to potential inter-core interference
when several cores access the same resource in parallel. Such interference under-
mines software predictability and poses risks to both safety and security. From a

2 A. Wrisley et al.

confidentiality perspective, inter-core interference can act as a timing side chan-
nel, allowing adversaries to exploit timing variations in shared-resource accesses
to construct side or covert channels. From an availability perspective, the same
interference can be abused to launch Denial of Service (DoS) attacks. There-
fore, the same hardware features can affect both the real-time domain and the
security-critical domain, and investigating them jointly is beneficial since the
two aspects are related.

Identifying threats that leverage shared hardware resources and finding ef-
fective mitigations is therefore a central security assurance activity. Although
this problem has been demonstrated in high-speed off-the-shelf Intel CPUs with
a ring interconnect, the study for other architectures and interconnects is still
open.

Among other architectures, the OpenPiton platform is particularly interest-
ing due to the growing interest in open RISC-V—based architectures, particularly
within the European industry, as highlighted in the ECS roadmap [11]. The
openness of RISC-V enables domain-specific hardware design and facilitates cer-
tification efforts in sectors such as avionics, making it an important target for
analyzing the implications for safety and security.

Previous work has demonstrated side and covert channels in shared hardware
resources, such as last-level caches [17,30], memory controllers [21,23,27], and
ring interconnects [20]. However, less attention has been paid to tiled many-core
research platforms such as OpenPiton, where the combination of a distributed
last-level cache (LLC) and a multi-network NoC may open new attack surfaces.

In this paper, we introduce a methodology for evaluating a memory hierarchy
in the context of combined safety and security risks through timing interference
or side-channel leakage. The evaluation is based on the following two questions,
Can timing variations caused by interconnect and LLC behavior leak information
across cores? and To what extent can one core influence the execution time of
another through shared resources such as the interconnect or LLC?

To address these questions, we make the following contributions which com-
bine a general methodology with a concrete evaluation on an open source plat-
form. In this paper, we use a small platform with two cores for demonstration,
and we see no reason why the methodology would not be scalable to larger
platforms.

— A methodology for assessing the interconnect and the memory hierarchy of a
hardware platform from both a security and a safety perspective, applied in
a black-box manner. This makes the approach applicable even when detailed
hardware design information is unavailable or when the trustworthiness of
the final silicon cannot be assumed.

— Application of the methodology to the network-on-chip (NoC) of the Open-
Piton platform.

— Identification and characterization of a cross-core covert channel on the NoC.

— A proof of concept of a side-channel attack on the NoC.

— An evaluation of the impact of NoC contention on the worst-case execution
time (WCET) of safety-critical applications.

Timing Interference in Multi-Core: Security Risks and Mitigations 3

The remainder of the paper is structured as follows. Section 2 contains rele-
vant background material. In Section 3 we present our evaluation methodology,
and we apply the methodology to evaluate a hardware platform in Section 4. In
Section 5 we discuss safety implications, which is followed by an evaluation of
software-based mitigations in Section 6. Related work can be found in Section 7
and we conclude the paper in Section 8.

2 Background

To ground our analysis, we first describe the OpenPiton platform used in our
experiments and then introduce the binary symmetric channel model used to
quantify the covert channel capacity.

2.1 OpenPiton

The OpenPiton [4] open source research framework features a scalable tiled
many-core system and support for the CVAG (Ariane) application processor
core [31], which is a 64-bit single-issue in-order CPU with 6 stages and com-
patible with RISC-V. A chip can contain up to 256 tiles in each dimension (2D
mesh), and multiple chips can be connected together for a total of 500 million
cores. Each tile consists of a CVAG6 core (with private L1 cache), private L1.5
and a shared distributed last-level cache L2, and network-on-chip routers. Ex-
ternal memory (DRAM) is attached to the (upper) left tile. A schematic view of
our instantiation, containing two tiles (due to FPGA limitations), used for our
experiments, is shown in Fig. 1.

As the L2 cache is distributed, consecutively mapped lines in the private
caches may be mapped to different L2 slices. In our instantiation with two cores,
this means that every other cache line goes into the same slice (all even lines in
slice 0 and all odd lines in slice 1).

Fig. 1 also shows the NoC interconnect (blue numbered arrows), which con-
sists of three physical networks, NoC1 - NoC3. The L1.5 issues requests on NoCl,
receives data on NoC2, and writes back data (modified cache lines) on NoC3.
The L2 receives cache miss requests from L1.5 on NoC1, sends memory requests
to DRAM and response packets to L1.5 on NoC2, and receives responses from
DRAM and the write-back data from L1.5 on NoC3.

This organization of the memory hierarchy and NoC creates multiple con-
tention points that can be observed by other cores. If an adversary can distin-
guish between cache hits and misses through such contention, they can infer
fine-grained memory access patterns of victim applications, which is a power-
ful primitive for extracting sensitive information such as cryptographic keys or
control-flow behavior.

