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Abstract. The widespread adoption and use of Machine Learning-Based
Intrusion Detection Systems (ML-IDS) has increased the flexibility and
efficiency of automated cyber attack detection in smart grid systems.
However, the introduction of such IDSes has created a new attack vec-
tor against the learning models commonly known as adversarial attacks.
Such attacks could have serious consequences in smart grid systems, as
adversaries can evade detection by the IDS. This could lead to delayed
attack detection. From the existing literature, a lot of research proposes
threat models that are inappropriate for generating realistic adversarial
attacks. In this research, we model realistic adversarial attacks with a
focus on real attacker capabilities and circumstances required by attack-
ers to launch feasible and successful adversarial attacks. We demonstrate
how adversarial learning can be used to target ML models by using the
Fast Gradient Sign Method (FGSM) and Jacobian-based Saliency Map
Attack (JSMA). A power system dataset generated from a smart grid
testbed was used for testing the models. Overall, the classification per-
formance of three widely used classifiers Random Forest, XGBoost and
Naive Bayes decreased when adversarial samples were present. The out-
comes of this paper are useful for helping researchers model realistic
scenarios to avoid dealing with hypothetical problems.

Keywords: Intrusion Detection Systems· Adversarial Attacks· Critical
Infrastructure· Machine Learning· Smart Grid Systems.

1 Introduction

Smart electrical grids play a critical role in the digital age of hyper-connected
Critical Infrastructures (CIs), offering benefits such as more effective grid re-
silience, efficient energy distribution, and smart load and response management
[19]. The adoption of technology enablers, such as Machine Learning (ML), the
Internet of Things (IoT), 5G and Artificial Intelligence (AI), plays a significant
role in the life cycle of smart grids. However, this technological advancement
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raises severe cybersecurity issues that can result in disastrous consequences, es-
pecially in the energy domain. Given the significance of these systems, they have
become a desirable target for attackers. By the fact that these systems control
physical processes, cyber-attacks may have far-reaching effects on the environ-
ment, in which they operate and their users [4].

Multi-step attacks and Advanced Persistent Threats (APTs) against CIs,
like the smart electrical grid, can cause service failures, financial losses, and
even tragic accidents. Examples of APT [4] campaigns include Industroyer, So-
larWinds (Sunburst), Hafnium, and the Lazarus Group. Industroyer caused a
widespread blackout in Ukraine in 2015. The NotPetya ransomware caused sig-
nificant financial damage for various energy-related organizations, making it a
notable cybersecurity incident. A more recent CI attack was reported in Den-
mark in May 2023 where attackers compromised 22 energy organizations in the
largest coordinated attack against Denmark’s CI [32]. To launch the attacks,
hackers exploited multiple vulnerabilities in the firewall for initial access, execut-
ing code and gaining complete control over the impacted systems. The attackers
successfully compromised 11 energy organizations by executing commands on
the vulnerable firewall to obtain device configurations and usernames and thus
access to the CI behind it. Security concerns about such systems have become
a global issue. Developing robust, safe, and efficient techniques to identify and
protect against cyber attacks in smart grid networks is critical.

Although various security methods exist for traditional IT systems, integrat-
ing them into smart grid networks is difficult because the monitoring devices
have limited resources and do not support modern security measures. As a re-
sult, alternative security measures such as passive security monitoring are more
promising. This has resulted in a significant rise in research into more tailor-made
IDSes that monitor network or sensor data to detect attacks and anomalies that
could disrupt the operation of CIs [20]. Due to the efficiency of IDSes in detecting
attacks, there has been a significant growth of integration with ML. However,
the introduction of such systems has created a new attack vector; trained mod-
els may also be vulnerable to attacks. Adversarial Machine Learning (AdvML)
refers to deploying attacks against ML systems. Small perturbations can be ap-
plied automatically to unseen data points that can result the model crossing a
decision boundary and classifying malicious data as normal. Consequently, the
effectiveness of the model can be reduced.

The existence of such dynamics implies that CI such as smart grid systems
that use ML-IDSes may be exposed to cyber attacks. AdvML can be used to ma-
nipulate data from the Intelligent Electronic Devices (IEDs) that are responsible
for switching the circuit breakers or other devices by introducing perturbations
that cause malicious data to be classed as benign, hence circumventing the IDS.
This could result in delayed attack detection, information leaks, financial losses,
and even casualties. As ML-based detection methods grow more prevalent, at-
tackers may have a stronger motive to target them. As a result, they require
extensive evaluation against AdvML attacks.
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1.1 Motivation and Contribution

Our research is motivated by the recognition that many research papers design,
develop, and evaluate IDS in adversarial settings without considering the realism
of the proposed attacks or explaining how they can be launched in reality. Most
of the proposed research work assumes a threat model and proceed to analyze the
effects of the attack with none or insufficient considerations about the feasibility
of the considered perturbation. Moreover, some general techniques are applied
to generate adversarial attacks to manipulate the network features in a way that
is inconsistent with actual network traffic [3].

