
Fast Evasion Detection & Alert Management in
Tree-Ensemble-Based Intrusion Detection Systems

Valency Oscar Colaco
Linköping University, Sweden

valency.colaco@liu.se

Simin Nadjm-Tehrani
Linköping University, Sweden

simin.nadjm-tehrani@liu.se

Abstract—Intrusion Detection Systems (IDSs) can help bolster
cyber resilience in high-risk systems by promptly detecting
anomalies and thwarting security threats which could have catas-
trophic consequences. While Machine Learning (ML) techniques
like Tree Ensembles are well suited for tasks like detecting
anomalies, the widespread adoption of these techniques in IDSs
faces barriers due to the threat of evasion attacks. Moreover,
ML-based IDSs are susceptible to producing a high rate of false
positive alerts during detection, causing alert fatigue. To alleviate
these problems, we present a method that uses counterexample
regions to detect evasion attacks in tree-ensemble-based IDSs.
We generate these counterexample regions by defining a modified
mapping checker in VoTE, a fast & scalable formal verification
tool specialized for tree ensembles. Our method also provides
quaternary annotations, empowering security managers with
nuanced insights to better handle alerts in the triage queue.
Our approach does not require training a separate model and
displays good detection performance (⩾98%) in both adversarial
& non-adversarial scenarios in four real-world case studies when
compared to several approaches in the literature. The prototype
system we implement based on our method called Iceman has
a very low prediction latency, making it 5-115x faster than the
current state-of-the-art in evasion detection for tree ensembles.
Finally, empirical evaluations show that Iceman can correctly re-
annotate the samples in the presence of evasion attacks for alert
management purposes with an accuracy of more than 98%.

Index Terms—Evasion Attacks, Adversarial Defences, Intru-
sion Detection Systems, Tree Ensembles, Formal Methods

I. INTRODUCTION

Machine Learning (ML) techniques are increasingly being
adopted in multiple domains due to the superior performance
of these techniques in various tasks [1]. However, in doing
so, practitioners inadvertently partake in Amara’s Law [2]
where they overestimate the short-term impacts of these
technologies and underestimate their effects in the long-term.
As a typical consequence of this law, ML-based systems are
now becoming the preferred target of modern adversarial
threats [3] such as evasion attacks. When ML techniques
are used for security purposes like intrusion detection,
evasion attacks are known to circumvent or bypass these
detectors completely, making them a significant concern for
cybersecurity [4]. Intrusion detection, in general, falls into
two categories: anomaly-based and misuse-based. In this
paper, we focus on misuse-based ML intrusion detection
systems (IDSs) to identify adversaries who try to bypass
detectors with carefully crafted modifications or perturbations

to known attack sequences.

While ML techniques like tree ensembles are well suited for
use in IDSs [5], the widespread adoption of these techniques
is limited due to the threat of evasion attacks [6]. Recognizing
the seriousness of these threats, even global legislation like
the recently passed EU Artificial Intelligence (AI) Act,
mandates the use of technical solutions to ensure resilience
against AI-specific vulnerabilities [7], i.e., solutions aimed at
defending the defenders. While candidate solutions to defend
the defender exist in the literature, they are often plagued
by performance limitations, such as reduced accuracy in
non-adversarial scenarios [6] or high prediction latencies [8].

For tree ensembles, existing approaches to handling evasion
attacks generally fall into two categories [9]: training robust
models or formally verifying trained models for adversarial
robustness. We take an alternative approach in which given
a trained tree ensemble model, and an incoming sample
(along with its prediction), we postulate whether this sample
is adversarial (perturbed by an attacker) or not by using
pre-computed regions of likely evasion manipulation. If the
sample is postulated as adversarial, it is re-annotated to
highlight the potential evasion likelihood.