2.2 Binary Symmetric Channel

To evaluate the potential of a covert or side channel, it is useful to quantify how
much information can be transferred over it. A common model for this purpose

4 A. Wrisley et al.

X NoCX
DRAM

Memory
Controller

Tile O Tile 1

== == ol
“ NoC Routers “ NoC Routers ﬁ
=)

{ CVA6 ‘ L1.5 Cache L1.5 Cache L CVA6 ‘

Fig. 1: OpenPiton architecture

is the binary symmetric channel (BSC). In this model, the sender sends a bit (0
or 1) and the receiver observes a binary symbol that may differ from the original
due to transmission errors. The probability that a bit is flipped is p. The BSC
provides a simple, yet powerful, abstraction for analyzing noisy channels, includ-
ing those created by contention in shared hardware resources. Information can
be transferred at any rate up to the channel capacity C', according to Shannon’s
noisy-channel coding theorem [24], and is defined as

C(p,r) = r(1 = Hy(p)) (1)

where r is the raw transmission bandwidth, which is determined by the interval
between bit transmissions. H is the binary entropy function defined as Hy(p) =

—p - loga(p) — (1 = p) - loga(1 — p).

3 Security Evaluation Methodology

Assessing a hardware platform from both a security and safety perspective often
requires detailed design knowledge, which may not always be available, particu-
larly for proprietary systems. Even when documentation or HDL code exists, it
is rarely sufficient for a complete assessment. To ensure general applicability, we
adopt a black-box approach that relies only on run-time behavior, making our
methodology usable even when hardware details are limited or the final silicon
cannot be fully trusted.

Timing Interference in Multi-Core: Security Risks and Mitigations 5

3.1 Threat Model

In the case of side-channel attacks and safety-critical tasks, we assume an ad-
versary that can execute code on one core while a victim application runs on
another. The adversary cannot rely on core-local resources, such as private caches
or branch predictors, nor can it share memory or last-level cache (LLC) lines with
the victim. Instead, it must exploit shared resources such as the interconnect or
the memory bus using software only, and no direct interaction with the intercon-
nect is possible. The adversary’s objectives are twofold: (i) to extract information
through a side or covert channel, and (ii) to interfere with the execution time
of victim tasks, potentially leading to missed deadlines (with potential safety
consequences). In the case of a covert channel, the adversary controls two col-
luding applications running on different cores, which also do not share memory
or LLC lines, and attempts to establish a communication channel by leveraging
the interconnect.

3.2 Overview of our approach

Our approach is staged. First, we establish the baseline behavior of the mem-
ory hierarchy without contention. Next, we induce interference from a subset of
the available cores in the system, since we are interested in cross-core interfer-
ence. As for the non-contended case, we execute the victim applications on a
subset of the cores to identify any core-dependent effects. This gives us data on
possible vulnerabilities. Given that our contention experiments show an iden-
tifiable difference in latencies, we move on to the exploitation stage where we
try to establish covert and side channels. The safety aspects of any contention
are analyzed by evaluating the effects of the contention on the execution time
by executing (domain-specific) applications under analysis in isolation and also
with contenders on other cores.

To minimize noise, we run all our initial evaluation experiments on a bare-
board system without an operating system or other applications.

3.3 Memory Latency

To evaluate the potential for contention-based risks, we measure the latencies
of accessing different components of the memory hierarchy with and without
contention. The general idea is that we have two tasks, measure(cm, tm, Sm, bm)
and contender(ce,tc, ¢, b.) where ¢ is the core to execute on, ¢ is the target
in the memory hierarchy (e.g., private caches, shared last-level cache, shared
DRAM), s is the LLC slice target and b is the cache set target.

The measure task runs on core c¢,,, performs loads targeting ¢,, by building
a measure set of addresses in such a way that the loads will miss at the higher
levels (e.g., miss in L1 if ¢, = L2).

This is possible if the number of ways in the caches differ in such a way that
not all addresses can fit in the higher level(s). For example, if the number of ways
in L1 is four, we have eight addresses in the measure set and we are targeting

6 A. Wrisley et al.

L2. The first four addresses will fit in both L1 and L2, but when accessing the
other four, the four addresses in L1 will be replaced and ensuring an L1 miss
next iteration when the first address in the measure set is accessed again, it will
still be an L2 hit if the number of L2 ways is larger than the number of L1 ways
or if the L2 cache is large enough.

One can also utilize an eviction set that contains addresses that map to the
same cache set in the higher levels, but different cache set in the target (not
equal to b,,) for which we are measuring the latency. Accessing the addresses in
the eviction set will ensure that the addresses in the measure set are not in the
higher-level cache. In the general case, it can be difficult to generate an eviction
set and numerous algorithms have been proposed [19, 26].

The addresses in the measure set are evicted from higher levels if applicable
(no need for L1) using the eviction set, and the loads of the addresses in the
measure set are timed using applicable instructions (e.g., rdcycle on RISC-V).
To ensure that the addresses in the measure set are accessed in order, the loads
are serialized using pointer chasing. This will ensure that the method without
the eviction set works as intended.

The contender is set up to create a lot of traffic from its core (c.) to its target
(t.) and is set up in the same way as the measure task, but does not time its
loads.

3.4 WCET Estimation

We reuse the contender task from our latency experiments to induce a large
number of memory accesses to measure the effects of contention on relevant
tasks for the intended domain-specific system. First, we perform WCET esti-
mations for each domain-specific task using a relevant method (static analysis,
measurement-based, or a hybrid variant [5]) for the domain and system. The
number of memory accesses is also an interesting metric in this phase, as a higher
number of memory accesses would probably mean higher sensitivity. Next, we
run the contender in parallel with the tasks to evaluate the contention effects.