For instance, some researchers assume adversaries with full knowledge of the
target system [15], while others suppose that an attacker can perform an unlim-
ited number of trials against the Network Intrusion Detection Systems (NIDS)
without detection [30]. Although investigating the effectiveness of adversarial
attacks against any ML is an important goal for creating more robust detectors,
cybersecurity scenarios should always deal with realistic issues and adversaries.
Failing to do so could misinform defenders to allocate resources against false
cases or hypothetical problems, potentially diverting attention from more criti-
cal issues. The abundance of research on adversarial attacks might inadvertently
give the impression that any ML-IDS is an unreliable defensive system, contrary
to the actual scenario. Additionally, deceiving an ML model is not guaranteed
to be a successful cyber-attack in a real communication network.

Therefore, this paper proposes a realistic approach to modeling adversarial
attacks against ML-IDS for smart grid communication by identifying the ca-
pabilities and conditions that are necessary for the attacker to carry out such
attacks. More importantly, this research recreates a realistic attack model and
assumptions as well as a realistic dataset collected from a power system testbed.
The contributions of this paper are summarised as follows:

– An in-depth analysis of the feasibility constraints necessary for generating
valid adversarial perturbations of data used as input to an ML-IDS while
maintaining the underlying logic of the network attack.

– Generating evasion attacks for smart grid network communication capable
of evading ML-IDS detection with limited knowledge of the target NIDS.

– Demonstrate the effectiveness of the evasion attack on ML-IDS.

2 Background and Related Work

This section first outlines the fundamental principles of adversarial machine
learning. Then, we discuss related work that has employed adversarial evasion
techniques to illustrate their effectiveness in evading and reducing the perfor-
mance of IDS models. Lastly, we describe the network traffic constraints that
should be maintained to generate valid adversarial flow.
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2.1 Adversarial Machine Learning

Adversarial attacks involve the application of small and undetectable alterations
to an ML detector [29]. The modified samples should only differ minimally from
their initial form, while still maintaining the basic malicious logic without trig-
gering other detection methods. In this research, we focus on evasion attacks.
To perform evasion attacks, the adversary manipulates the inputs to deceive
the model and induce misclassification decisions. There are several approaches
to generating adversarial samples. The approaches differ in complexity, speed
of generation, and performance. A simple method for creating such samples is
to manually change the input data points. Manually perturbing huge datasets
is time-consuming and may provide inaccurate results. More sophisticated ap-
proaches include automatically analyzing and identifying features that best dis-
criminate between target values.

Goodfellow et al. [12] and Papernot et al. [28] introduced the Fast Gradient
Sign Method (FGSM) and Jacobian-based Saliency Map Attack (JSMA) as pop-
ular methods for creating perturbed samples automatically. Both techniques rely
on the concept, that when adding small perturbations (δ) to the original sample
(X), the resulting sample (X*) can exhibit adversarial characteristics (X* = X
+ δ ) such that X* will be classified differently by the targeted model.

2.2 Fast Gradient Sign Method (FGSM)

FGSM method for creating adversarial instances is based on the gradient sign
method with back propagation. It is an untargeted attack approach used to ob-
tain max-norm constrained perturbation (η) expressed in Eq. 1. Here (θ) repre-
sents the model parameter, x is the input vector to the model, y is the associated
label of the input and J(θ,x,y) is the cost function. FGSM generates perturbation
samples with a small noise parameter ϵ [12] .

adv−x = x+ ϵ ∗ sign (∇xJ(θ, x, y)) (1)

2.3 Jacobian-Based Saliency Map Attack (JSMA)

On the other hand, the JSMA approach is based on the Jacobian matrix and
seeks to calculate the forward derivative of the cost function f(x). The Jacobian
of the overall neural network function F to the input X is calculated as follows:

JF =
∂F (X)

∂X
(2)

Unlike the FGSM, JSMA operates differently from other adversarial attacks
by leveraging saliency maps. These maps visually represent the prediction pro-
cess of a classification model for each pixel, illustrating how each pixel influences
the model prediction of a specific class. JSMA, like other adversarial attacks also
has advantages and disadvantages. One advantage of using JSMA is its ability to
make small perturbations while maintaining high success rates. These minimal
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changes make it easier to control the intensity of the attack within a specific
ML-IDS. However, JSMA is more computationally intensive than FGSM [28].