Apart from detecting evasion attacks, it is also well-
known that a high number of false alerts produced by an
IDS can overwhelm security analysts, leading to increased
incident response times, also known as “alert fatigue” [10].
To this end, our method provides quaternary annotations
of alerts through additional labels based on the postulated
evasion likelihood. Security managers can then use these
additional labels to streamline the alert management process
in terms of alert filtering and alert prioritization.

An IDS is a crucial part of any security infrastructure due to
which trust in these systems is paramount. However, evasion
attacks tend to reduce a user’s trust in an IDS, impacting its
usability. Since it is known that approaches based on formal
methods can help increase the trustworthiness of the decisions
made by intelligent systems [11], our approach to defending
the IDS against evasions is also based on formal methods.

While formal methods are used to analyse whether models

satisfy desirable properties, to the best of our knowledge,
no method currently uses counterexample regions associated
with a tree ensemble model in an intrusion detection context.
A counterexample region, by definition, is a region in the
model’s input space that violates the (robustness) property
under consideration. We hypothesise that in an evasion attack,
adversarial samples would either lie within or close to this
counterexample region.

Now, we know that an attacker can only induce alterations
to an attack sequence (to bypass detection) within a limited
budget so as to not interfere with the underlying malicious
logic of the attack. Such alterations usually come in the form
of changes to flow duration, bytes exchanged, or packets
exchanged [4]. Using this attacker budget, we identify regions
in the model’s multi-dimensional feature space likely to be
exploited by evaders, and classify incoming samples within
or close to these regions as evasion attempts.

Our approach generates these counterexample regions
by modifying the verification workflow of the Verifier of Tree
Ensembles (VoTE) [12], a formal verification tool specialized
for tree ensembles. Once the distance of a sample to the
counterexample regions is assessed, the samples can be
postulated as adversarial or non-adversarial (non-perturbed
benign or malicious inputs) by setting a threshold on this
distance. Our approach has several benefits. Firstly, it is
general; it works with any tree ensemble implementation as
long as VoTE functions can be invoked on an instance of
the trained model. Secondly, it does not require training a
separate model, thus avoiding the possibility of becoming
trapped in an “regressus ad infinitum”, where the cycle
of creating defenders to defend the defenders continues
endlessly. Thirdly, it is fairly fast as it depends on simple
distance measurements between a vector and a region. The
contributions of this paper are as follows:

- We present a method that uses counterexample regions to
resist evasion attacks and produce quaternary alert recom-
mendations that can be used for alert filtering & prioritiza-
tion for a tree-ensemble-based IDS.

- We present Iceman, a prototype system described by our
proposed architecture and open-source code that realizes an
evasion-hardened and flow re-annotatable IDS.

- We demonstrate the effectiveness of our method in terms of
decision speed while conserving the accuracy of the original
IDS decisions, using four real-world case studies related to
safety and security, and compare with the state of the art.

The remainder of this paper is structured as follows. Section
II compares this paper with related works. Section III presents
the background knowledge. Section IV presents the threat
model. Section V presents the proposed method and the tool
Iceman. Section VI presents the experimental evaluations and
comparisons, and Section VII concludes this paper.

II. RELATED WORKS

Apart from the gradient-based approaches to defending neural
networks in the literature [13], in this work, we focus on
defences related to tree ensembles as follows:

Adversarial Training: Defences based on adversarial
training have frequently been proposed as solutions to resist
adversarial examples [14, 15]. However, it was shown in
[16] that adversarial training can reduce the performance
of deep learning models on clean inputs. In the case of
tree ensembles, adversarial training has the inverse effect of
weakening the model against evasion attacks, i.e., crafting
adversarial examples becomes easier in a sense. We observed
this effect while formally verifying the adversarial robustness
of tree-based models before & after adversarial training.