4 Hardware Platform Analysis

In this section, we apply the methodology of Section 3 to analyze our chosen
hardware platform to identify potential architectural details that may provide
cross-core channels. We use a Digilent Genesys 2* FPGA board with a synthe-
sized two-core OpenPiton system where the cores run at 66.67 MHz (i.e., 15 ns
cycle time).

4.1 Contention Potential

As discussed in Section 2.1, the DRAM is connected to tile 0 and there is an L2
slice in each tile. When core 0 accesses the data in L2 slice 0, the NoC traffic

4 https://digilent.com /reference /programmable-logic/genesys-2 /start

Timing Interference in Multi-Core: Security Risks and Mitigations 7

goes from the core through the NoC router to the L2 in tile 0, so the traffic is
limited to tile 0. Even when there is an L2 cache miss, traffic will be limited to
tile 0. On the other hand, if core 0 accesses the data in L2 slice 1, the NoC traffic
will travel to the NoC router in tile 1 and then to the L2 in tile 1. If the access
misses in L2 slice 1 there will be additional NoC traffic to tile 0 and the DRAM
and then back again. The same goes for core 1 when accessing the L2 cache.
In contrast, all DRAM requests from core 1 inevitably generate NoC traffic to
tile 0, since the DRAM controller is attached there. To introduce contention, we
must inject traffic into appropriate locations.

4.2 Latency Measurements

We use the tasks described in Section 3.3 to perform the initial latency measure-
ments.

Implementation Notes To reduce measurement noise, we use the fence in-
struction to ensure that the relevant memory load has been retired before re-
trieving the timestamp (rdeycle). We also measure the latency of a number of
loads to reduce the overhead of the fence instruction and the measurement code.
This also helps to find a good trade-off between accuracy and granularity.

Baseline Latency To measure the baseline latencies, we set up our exper-
iments with the following parameters, c¢,, € {0,1}, b,, € {0,1} and ¢, €
{L1,L2, DRAM?}. The 12 slice (s,,) is determined by the cache set (b,,) and in
our two-core instantiation the slice is given by s,, = b,, mod 2. This will target
both L2 slices for 1.2 and DRAM accesses, and we run the experiment from each
core in our system to identify any core-dependent latency differences.

We collect 1000 samples where each sample contains 8 accesses to the latency
target (cache or DRAM). The Isolation column in Table 1 and Table 2 shows the
average latency and standard deviation per access measured in core 0 (¢, = 0)
and core 1 (¢, = 1) respectively.

As expected, L1 latency is constant at ~5 cycles. L2 latency is ~30 cy-
cles across both cores and both slices, with little variation. DRAM latency is
~100-110 cycles but shows a systematic difference: accesses to data allocated
on the same slice of the accessing core are consistently ~10 cycles faster than
accessing data allocated on the other slice.

Latency under Contention Next, we measure the latency of memory accesses
under contention by setting up our system with the additional task, contender.

From the discussion in Section 4.1 we identify four relevant cases of cross-
core interference. NoC traffic is routed either through the same L2 slice for both
tasks (even or odd sets for both tasks) or through different slices. When using
the same L2 slice, s,, = s., we have the choice of accessing different cache sets
(by, # b.) or the same set (b,, = b. are standard cache evictions and are not

8 A. Wrisley et al.

Table 1: Average latency (cycles) for measure on core 0 (¢, = 0) with contention
on L2 and DRAM respectively

Target (tm) Sm Sc Isolation Contention (t.)
L2 DRAM

Avg (p) Std dev (o) Avg (p) Std dev (o) Avg (u) Std dev (o)
L1 - - 5.04 0.47 5.04 0.41 5.04 0.41
L2 0 0 29.82 0.96 42.03 6.19 30.85 1.33
L2 1 1 29.50 1.28 29.57 1.26 30.55 1.66
L2 01 - - 41.71 8.39 30.86 1.44
L2 1 0 - - 29.60 1.28 30.33 1.43
DRAM 0 0 102.12 2.92 12741 4.22 119.36 4.17
DRAM 1 1 111.24 3.52 118.21 3.15 121.67 4.52
DRAM 01 - - 127.06 4.17 109.98 6.13
DRAM 1 0 - - 118.60 3.40 116.90 4.91

Table 2: Average latency (cycles) for measure on core 1 (¢, = 1) with contention
on L2 and DRAM respectively

Target (tm) Sm Se Isolation Contention (t.)
L2 DRAM

Avg (u) Std dev (o) Avg (u) Std dev (o) Avg (p) Std dev (o)
L1 - - 5.04 0.47 5.04 0.40 5.04 0.41
L2 0 0 2957 1.21 41.73 7.44 30.98 1.80
L2 11 29.75 1.04 29.85 1.03 30.54 1.46
L2 01 - - 40.05 7.86 30.39 1.43
L2 10 - - 29.86 1.03 30.95 1.39
DRAM 0 0 110.04 3.03 131.86 4.11 121.85 4.38
DRAM 1 1 103.00 3.10 110.55 3.82 121.66 3.78
DRAM 01 - - 131.62 4.00 115.86 5.40
DRAM 10 - - 110.22 3.92 110.67 5.42

of interest in this work). Since the L2 slice is determined by the cache set, we
cannot have the same cache set when targeting different L2 slices.

The contender is configured with c. # ¢, be € {0,1,2,3}, b. # by, tc €
{L2, DRAM?} and the Contention columns in Table 1 and Table 2 shows the
average latency with the contender accessing the L2 and the DRAM in core 0
and core 1 respectively.