2.4 Major Adversarial Attacks Against the NIDS

This section reviews previous research that used adversarial evasion techniques
to reduce the performance of ML-IDS models. The existing literature identifies
detection methods as vulnerable to generic evasive adversarial attacks, which are
considered significant threats. However, the previous research failed to evaluate
the effectiveness of generated adversarial traffic for real-world attacks.

Warzyński and Kołaczek [37] demonstrated that an FGSM attack completely
degraded a Deep Neural Networks (DNN) binary classifier on the NSL-KDD3

dataset [35]. They confirmed that the FGSM attack, originally created for image
recognition, can also be applied to network traffic. Clements et al. [8] evaluated
the resilience of Kitsune, a lightweight IDS for Internet of Things (IoT) networks,
to FGSM attacks using the Mirai4 dataset. Wang [36] discovered that FGSM
attacks achieve various degrees of success and use different feature patterns. The
author suggested that perturbing specific features may increase the vulnerability
of IDS to adversarial traffic. However, the study did not analyze how these
features had been manipulated to verify whether the perturbations resulted in
consistent traffic instances.

Peng et al. [30] demonstrated a drop in the performance of DNN, Support
Vector Machine (SVM), Random Forest (RF), and Logistic Regression (LR)
classifiers against Momentum Iterative Fast Gradient Sign Method (MI-FGSM)
attacks over the NSL-KDD dataset. Ibitoye et al. [17] compared the performance
of Self-Normalizing Neural Networks (SNN) and DNNs under the FGSM using
the BoT-IoT dataset5. The authors concluded that while DNNs outperformed
SNNs in the accuracy rate, the SNNs were more resilient to adversarial attacks.

Asimopoulos et al. [6] presented an AI powered IDS for IEC 60870-5-104 pro-
tocol. In their research, the authors utilize four ML methods: (a) Decision Tree,
(b) RF, (c) eXtreme Gradient Boosting (XGBoost), and (d) Multilayer Percep-
tron (MLP) to test the model. The authors investigated how adversarial attacks
could affect the detection performance of IDS using the FGSM and a Conditional
Tabular Generative Adversarial Network (CTGAN) adversarial attack generator.
The performance of the tested models Decision Trees (DT), XGBoost, Random
Forest, and MLP was better on the FGSM adversarial datasets when compared
to the CTGAN datasets. However, the authors did not discuss the realistic im-
plementation of adversarial attacks in their case studies. Additionally, they did
not explain how to set the optimum level of perturbations that could trigger an
attack.

Huang et al. [16] assessed the efficiency of three port-scan attack-detecting
models for Software Defined Networking (SDN) environments: MLP, Convolu-
tional Neural Network (CNN), and Long Short-Term memory (LSTM) under

3See https://www.unb.ca/cic/datasets/nsl.html [May 2024].
4See https://ieee-dataport.org/documents/nss-mirai-dataset [May 2024].
5See https://ieee-dataport.org/documents/bot-iot-dataset [May 2024].
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the FGSM attack. Martins et al. [23] demonstrated a deterioration in the mean
performance of RF, SVM, Decision Trees (DT), Naïve Bayes (NB) and Neural
Network (NN) classifiers under FGSM attacks. Sriram et al. [34] analyzed the
performance of DNN, RF, Support Vector Machine (SVM), NB and DT clas-
sifiers against FGSM attack using the NSL-KDD dataset3. Debicha et al. [9]
concluded that the FGSM attacks significantly deteriorated the performance of
a DNN detection model.

The existing literature highlights the vulnerability of detection models to
evasion adversarial attacks, which are considered substantial threats. The litera-
ture concentrates on compromising IDS by employing generic evasion adversar-
ial attacks. While these attacks may be demonstrated with high evasion rates,
the realism and effectiveness of the generated adversarial traffic have not been
taken into account for real-world attacks. Moreover, the majority of research
has concentrated on the consequences of adversarial attacks within conventional
IP networks [9, 10, 18, 24, 31]. Conversely, it is imperative to evaluate security
threats in other networking landscapes like smart grids given their critical role
in the digital age of hyper-connected Critical Infrastructures (CIs).