Robust Models & Other Defenses: Apruzzese et al. [4]
propose a method based on defensive distillation to harden
random forest detectors against adversarial attacks. Vos et
al. [17] present a method called GROOT that trains robust
tree ensembles against user-specified adversarial examples.
Devos et al. [9] propose a method called OC-SCORE to detect
evasion attacks in tree ensembles by analysing the set of
leaves activated by the adversarial example in the ensemble’s
constituent trees. Our approach uses counterexample regions
generated during formal verification to optimally re-classify
samples into their correct classes, even in the presence of
adversarial perturbations explicitly crafted to induce evasion.
In addition, our approach also comes with flow re-annotation
capabilities specifically designed to assist security managers
with alert filtering & prioritization.

Formal Verification-Based Defenses: Chen et al. [18]
propose a booster-fixer training framework that uses
counterexamples generated during formal verification to
optimize the models until the security property is eventually
satisfied. While similar to our approach in terms of using
formal methods, their approach suffers from the issue of
scalability. Specifically, if we consider a classifier in R1 with
counterexamples in the range of [0, 1], there are 1,065,353,217
counterexamples to choose from (assuming 32-bit floating
point numbers). This number grows exponentially with respect
to the number of inputs to the classifier. Since our approach
uses VoTE, which is based on abstract interpretation, we do
not deal with the individual counterexamples but regions of
counterexamples which makes the search process considerably
faster.

Considering the related works, we identify OC-Score
[9] and GROOT [17] as the most relevant methods for
comparison against our work, and use them in section VI.

III. PRELIMINARIES

In this section we present the background knowledge on VoTE
and the adversarial robustness property.

A. Verifier of Tree Ensembles (VoTE)

VoTE [12] is a toolsuite for formally verifying that tree
ensembles comply with specific user-defined properties. The
tool is based on abstract interpretation and consists of two
main components - the VoTE Core and a modular property
checking interface, or simply, property checker.

The VoTE Core (in figure 1) takes as input an n-dimensional
input region (Xn), and a tree ensemble (f) to be analyzed.
The verification process begins when the VoTE Core is
initialized and abstract mappings are generated. An abstract

Fig. 1: VoTE Workflow [12]

mapping of a function f : Xn → Rm is a pair of sets (Xi,D)
where Xi ⊆ Xn denotes a precise input region and D ⊆ Rm

is a conservative approximation of the output of f with
respect to Xi, i.e., D ⊇ {f(x) : x ∈ Xi} .

These abstract mappings are then evaluated using a mapping
checker which is an integral part of the property checker. Let
C be a mapping checker, Ψ be a desirable property, d be an
output label, and f be a tree ensemble subject to verification.
Let m = (Xi,D) be an abstract mapping generated by the
VoTE Core. The mapping checker C checks the compliance
of the abstract mapping (m) with respect to Ψ, d, and f as:

C(m) =

Pass D = {d}
Fail d /∈ D
Unsure otherwise

If the evaluation of the mapping is conclusive, the outcomes
{Pass, Fail} are returned. Since abstract interpretation in
general is not complete, sometimes an abstraction can be too
conservative to provide a conclusive outcome, i.e., D could
contain multiple labels. In this scenario, the outcome {Unsure}
is returned, and Xi is refined (split into k disjoint subsets)
using VoTE’s abstraction-refinement loop [12]. This process
recursively continues till the entire input region has been
analyzed. To summarise, the VoTE Core generates abstract
mappings while the property checker evaluates these abstract
mappings against a user-defined property by using an in-built
mapping checker. In the context of network administration, the

flow statistics along with a list of perturbable features (and
their upper and lower limits, defined as intervals) constitute
the input region. VoTE then verifies if the model is robust
with respect to the input region, and this way, the model
prediction for several variations of the input within a region
of perturbations can be analyzed.