In the presence of contention, clear latency differences emerge compared to
the baseline. As expected, L1 accesses remain unaffected, since they are core-
private. In contrast, L2 accesses show noticeable slowdowns when the measurer
targets slice 0 and the contender accesses L2 cache data, regardless of which slice
the contender accesses or how the cores are allocated. Moreover, L.2 accesses by
the measurer also exhibit slight slowdowns whenever the contender performs
uncached DRAM accesses. For DRAM accesses, all measurer configurations ex-

Timing Interference in Multi-Core: Security Risks and Mitigations 9

perience increased latency under contention. The slowdown is generally greater
when the contender’s data is cached in L2, independent of core placement. A
notable exception occurs when both measurer and contender target slice 1: in
this case, the slowdown is more pronounced if the contender accesses uncached
data from DRAM. The analysis of interferences in this section demonstrates that
there are several opportunities for timing-based covert and side channels.

4.3 Covert Channel

Using the findings of our initial memory latency experiments (Section 4.2), we
demonstrate and evaluate a covert channel.

In this scenario, we manage to compromise two applications and thus we have
two colluding entities, a trojan and a spy that will try to communicate outside
of the channels established by the operating system or similar. For a covert
channel, the trojan task corresponds to the contender and the spy corresponds
to measure.

A covert channel should be possible whenever there is a difference between
the average latency in isolation and in contention in Table 1 or Table 2. We
conclude that no covert channel is possible when accessing L1 since it is core-
local, but for all other cases there are differences, albeit very small for some
cases. For example, if neither the trojan nor the spy access DRAM, it seems
that the channel could be prevented. We evaluate the most important cases.

Evaluating Channel Capacity To characterize the covert channel, we use the
results of Section 4.2 to set up our experiments. The trojan and the spy agree
on the burst interval (i.e., the raw bandwidth), the L2 slice, and the cache set to
target. During a burst interval, the trojan induces memory traffic for a ’1’ and
idles for a ’0’. The spy performs memory accesses continuously and depending
on the memory traffic of the trojan there will be a difference in the number
of memory accesses during the burst interval. This communication method has
been used in previous work [20,23,27].

We model the channel as a binary symmetric channel and perform experi-
ments for the cases discussed in Section 4.2 with a raw bit rate ranging from
1 kilobit per second (kbps) to 70 kbps (after which the burst interval becomes
shorter than the measurement time). Equation 1 in Section 2.2 is used to assess
the channel capacity.

The trojan sends a string of alternating bits ’1’ and ’0’, which the spy decodes
using this difference in the number of memory accesses resulting from the latency
differences identified in Table 1 and Table 2.

Fig. 2 illustrates the difference in latency between ones and zeros for a raw
bandwidth of 20 kbps, and Fig. 3 shows the capacity and probability of error
when varying the raw bitrates for the same case.

Table 3 summarizes the maximum capacity and error probabilities for the
case where both access DRAM and the case where both access L2, respectively.
The highest channel capacity is achieved in the L2 case, 68 kbps when s¢rojan =

10 A. Wrisley et al.

120 A

115 A \ ‘ Y

110 { \

105 A

0 10000 20000 30000 40000 50000
Time (cycles)

Latency (cycles)

Fig. 9. Spy memory access latency (7“ =20 kbps, Ctrojan = 1,Cspy = O,ttrojan =
tspy = DRAM, Strojan = Sspy = O)

a L 20000 g
S =l
£ 0.4+ - 15000 ©
kS] 2
2 10000 5
£ 0.21 3
2 5000 =
3 3
2 0.0 Lo 8

0 10000 20000 30000 40000 50000 60000 70000
Raw bit rate, r (bps)

Fig.3: Channel capacity and error probability (cirojan = 1,¢spy = 0,ttrojan =
tspy = DRAM, Strojan = Sspy = 0)

Sspy = 0. For the DRAM case, a channel capacity of 19.5 kbps is achieved
(Strojan = Sspy = Oactrojan = 1)

The prevention case discussed above, (tirojan = tspy = L2, Sspy = 1, Strojan €
{0,1}, in fact, provides a channel. Actually, from what we can see, there is no
configuration that is secure.

4.4 Side Channel

With the successful covert channel in Section 4.3 in mind, we relax the adver-
sary’s requirements to create a side channel. In this setting, the measure and
contender tasks in Section 4.2 would correspond to the attacker and the victim,
respectively.

Being able to differentiate between L1 cache hit and miss would enable a
trace-based [1] attack on an AES implementation using lookup tables. For ex-
ample, the last round uses a separate lookup table compared to the previous
rounds. There are 16 accesses, and depending on the input state to the last
round, a number of these accesses will be misses, as the table has not been ac-
cessed before. Then, either a hit or a miss will occur. From this one can infer
the round key, and from this it is possible to extract the master key.