Based on the previous research, we did not find any research that has verified
the realism of adversarial attacks in smart grid networks. Therefore, this paper
proposes a realistic approach to modeling adversarial attacks against ML-IDS
for smart grid communication by identifying the capabilities and conditions that
are necessary for an attacker to carry out such attacks. More importantly, this
research recreates a realistic attack model and assumptions as well as a realistic
dataset collected from a power system testbed.

2.5 Limitations of Previous Research Studies

The previously published studies had three significant flaws. First, they over-
looked the importance of adhering to traffic domain constraints when crafting
adversarial attacks to uphold the validity and functionality of attack traces.
Second, they assumed that the adversary could manipulate any number of fea-
tures without restraint, potentially disrupting the semantic connections between
interdependent features. In real-world scenarios, this assumption may not be rel-
evant in some contexts as the adversary may be an outsider or unfamiliar with
the detailed workings of an IDS. Lastly, they operated under the assumption of a
white-box threat model, wherein the adversary had access to all the parameters
of the targeted model, which may not be feasible in many real-world scenarios.

3 Case Study

For our case study, we use publicly available power system datasets implemented
by Mississippi State University and Oak Ridge National Laboratory6. Fig. 1
details the power system framework configuration and the components utilized

6See https://sites.google.com/a/uah.edu/tommy-morris-uah/ics-data-sets [05/24].
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Fig. 1. Power System Framework Testbed used for generating the datasets [2].

to generate the datasets that enabled the experiments presented in this research.
More specifically, the components of the power system include:

– G1 and G2 are the primary generators.
– The Intelligent Electronic Devices (IEDs) R1, R2, R3, and R4 switch the

breakers (BR1, BR2, BR3, BR4), which automatically protect electrical cir-
cuits from overload or short circuits.

– Each IED controls a single breaker (e.g., R1 controls BR1, R2 controls BR2).
– IEDs use a distance protection method to trip the breaker on detected faults,

regardless of validity, as they lack internal validation to differentiate them.
– Operators can send commands to the IEDs to manually trip the breakers.

Manual override is used for maintenance on lines or system components.
– The testbed includes additional network monitoring and detection tools, like

SNORT and Syslog servers.

3.1 Dataset Description

The original dataset contains 128 features from two categories: 1) Phasor Mea-
surement Unit (PMU) and 2) Control Room logs. There are four PMUs, and 29
measurements are taken from each PMU, contributing to a total of 116 features.
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The control room logs are divided into three categories: control panel, SNORT,
and relay logs, each with four features, i.e. a total of 12 features. The dataset
column-naming convention helps in understanding of each feature. Each PMUs
measurement is denoted by R# - Signal Reference, where R# is the PMU number
(R1, R2, R3, and R4) and Signal Reference as specified in Table 1. Information
in the table was adapted from the original dataset description document [2].

Table 1. Feature Description

Feature Description

PA1-PA3:VH PA1:VH-PA3:VH Phase A
PM1: V-PM3:V C Voltage Phase Angle
PA4:IH-PA6:IH Phase A-C Current Phase Angle
PM4: I-PM6: I Phase A-C Current Phase Magnitude
PA7:VH-PA9:VH Pos.-Neg.-Zero Voltage Phase Angle
PM7: V-PM9: V Pos.-Neg.-Zero Voltage Phase Magnitude
PA10:VH-PA12:VH Pos.- Neg.-Zero Current Phase Angle
PM10: V - PM1 Pos.-Neg.-Zero Current Phase Magnitude
F Frequency for relays
DF Frequency Delta (dF/dt) for relays
PA:Z Appearance Impedance for relays
PA:ZH Appearance Impedance Angle for relays
S Status Flag for relays

3.2 Simulated Attacks

A dataset comprising both benign and malicious data was generated from the
testbed. The data is classified into three primary categories: instances with ’no
events’, instances with ’natural events’, and instances with ’attack events’. Both
instances of ’no event’ and ’natural event’ are grouped together to indicate benign
activity. Five different attack scenarios were used to target the power system in
order to generate attacks. These attacks are described as follows:

– Short-circuit fault. This is a short circuit in a power line and can occur in
various locations along the line. The location is indicated by the percentage
range.

– Line maintenance. One or more relays are disabled on a specific line to
do maintenance for that line.

– Remote tripping command injection attack. This is an attack that
sends a command to a relay which causes a breaker to open. It can only be
done once an attacker has penetrated outside defences.