B. Adversarial Robustness Property

Let f be a classifier subject to verification where robustness
against adversarial perturbations is desirable. Let x ∈ Xtest

be an n-input vector and l ∈ L be its corresponding label
in accordance with a ground truth. An attacker with a budget
of ER⩾0 per input feature can craft perturbations from the
set of ∆ = {δ ∈ R : −E < δ < E}. We denote δ as a
tuple of perturbations, i.e., perturbations to n system features,
drawn from ∆. The classifier robustness with respect to x
and the adversarial perturbations crafted from ∆, denoted by
ISADVROBUST(f, x,∆n) is proven if and only if,

∀δ ∈ ∆n, f(x) = f(x+ δ) = l (1)

The above definition allows for an attacker to change each
feature (for example, packet sizes or number of packets) by a
given budget ER⩾0. This notion of adversarial robustness (A)
can be quantified over a test set (Xtest) as,

A =
|{x ∈ Xtest : ISADVROBUST(f, x,∆n)}|

|Xtest|
(2)

Note that this perturbation definition can easily be extended to
include semantic-aware perturbations, i.e., the system designer
can set separate perturbation limits per feature. This ensures
that the defence is built to handle realistic threats.

IV. THREAT MODEL

In this work, we adopt a threat model that is consistent
with Biggio et al. [19] and extend it with aspects from
the taxonomy proposed by Apruzzese et al. [20] for a
comprehensive understanding of the attacker capabilities.
According to Biggio et al., the threat model can be represented
based on the attacker’s goal, knowledge, capability and
strategy. In this paper, the threat model is primarily specific to
attacks against the defender (IDS) which implicitly threaten
the underlying system behind the defender. When it comes
to the threat model of the underlying system, the attacker
goals may be integrity, availability, confidentiality, or privacy
violations. We make no assumptions about the attacker
knowledge, capability, or strategy as that would heavily
depend on the application and the motivations of the attacker.

In terms of attacks against the defender, we assume the
attacker goals to be integrity violations (that occur when the
core IDS functionality of “detecting attacks” is tampered
with) and availability violations (that occur when an attacker
renders the IDS “out of service” by creating irrelevant alerts).
We assume a grey box level of knowledge wherein an
attacker has knowledge about the type of detection model
along with the feature set. Since the attacker strategy is to

perform evasions, we assume that the attacker is capable
of performing indiscriminate exploratory integrity attacks at
either the raw traffic level (problem space) or the feature
transformation level (feature space).

V. PROPOSED SYSTEM ARCHITECTURE

In this section, we present our system architecture that is
used to realize a prototype system that we call Iceman. Our
method relies on the generation of counterexample regions for
a trained tree ensemble model. We generate these regions by
modifying VoTE’s mapping checker. The basic idea is to use
these counterexample regions along with a distance function
to re-classify potential evasion attempts back into their likely
classes and provide quaternary alerts combined with a rec-
ommended action (i.e., alert type/level and recommendation).
The consolidated alerts can then aid security managers, for
example, in a security operations center (SOC).

A. Overview

The intuition behind our proposed method is based on the
hypothesis that adversarial examples lie either within or very
close to the counterexample regions. By using VoTE, which is
retrofitted with our modified mapping checker, and by defining
a property Ψ (adversarial robustness), we can exhaustively
search for all counterexample regions (that violate Ψ) associ-
ated with a tree ensemble model deployed in an IDS context.
The choice of property is left open to system designers to
suit their objectives (for example, they could define resilience
instead of robustness).

Fig. 2: System Architecture

Figure 2 gives a high-level overview of our proposed system
architecture. Once the counterexample regions have been gen-
erated, the incoming samples are scored in the adversarial
analyzer by using a distance function. If the distance of
the incoming sample is less than a set threshold, then the
flow is likely adversarial (i.e., manipulated or perturbed by

an attacker). With this separation of adversarial and non-
adversarial flows, we can provide additional insights to assist
security managers in terms of alert management. Instead of
the standard binary IDS outcomes (attack or benign), the flow
re-annotator can provide quaternary flow annotations which
can be combined into a tuple of (alert level, recommendation)
by the alert consolidator. The resultant tree ensemble with our
added components that make it evasion-hardened and flow re-
annotatable is called Iceman. We now explain the components
of Iceman in more detail.