Timing Interference in Multi-Core: Security Risks and Mitigations 11

Table 3: Maximum channel capacity per cache configuration case

Strojan Sspy Ctrojan = 0 Ctrojan = 1
tspy = ttrojan =1L2 tspy = tt'rojan = DRAM
T p C(p,r) T p C(p,r) r p C(p,7)
(kbps) (kbps) (kbps) (kbps) (kbps) (kbps)
0 0 70 0.0025 68.2 20 0.1050 10.3 20 0.0025 19.5
1 1 20 0.0175 17.5 20 0.0100 18.4 70 0.2100 18.1
0 1 10 0.2925 1.3 50 0.3800 2.1 10 0.2825 14
1 0 70 0.3125 7.3 70 0.3375 5.4 60 0.2500 11.3
1304 SEEEESISSSSEEEE) o8 S e A R R R R R R R R R R
ks
s,
£ 1204
>
e —
£ 1104 =% miss-miss
— —— miss-hit

0 10 20 30 40 50 60
Samples

Fig. 4: Average latency for side-channel PoC (cyictim = 0, Swictim = Sattacker = 0)

We set up a proof-of-concept experiment in which the contention is located in
L2 slice 0 as this is the case with the largest relative latency difference according
to Table 1. The victim (cyictim = 0) performs two memory accesses while the
attacker (Cattacker = 1) measures the latency of its four L2 accesses (tattacker =
L2) per sample. First, both victim accesses are L1 misses and hits in L2 (tyictim =
L2), and in the second case, the first access is a miss (tyictim = L2) and the
second access is a hit (tyictim = L1). Figure 4 shows the average latency over 1000
traces, and in sample 29 one can identify the case of miss-hit, which produces a
much lower latency compared to miss-miss. Therefore, an attacker can use this
latency difference together with Table 2 to classify the trace. There is also a
latency drop in sample 17, here for both miss-miss and miss-hit, due to how the
tasks are synchronized in this PoC such that the attacker collects samples before
the victim performs its accesses and will be further analyzed in future work.

5 Implications for Safety

In this section, we analyze the potential implications of our identified contention
scenarios that can affect safety by violating the application timeliness require-
ments. We analyze the variability of the execution time of applications in the
presence of memory interference from the other core.

12 A. Wrisley et al.

Table 4: Characterization of applications

Application Max memory requests Max execution time (ms)
Isolation = Contention

Nav 140 7410 7410
Mult 1899 471 482

5.1 Failure Model

From a safety point of view, we consider a system in which a time-critical appli-
cation (victim, cf. measure task) must meet a strict deadline. A second, malign,
application (attacker, cf. contender task) runs concurrently on another core try-
ing to interfere with the time-critical application by inducing contention in the
memory hierarchy. Both cores share the NoC and L2 cache. The failure condi-
tion is a missed deadline due to interference caused by the contention of shared
resources.

This model reflects real-world use cases in embedded or mixed-criticality
systems, where temporal isolation must be ensured to avoid cascading system
failures.

5.2 Execution Time Measurements

We use two applications with differing memory demands, one that implements
a navigation algorithm (nav) and one that performs a 100 x 100 matrix multi-
plication (mult) [18].

In this use case, we use a measurement-based WCET estimation approach,
based on an existing approach [5], in which we manually insert instrumenta-
tion points that are used to derive the WCET estimate. How to do such mea-
surements with good control over the probe effect has been documented in the
literature [18].

First, we measure execution time and count the number of memory accesses
for our applications isolated on core 0 (¢pay = Cmuir = 0), and then measure
execution time in a scenario with memory contention. The memory-intensive
contender task, described in Section 3, with parameters c. = 1, s; = Cnauv,mult
and t, = DRAM. That is, it executes on the other core and only performs
accesses to DRAM, with cache storage in the L2 slice belonging to the tile where
the domain application executes, to interfere with our two applications under
analysis.

From Table 4 we can see that Mult requires an order of magnitude more
memory accesses than Nav and is thus more sensitive to NoC traffic and DRAM
accesses from the other core, which is shown in the execution time measurements.
Nav is unaffected by the memory traffic of the other core, but Mult’s execution
time is 11 ms longer (around 2.3 percent), and this could be enough to cause it
to miss its deadline.

Timing Interference in Multi-Core: Security Risks and Mitigations 13
6 Discussion

This section discusses a number of possible mitigations of the vulnerabilities
discovered, and an evaluation of select mitigations.

6.1 Software-Based Mitigations

Time-Multiplexing Memory Accesses We can arbitrate the memory ac-
cesses and only allow each process access to the memory during specified non-
overlapping periods of time (e.g., Time Division Multiple Access [TDMA]). Dur-
ing the periods where memory accesses are not allowed, only L1 can be accessed,
as evident from Tables 1 and 2 and the discussion in Section 4.3.

If there is no direct support in the hardware to schedule the memory accesses,
the run-time system can make use of the Memory Management Unit (MMU) of
the processor to stop the processes from accessing the memory. In Section 6.2 we
perform a small evaluation of the implications for the covert channel, discussed
in Section 4.3, using TDMA.

Arbitrating memory accesses with TDMA may result in under-utilization if
processes do not access memory during their respective period.

Monitoring Memory Accesses The memory accesses can be monitored by
using performance counters to count cache misses (the last level that does not
involve the interconnect to reduce inter-core interference). Each process is as-
signed a periodic memory access budget and, when the budget has been depleted,
the process is suspended until its next period starts. Lofwenmark and Nadjm-
Tehrani [18] use this approach to study the interference aspects of multiple ap-
plication processes due to shared resources and how it affects the Worst-Case
Execution Time (WCET) of application processes on different processor cores.

Suspending the process after a number of memory accesses will most likely
result in longer execution times for the affected processes. It may work well in
a situation where a critical process is allowed to run and is guaranteed to meet
its WCET estimates, and other processes are monitored.