– Relay setting change attack. Relays are configured with a distance pro-
tection scheme. The attacker changes the setting to disable the relay function
so that the relay will not trip for a valid fault or a valid command.
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Fig. 2. Feasibility of each power available to the attacker [5].

– Data injection attack. A valid fault is imitated by changing values to
parameters such as the current, voltage, and sequence components. This
attack aims to blind the operator and cause a blackout.

3.3 Attacker Capabilities

In this research, we model realistic adversarial attacks against Machine Learning
NIDS (ML-NIDS) by adopting the taxonomies of Apruzzese et al. [5]. To model
them, we take into consideration the realistic capabilities of an attacker, which
denotes how much control the attacker has on the target detection system. The
attacker can have access to the following five elements as highlighted in Fig. 2.

– Training Data represents the ability to access the dataset used to train
the ML-NIDS. It can come in the form of read, write, or no access at all.

– Feature Set refers to the knowledge of the features analyzed by the ML-
NIDS to perform its detection. It can come in the form of none, partial, or
full knowledge.

– Detection Model describes the knowledge of the (trained) ML model inte-
grated into the NIDS that is used to perform the detection. This knowledge
may be none, partial or full.

– Oracle is an element which denotes the possibility of obtaining feedback
from the output produced by the ML-NIDS to an attacker’s input. This
feedback can be limited, unlimited, or absent.

– Manipulation Depth describes the nature of the adversarial manipula-
tion, that may modify the analyzed traffic (problem space) traffic level or
one or more features (feature space).

3.4 Threat Model

In this paper, we examine the risk posed by an insider threat actor with ad-
ministrative access privileges to the network systems of the smart grid network.
Insider threats represent a significant yet often overlooked danger to CI [11].
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More specifically, as insiders reside behind the enterprise-level security defense
mechanisms and often have privileged access to the network, detecting and pre-
venting insider threats is a complex and challenging problem [22]. According
to the German Federal Office for Information Security, insider threats include
those with potentially privileged access to IT components, services, installations,
documents, or any other critical information about the infrastructure and its
components. In particular, the following groups are considered as insider threats
[1]:

– A person with direct physical access to control systems (e.g., operators,
engineers).

– A person with privileged rights (e.g., administrators).
– People with indirect access (e.g., to the office network or administration

buildings).
– External service providers (e.g., maintenance or software development), sup-

pliers, etc.

Such adversaries can deploy a range of attacks such as:

– Social engineering can be employed to plan follow-up attacks. This can be
accomplished through determining weak employees, understanding industrial
processes, and mapping the IT infrastructure.

– Unauthorized acquisition or alteration of confidential data may occur through
gaining access to file servers, historians, and data storage media. Primarily
the motives of such attack is industrial espionage and whistle-blowing.

– Deliberate acts of sabotage against the company. Motivated by political or
economic motives, this might include modifying control components or in-
sertion of malware or spyware into the system.

As shown in Fig. 3, our work is based on a realistic scenario involving an
insider threat actor with physical and administrative access privileges to the
network systems of the smart grid network. Within the network, a ML-NIDS
model is present to detect any form of attack on the network. In high-speed net-
works environment and considering the difficulties of analyzing each individual
packet, it is realistic to consider that the NIDS is a flow-based system rather than
a packet-based system. This NIDS therefore analyzes the flow data generated by
the router based on the traffic outgoing/entering the network. All flows first pass
through a flow exporter, which extracts the network features for pre-processing
and classification.

In the power system scenario discussed in Section 3 and given the capabilities
of the attacker as discussed in Section 3.3, it is presumed that the adversary is
interested in launching an evasion attack. Given the adversary position, it is pre-
sumed that he/she knows the features that the IDS is using for the classification;
nevertheless, he/she does not know the specific algorithm configuration of the
detector. The attacker’s primary objective is to identify how to circumvent the
NIDS. This will allow him/her to either launch more damaging attacks in the
future or exploit the organization for personal gain by selling this information
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Fig. 3. Illustration of the considered threat scenario

to competitors, ultimately leaving the organization exposed and susceptible to
harm. Due to the knowledge acquired by the adversary, this type of attack can
be classified as a grey box attack. This threat scenario presented in Fig. 3 was
used to generate adversarial data for testing on trained ML model as presented
in Section 5.

4 Attack Generation

This research investigates the use of JSMA and FGSM techniques in a grey-box
scenario where the attacker has access to the full dataset and features but has
no knowledge of the target model. Despite not knowing the target model, we
can approximate samples that will cause the target model to declassify it using
another model since adversarial samples are transferable across machine learning
models.

As shown in Fig. 4, there are four steps in the process of creating adversarial
traffic. During step 1, the attacker generates adversarial traffic that is specifically
designed to bypass the surrogate models that the attacker previously trained
using sniffed traffic. The attacker then receives and analyzes the adversarial
traffic that managed to avoid detection by the surrogate models during step 2.
During step 3, the attacker uses the transferability property to send adversarial
traffic to the defender NIDS. In step 4, the adversarial traffic that successfully
bypassed the defender NIDS will arrive at the insider threat actor machine. In the
context of this research, the attacks were implemented through the Adversarial
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Fig. 4. Illustration of the adversarial traffic generation.

Robustness Toolbox (ART)7. ART is a Python tool, which can generate a variety
of adversarial attacks.

4.1 Machine Learning based NIDS

ML methods are increasingly used in the context of the NIDS. To explore how
well the supervised classification methods can learn to detect cyber attacks in
smart grid environment, some classical ML algorithms are used to train the
classification model and evaluated in this research. On the defender side, the
defender uses Random Forest (RF), Naive Bayes (NB) and XGBoost (XGB)
algorithms as a model for the NIDS. We selected these three ML models for
our work because of their wide usage by the research community [25] [21]. Ad-
ditionally, the selected methods are easy to implement, less computational cost
is needed and work well with annotated data making them a suitable choice for
our NIDS. These algorithms adhere to the same training and testing procedure,
as demonstrated in Figure 5. The experimental arrangement provides a com-
mon platform to compare the performance and help decide the best-performing
model.

4.2 Hyper Parameters Optimization

XGboost and Naive Bayes models were trained using the default parameters pro-
vided by the scikit-learn framework8. To ensure optimal performance of RF as

7See https://github.com/Trusted-AI/adversarial-robustness-toolbox [05/24].
8See https://scikit-learn.org/stable/ [05/24].
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Fig. 5. The training and testing pipeline for an attacker and a defender.

recommended by Zhu et al. [38] key tunable hyperparameters were applied: num-
ber of trees (100), split method (Gini), and minimum number of samples required
to split (2). Hyperparameter tuning finds the best value for the algorithm’s pa-
rameters from the search space. This study did not perform hyperparameter
tuning; however, this is a possible area of research for future work.

4.3 Model Training and Testing

To ensure the usability of our research, the dataset was divided into subsets
and stratified according to the labels. The data subsets are equivalent in terms
of size and distribution. The first subset is used for training and evaluation of
the NIDS model (defender). The second data subset is used by the attacker
to train a surrogate model as shown on Fig. 5. Considering the insider threat
scenario described in Section 3, the attacker can obtain this data by sniffing
the network. The datasets for each side (defender and attacker) are split into a
training dataset and a testing dataset for validation, with proportions of 70%
and 30% respectively. Both training and testing data subsets are evenly split in
terms of malicious and benign traffic. The datasets are separated in this manner
to have the most balanced representation to avoid the problem of unbalanced
data.

While this is a requirement to get the most of our envisaged IDSes, it is
not essential to the actual claim of the paper. We are aware of the fact that
real traffic data may be rather unbalanced and tuning the IDS to work in those
contexts may overcome that problem. However, our evasion attack methodology
is not dependent on this aspect. The threat model follows the same training and
testing process, as shown in Fig. 5. The performance of the models was evaluated
using the standard ML evaluation metrics.

4.4 Performance Metrics

To evaluate the performance of IDS models, different evaluation metrics can be
used [14]. All of them are based on the confusion matrix represented in Table 2.
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Table 2. IDS Confusion Matrix

Predicted Class
Actual Class Anomaly Normal

Anomaly True Positive (TP) False Negative (FN)
Normal False Positive (FP) True Negative (TN)

– Recall, also known as the "detection rate,". Recall measures the proportion
of actual positive instances that are correctly identified by the model.

Recall =
TP

TP + FN
(3)

– Precision evaluates the accuracy of the positive predictions made by a model.
Specifically, precision measures the proportion of predicted positive instances
that are correct.

Precision =
TP

TP + FP
(4)

– F1 score gives the performance of the combined recall and precision evalua-
tion metrics—it is the harmonic mean of both. It provides the system with
the capacity to give relevant results and refuse the others.