Performance counters can also be used to detect attacks of different types
by monitoring system behavior for anomalous patterns [6,7,9,12]. By tracking
specific hardware and software metrics, security systems can identify deviations
from normal operation that might indicate malicious activity. This approach can
be particularly effective in detecting stealthy attacks, such as cache-based side-
channel attacks or malicious code injection. By monitoring cache access patterns,
security systems can detect when an attacker is exploiting the shared cache to
steal sensitive information.

Prefetching Data and Instructions Together with time-multiplexing, one
could prefetch instructions and data into a private cache or to a scratchpad
memory from where the instructions and data would be fetched. For private

14 A. Wrisley et al.

Probability of error, p
°
=

—t
IS

Channel capacity, C(p, r) (bps)

o

o 10000 20000 30000 40000 50000 60000
Raw bit rate, r (bps)

Fig.5: Channel capacity with time multiplexing

caches, this only works if there are guarantees that there will be no cache evic-
tions, as this could result in accesses to external memory. Also, it requires a
write-back cache, as a write-through cache would write back any changes to the
external memory as they happen.

This method affects the way the software applications are implemented and
is difficult to use on already existing applications.

6.2 Mitigation Evaluation

The OpenPiton platform does not have support for performing TDMA arbitra-
tion in hardware, so we simulate this by giving the trojan and the spy an access
quota (the optimal quota is very much system dependent and is a research area
of its own). During their access period, they are allowed to access the memory,
and the other is not. In this work, the trojan and the spy cooperate and do not
perform any memory accesses outside of their respective access windows. As can
be seen in Fig. 5, the bandwidth of the channel is greatly reduced but cannot be
completely removed.

In a real-world scenario, the adversary would not cooperate, and other means
would need to be implemented to ensure that it cannot access the memory. This
could, for example, be changing the MMU tables, so there would only be invalid
memory accesses during its off-time.

7 Related Work

Micro-architectural side-channel attacks have become more and more common,
and it is an active research area where attacks, countermeasures, and detec-
tion mechanisms are discovered and developed. For example, Spectre and Melt-
down [14,16] are well-known vulnerabilities that exploit performance-enhancing
optimizations such as the speculative execution of future instructions.
Power-analysis attacks use differences in the power consumption of the differ-
ent hardware elements in a processor, and external equipment is usually required

Timing Interference in Multi-Core: Security Risks and Mitigations 15

to measure the consumption. This has changed with works [15,28] that demon-
strate software-based power side channels.

CPU frequency scaling is used to adjust the speed and voltage of the CPU to
lower power consumption to extend, for example, battery life in mobile phones
and laptops. Several works [2,28,29] use frequency scaling to communicate bits
by inducing demanding computations, and thus increasing the CPU frequency.
This can be used to signal a ’1’, and the absence of computations would result
in a lower frequency, indicating a ’0’. However, it requires direct access to the
CPU frequency, but Zhu et al. [32] present IOLeak, which uses I/O latency to
infer CPU frequency changes without this direct access to the CPU frequency.
In this paper, we focus on safety-critical applications, where frequency scaling
is not used because it would interfere with the desired deterministic behavior,
and estimating the worst-case execution time (WCET) would be even more
demanding.

Cache-based side channels are among the most prominent microarchitectural
attacks. Techniques such as Prime+Probe [17] and Flush+Reload [30] have been
demonstrated to extract cryptographic keys by exploiting cache contention and
eviction patterns. This type of attack assumes that there are shared pages of
memory between processes, while our work does not have such assumptions.

To be able to perform a successful real-world attack, there are several as-
pects of the target system that may not be known by an attacker and need to be
obtained at run-time. Cache parameters, such as the total cache size, the cache
block size, and the number of ways, are important for cache-based attacks. Shen
et al. [25] present a method to extract these parameters. Eviction patterns are
also a very important piece in performing cache-based attacks and generating
eviction sets is a research area of its own; Vila et al. [26] present a theoretical
analysis and an empirical evaluation, while Morgan et al. [19] improve the effi-
ciency of eviction set construction on Intel processors utilizing non-linear hash
functions for cache slice mapping.

The Network-on-Chip (NoC) is a scalable on-chip interconnect architecture
that has become very popular and, therefore, also become very interesting for
attacks and countermeasures [8,13]. Ali et al. [3] use timing variations from
multiple shared hardware resources to be less sensitive to noise. Their covert
channel requires shared cache blocks, which we do not. Paccagnella et al. [20]
demonstrate a practical side channel attack on a ring interconnect, which is an
architecture used in many Intel processors. We use a similar method, but on a
different platform and with a different interconnect architecture. A similar NoC
has been used [10,22], but the attack model allows the adversary to interact
directly with the interconnect as it is simulated.

8 Conclusion

This work outlines a method for assessing the memory hierarchy of a hardware
platform to identify security threats that can affect safety by violating appli-
cation timeliness requirements. Using this assessment method, we identify and

16 A. Wrisley et al.

classify a covert channel in an implementation based on the OpenPiton platform.
Even in the seemingly secure case found in the contention measurements it is
shown that a covert channel exists. We also show that we can distinguish an L1
cache hit from an L1 cache miss from another core by exploiting the memory
hierarchy contention.

We discuss several software-based mitigation techniques and demonstrate
that none of them can completely shut down the covert channel. In addition,
they may have a serious performance impact.