F1 =
2 ∗ Precision ∗Recall

Precision+Recall
(5)

5 Evaluation

This section details the experimental findings. Section 5.1 discusses the results
from the performance of the defender and an attacker model based on different
metrics, namely precision, recall, and F1 score. Further, under Section 5.2, the
results regarding the performance of the models in an adversarial context are
discussed. Lastly, a detailed analysis is carried out to determine the difference in
perturbation between the initial malicious instance and the adversarial instance.

5.1 Initial performance of ML-IDS models in clean settings

To assess the initial performance of ML-IDS models trained in non-adversarial
(clean) settings for both the attacker and defender perspectives, several met-
rics are utilized. These include recall (Eq. 3), precision (Eq. 4), and F1-score
(Eq. 5). In clean settings, the ML-IDS models performed binary classification
to distinguish between malicious and benign traffic. As shown in Table 3, the
results of the initial performance of the trained ML models, XGBoost performed
better compared to Naive Bayes and the Random Forest models. These initial
results show good performance of the Random Forest and XGBoost in general.
The average F1-scores achieved by the classifiers were 0.845, 0.567 and 0.925
respectively.
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Table 3. Performance of the trained ML models on clean settings

Classifier Accuracy Precision Recall F1 Score Time (s)

Random Forests 0.8473 0.8655 0.8473 0.8454 30
XGBoost 0.9464 0.9075 0.9464 0.9252 45
Naive Bayes 0.5742 0.5831 0.5742 0.5673 24

5.2 Performance of ML-IDS models in adversarial settings

To reiterate, adversarial attacks aim to automatically introduce perturbations to
the unseen data points to evade detection of the trained model. To explore how
different combinations of the FGSM parameters affect the performance of the
trained classifiers, different adversarial samples were generated from the testing
data using epsilon (ϵ) values ranging between 0 to 0.45. Although the current
literature does not recommend a standard value for ϵ, in our research, we adopted
a range between 0 to 0.45 to test attack success rates as suggested by Goodfellow
et al. [13].

The adversarial dataset was then generated using different (ϵ) values. To de-
termine how the detection performance of the aforementioned ML models could
be affected, adversarial samples were then joined with the benign testing data
and subsequently presented to the trained model. Figure 6 shows the overall per-
formance for different adversarial combinations. As the (ϵ) values increased, the
model accuracy decreased further. For instance XGBoost performance decreased
from 94.64% at (ϵ)= 0 to 72.03% at (ϵ)= 0.45. On the other hand, Random For-
est performance decreased from 84.73% at (ϵ)= 0 to 68.02% at (ϵ)= 0.45. Lastly,
the performance for Naive Bayes decreased from 57.42% at (ϵ)= 0 to 32.05%
at (ϵ)= 0.45. For FGSM adversarial attack, the attack success rate increased
with higher (ϵ) values hence the accuracy declined because to the ML model was
deceived by the attack.

Selecting an appropriate (ϵ) value that will control the pertubation size is very
crucial as higher (ϵ) value may increase attack success rates but may also increase
the detectability of the adversarial samples. Small pertubations are more ideal to
launch a realistic attack and remain undetected by the IDS. For instance, when
ϵ = 0.05, the XGBoost accuracy dropped from 94.64% to 88.04% while Random
Forest accuracy dropped from 84.73% to 78.43% and the Naive Bayes accuracy
dropped from 57.42% to 52.89%. To consider another instance, when ϵ = 0.001,
XGBoost accuracy dropped from 94.64% to 92.36%, the Random Forest accuracy
dropped from 84.73% to 82.67% and Naive Bayes accuracy dropped from 57.42%
to 55.32% as detailed in Table 4. As per the adversarial performance, all the
metrics declined in comparison to the performance of the original datasets in a
clean setting.

In comparison to Random Forest and XGBoost, the Naive Bayes achieved
a higher decrease in performance. This may indicate that Naive Bayes is more
sensitive, subsequently misclassifying malicious data. Conversely, the classifica-
tion performance of XGBoost achieved a better performance. This may indicate
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Fig. 6. Performance of trained models in adversarial settings when increasing pertur-
bations (ϵ).

Table 4. Degradation of trained models in FGSM adversarial settings (ϵ=0.001).

Classifier Accuracy Precision Recall F1 Score

Random Forests 0.8267 0.6667 0.8267 0.6656
XGBoost 0.9236 0.7690 0.9236 0.7493
Naive Bayes 0.5532 0.2808 0.5532 0.2976

that XGBoost may be more a more robust classifier in discriminating between
malicious and benign data points correctly. To study the impact of adversarial
instances generated in our evasion attack, as well as the effectiveness of trans-
ferring the adversarial instances created by the attacker to the model trained by
the defender, the first experiment focuses on JSMA as shown in Table 5.

To measure the impact of adversarial instances, the detection rate metric
known as recall is used. It measures the rate of adversarial instances detected
by the ML-IDS as malicious. To accomplish this, the attacker initially generates
adversarial instances for each model trained on his/her side (i.e., Random Forest,
XGBoost and Naive Bayes). The adversarial instances created for one model are
then sent to the other models to evaluate the transferability property between
the models trained by the attacker.

To summarise, our results make it evident that the adversarial attacks gener-
ated through FGSM and JSMA techniques achieved a high misclassification rate
against the ML classifiers. The classification performance for all the classifiers
degraded on adversarial setting. This demonstrates that FGSM is an efficient
adversarial attack technique that leverages gradient information to create per-
turbations. Selecting a suitable epsilon value, which regulates the perturbation
size, is critical because larger epsilon values enhance attack success rates while
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Table 5. Degradation of trained models in JSMA adversarial settings.

Classifier Accuracy Precision Recall F1 Score

Random Forests 0.6416 0.6605 0.6434 0.5980
XGBoost 0.7090 0.7289 0.7355 0.7234
Naive Bayes 0.2934 0.2789 0.2978 0.2784

also increasing the detectability of adversarial samples. Second, evaluation us-
ing JSMA, the classification performance of XGBoost degrades from 94.64% to
70.90% while Random Forest degrades from 84.73% to 64.16% and Naive Bayes
degrades from 57.42% to 29.34%.

6 Conclusion

The use of the NIDS based on ML algorithms presents intriguing security chal-
lenges. Despite their impressive performance, these ML models are vulnerable
to various adversarial attacks, particularly evasion attacks. This paper demon-
strated the importance of realistic threat modeling in the context of adversarial
attacks on smart grid systems. By highlighting real attacker capabilities and
feasible attack scenarios, this research provides a more practical and applicable
perspective compared to the existing literature, which often deals with hypothet-
ical or idealized models. Moreover, this research performs an empirical evaluation
using a power system dataset generated from a smart grid testbed, which adds
significant value, grounding the theoretical insights in real-world data.

To the best of our knowledge, this is the first realistic approach that aims to
evade the NIDS by leveraging on the transferability property without relying on
any query methods and with very limited knowledge of the target NIDS. This
approach operates within the traffic space and adheres to domain constraints.

This paper demonstrates a realistic adversarial approach designed to generate
valid and realistic adversarial network traffic by introducing minor perturbations.
This allows for bypassing the NIDS protection with a high probability while
preserving the core logic of the underlying model. The experiments detailed in
this research have shown that evasion attacks can be successfully generated using
JSMA and FGSM methods, impacting the classification performance of Random
Forest, Naive Bayes and the XGBoost ML models.

Furthermore, our results show that the same set of adversarial examples that
managed to deceive one classifier also succeeded in deceiving the other clas-
sifiers. For instance, the adversarial samples generated by FGSM managed to
decrease the performance of XGBoost from 94.64% to 72.03%, Random Forest
from 84.73% to 68.02% and Naive Bayes from 57.42% to 32.05%. This observa-
tion can be considered additional evidence for the transferability phenomenon
first alluded to by Papernot et al. [27] within the image recognition domain and
by Sheatsley et al. [33] within the network intrusion detection domain. Our work
in the smart grid domain makes it clear that all three classifiers are vulnerable
to adversarial perturbations.
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6.1 Future Work

Although the experiments in our research demonstrate that adversarial attacks
can successfully be generated using JSMA and FGSM and affect the classifi-
cation performance of state-of-the-art supervised models, it is noteworthy that
there are other techniques for generating adversarial attacks to be considered
such as Carlini Wagner (CW) and Generative Adversarial Network (GAN). As a
part of future work, this research can be extended to observe different adversar-
ial techniques as a source for adversarial attacks. Moreover adversarial attacks
should be investigated against other ML models.

The adversarial attacks against ML models are not limited to the domain of
IDS systems, but to all systems where ML techniques are implemented. Aware-
ness, defence and mitigation of adversarial attacks against ML is an important
direction for future research, for example in federated learning [26, 7]. Therefore,
it would be interesting to assess the applicability of the proposed model in a
distributed setting and evaluate its applicability. As mentioned before, there is
a great need for research on suitable mitigation techniques against adversarial
threats.
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