Our current understanding after a substantial amount of experimental work
on two tiles is that introducing additional tiles would make the NoC traversal
longer and would provide many more opportunities for interference injection for
an adversary. The experiments are nearly noise-free, and to assess the real-world
exploitability of any identified channels using our method, more experiments
should be performed in a more realistic scenario. Furthermore, the scalability of
the methodology to larger platforms and multiple concurrent attacks needs to
be demonstrated.

Future work includes expanding our side channel PoC to actually show it
is viable for extracting the AES key. Another future direction is to pursue a
hardened NoC to mitigate the channels identified in this paper.

Acknowledgments. This work was partially supported by Sweden’s Innovation Agency
under grant numbers 2023-01548 and 2024-03785.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Aciigmez, O., Kog, c.K.: Trace-driven cache attacks on aes (short paper). In: In-
formation and Communications Security. p. 112—-121. Springer-Verlag, Berlin, Hei-
delberg (2006). https://doi.org/10.1007/11935308 9

2. Alagappan, M., Rajendran, J., Doroslovacki, M., Venkataramani, G.: Dfs
covert channels on multi-core platforms. In: 2017 IFIP/IEEE International
Conference on Very Large Scale Integration (VLSI-SoC). pp. 1-6 (2017).
https://doi.org/10.1109/VLSI-SoC.2017.8203469

3. Ali, U., Khan, O.: Multicon: An efficient timing-based side channel attack on shared
memory multicores. In: 2022 IEEE 40th International Conference on Computer De-
sign (ICCD). pp. 97-104 (2022). https://doi.org/10.1109/ICCD56317.2022.00024

4. Balkind, J., McKeown, M., Fu, Y., Nguyen, T., Zhou, Y., Lavrov, A., Shahrad,
M., Fuchs, A., Payne, S., Liang, X., Matl, M., Wentzlaff, D.: Openpiton: An open
source manycore research framework. In: Proceedings of the Twenty-First Interna-
tional Conference on Architectural Support for Programming Languages and Op-
erating Systems. pp. 217-232. ASPLOS ’16, ACM, New York, NY, USA (2016).
https://doi.org/10.1145/2872362.2872414

5. Betts, A., Marref, A.: Wcet analysis of component-based systems using timing
traces. In: 2011 16th IEEE International Conference on Engineering of Complex
Computer Systems. pp. 13-22 (2011). https://doi.org/10.1109/ICECCS.2011.9

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Timing Interference in Multi-Core: Security Risks and Mitigations 17

Bhade, P., Paturel, J., Sentieys, O., Sinha, S.: Lightweight hardware-based cache
side-channel attack detection for edge devices (edge-cascade). ACM Trans. Embed.
Comput. Syst. 23(4) (Jun 2024). https://doi.org/10.1145/3663673

Bhade, P.P., Sinha, S.: Detection of cache side channel attacks using thread level
monitoring of hardware performance counters. In: 2021 IEEE 14th International
Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC). pp.
210-217 (2021). https://doi.org/10.1109/MCSoC51149.2021.00039

Charles, S., Mishra, P.. A survey of network-on-chip security at-
tacks and countermeasures. ACM Comput. Surv. 54(5) (May 2021).
https://doi.org/10.1145 /3450964

Cho, J., Kim, T., Kim, T., Shin, Y.: Real-time detection on cache side channel
attacks using performance counter monitor. In: 2019 International Conference on
Information and Communication Technology Convergence (ICTC). pp. 175-177
(2019). https://doi.org/10.1109/ICTC46691.2019.8939797

Dipesh, Chatterjee, U.: N-tracer: A trace driven attack on noc-based mpsoc archi-
tecture. In: Proceedings of the 20th ACM Asia Conference on Computer and Com-
munications Security. p. 1127-1140. ASIA CCS ’25, Association for Computing
Machinery, New York, NY, USA (2025). https://doi.org/10.1145/3708821.3736201
ECS strategic research and innovation agenda 2025 (ECS-SRIA). https://
ecssria.eu/2025, accessed: 2025-08-24

Kapotoglu Koc, M., Altilar, D.T.: Selection of best fit hardware performance
counters to detect cache side-channel attacks. In: Proceedings of the 2023 ACM
Workshop on Secure and Trustworthy Cyber-Physical Systems. p. 17-22. SaT-
CPS 23, Association for Computing Machinery, New York, NY, USA (2023).
https://doi.org/10.1145/3579988.3585052

Kar, A, Liu, X., Kim, Y., Saileshwar, G., Kim, H., Krishna, T.: Mitigating timing-
based noc side-channel attacks with llc remapping. IEEE Comput. Archit. Lett.
22(1), 53-56 (Jan 2023). https://doi.org/10.1109/LCA.2023.3276709

Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M.,
Lipp, M., Mangard, S., Prescher, T., Schwarz, M., Yarom, Y.: Spectre attacks: Ex-
ploiting speculative execution. In: 40th IEEE Symposium on Security and Privacy
(S&P’19) (2019)

Kogler, A., Juffinger, J., Giner, L., Gerlach, L., Schwarzl, M., Schwarz, M., Gruss,
D., Mangard, S.: Collide+Power: Leaking Inaccessible Data with Software-based
Power Side Channels. In: USENIX Security (2023)

Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A., Horn, J.,
Mangard, S., Kocher, P.; Genkin, D., Yarom, Y., Hamburg, M.: Meltdown: Reading
kernel memory from user space. In: 27th USENIX Security Symposium (USENIX
Security 18) (2018)

Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel
attacks are practical. In: 2015 IEEE Symposium on Security and Privacy. pp. 605—
622 (2015). https://doi.org/10.1109/SP.2015.43

Lofwenmark, A., Nadjm-Tehrani, S.: Understanding Shared Memory Bank
Access Interference in Multi-Core Avionics. In: Schoeberl, M. (ed.) 16th
International Workshop on Worst-Case Execution Time Analysis (WCET
2016). Open Access Series in Informatics (OASIcs), vol. 55, pp. 12:1-12:11.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany (2016).
https://doi.org/10.4230/OASIcs. WCET.2016.12

Morgan, B., Horowitz, G., O’Connell, S., van Schaik, S., Chuengsatiansup, C.,
Genkin, D., Maennel, O., Montague, P., Ronen, E., Yarom, Y.: Slice+slice

18

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

A. Wrisley et al.

baby: Generating last-level cache eviction sets in the blink of an eye. In:
2025 IEEE Symposium on Security and Privacy (SP). pp. 3479-3496 (2025).
https://doi.org/10.1109/SP61157.2025.00264

Paccagnella, R., Luo, L., Fletcher, C.W.: Lord of the ring(s): Side channel at-
tacks on the CPU On-Chip ring interconnect are practical. In: 30th USENIX Se-
curity Symposium (USENIX Security 21). pp. 645-662. USENIX Association (Aug
2021), https://www.usenix.org/conference/usenixsecurity21/presentation/
paccagnella

Pessl, P., Gruss, D., Maurice, C., Schwarz, M., Mangard, S..: DRAMA:
Exploiting DRAM addressing for Cross-CPU attacks. In: 25th USENIX
Security Symposium (USENIX Security 16). pp. 565-581. USENIX As-
sociation, Austin, TX (Aug 2016), https://www.usenix.org/conference/
usenixsecurityl6/technical-sessions/presentation/pessl

Reinbrecht, C.; Aljuffri, A., Hamdioui, S., Taouil, M., Forlin, B., Sepulveda, J.:
Guard-noc: A protection against side-channel attacks for mpsocs. In: 2020 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI). pp. 536-541 (2020).
https://doi.org/10.1109,/ISVLSI49217.2020.000-1

Semal, B., Markantonakis, K., Akram, R.N., Kalbantner, J.: Leaky controller:
Cross-vm memory controller covert channel on multi-core systems. In: Holbl, M.,
Rannenberg, K., Welzer, T. (eds.) ICT Systems Security and Privacy Protection.
pp. 3-16. Springer International Publishing, Cham (2020)

Shannon, C.E.: A mathematical theory of communication. The Bell Sys-
tem Technical Journal 27(3), 379-423 (1948). https://doi.org/10.1002/j.1538-
7305.1948.tb01338.x

Shen, S., Li, Z., Song, W.: Methods of extracting parameters of the processor
caches. In: Cheng, C.M., Akiyama, M. (eds.) Advances in Information and Com-
puter Security. pp. 47-65. Springer International Publishing, Cham (2022)

Vila, P., Kopf, B., Morales, J.F.: Theory and practice of finding eviction sets.
In: 2019 IEEE Symposium on Security and Privacy (SP). pp. 39-54 (2019).
https://doi.org/10.1109/SP.2019.00042

Wang, Y., Ferraiuolo, A., Suh, G.E.: Timing channel protection for a
shared memory controller. In: 2014 IEEE 20th International Symposium
on High Performance Computer Architecture (HPCA). pp. 225-236 (2014).
https://doi.org/10.1109/HPCA.2014.6835934

Wang, Y., Paccagnella, R., He, E., Shacham, H., Fletcher, C.W., Kohlbrenner, D.:
Hertzbleed: Turning power side-channel attacks into remote timing attacks on x86.
In: Proceedings of the USENIX Security Symposium (USENIX) (2022)

Wang, Y., Paccagnella, R., Wandke, A., Gang, Z., Garrett-Grossman, G., Fletcher,
C.W., Kohlbrenner, D., Shacham, H.: DVFS frequently leaks secrets: Hertzbleed
attacks beyond SIKE, cryptography, and CPU-only data. In: Proceedings of the
IEEE Symposium on Security and Privacy (S&P) (2023)

Yarom, Y., Falkner, K.: FLUSH+RELOAD: A high resolution, low noise,
13 cache Side-Channel attack. In: 23rd USENIX Security Symposium
(USENIX Security 14). pp. 719-732. USENIX Association, San Diego,
CA (Aug 2014), https://www.usenix.org/conference/usenixsecurityl4/
technical-sessions/presentation/yarom

Zaruba, F., Benini, L.: The cost of application-class processing: Energy and perfor-
mance analysis of a linux-ready 1.7-ghz 64-bit risc-v core in 22-nm fdsoi technology.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 27(11), 2629—
2640 (Nov 2019). https://doi.org/10.1109/TVLSI.2019.2926114

Timing Interference in Multi-Core: Security Risks and Mitigations 19

32. Zhu, L., Wang, C.: Side-channel information leakage with cpu frequency scal-
ing, but without cpu frequency. In: Proceedings of the 17th ACM Work-
shop on Hot Topics in Storage and File Systems. p. 69-76. HotStorage
25, Association for Computing Machinery, New York, NY, USA (2025).
https://doi.org/10.1145/3736548.3737831