B. Counterexample (CEX) Region Generator

In this subsection, we describe our extensions to the VoTE
toolsuite that enable an exhaustive search for all possible CEX
regions. We rely on VoTE’s abstraction-refinement loop to
find all the abstract mappings that violate the defined property.

More specifically, instead of checking which mappings
are robust against perturbations, the property checker is
retrofitted with our modified mapping checker to output all
the CEX regions associated with the model. We formalize the
modified mapping checker and the CEX region generation
process per class (attack and benign) as follows:

1) Modified VoTE Mapping Checker: VoTE’s mapping
checker returns {Pass, Fail, Unsure} during its normal
verification workflow. During robustness verification, however,
the process terminates when a Fail mapping is detected.
In other words, VoTE does not need to continue analyzing
the remainder of the input space to conclude that classifier
is not robust on that region. We modify this workflow to
continue searching the input region for all the Fail mappings
(here referred to as CEX regions) even after detecting a Fail
response during robustness verification.

Let C′ be a modified mapping checker, Ψ be a desirable
property, d be an output label, and f be a tree ensemble
subject to verification. Let m be an abstract mapping generated
by the VoTE Core, and D be a superset of output labels. The
modified mapping checker, C′ checks the compliance of the
abstract mapping (m) with respect to Ψ, d, and f as follows:

C′(m) =

Pass D = {d}
Pass , m d /∈ D
Unsure otherwise

When a Fail mapping is detected, the modified mapping
checker returns Pass (to continue analysing the remainder
of the input space), and the corresponding mapping
(or counterexample region) for use in Iceman. These
Fail mappings are guaranteed to exclusively contain
counterexamples.

2) Class-Wise CEX Region Generation: We formalise the
class-wise counterexample generation process in Algorithm 1.
Since we want our IDS to be adversarially robust against

evasion attacks, we generate counterexample regions that
violate the adversarial robustness property.

Algorithm 1 Class-Wise Counterexample Region Generation

Input: Adv. Robustness Property (Ψ), Tree Ensemble (T)
Dataset (X = Xtrain ∪Xharden) with Features (F)

Output: Counterexample Regions: Attack (Rα), Benign (Rβ)

1: function CEX-REGION-CLASS-WISE(T , X, F,Ψ)
2: Rα,Rβ ← {Rf : f ∈ F, Rf = ∅}
3: Xattack ← {x ∈ X : label(x) == attack}
4: for x ∈ Xattack do
5: Rβ ← Rβ ∪ CR-PR-SAMPLE(T ,Ψ, F, x, attack)
6: end for
7: Xbenign ← {x ∈ X : label(x) == benign}
8: for x ∈ Xbenign do
9: Rα ← Rα ∪ CR-PR-SAMPLE(T ,Ψ, F, x, benign)

10: end for
11: return Rα,Rβ

12: end function
13: function CR-PR-SAMPLE(T ,Ψ, F, x, y)
14: R ← {Rf : f ∈ F, Rf = ∅}
15: if T (x) ̸= y then
16: return R
17: else
18: M← VoTE.core-generate-abstract-mappings
19: for m ∈M do
20: VoTE.pc (Ψ, MOD-MAPPING-CHECKER(m, y))
21: end for
22: end if
23: function MOD-MAPPING-CHECKER(m, y)
24: outcome← VoTE.mapping-argmax(m, y)
25: if outcome == VoTE.UNSURE then
26: {m1, ...,mk} ← VoTE.core-refine-abstract(m)
27: for mi ∈ {m1, ...,mk} do
28: MOD-MAPPING-CHECKER(mi, y)
29: end for
30: end if
31: if outcome == VoTE.FAIL then
32: for f ∈ F do
33: Rf ← Rf ∪ [mlow

f ,mhigh
f]

34: end for
35: return VoTE.PASS ▷ keep analysing mappings
36: end if
37: return outcome
38: end function
39: return R
40: end function

Algorithm 1 takes as input a trained tree ensemble model (T),
the adversarial robustness property (Ψ), and a dataset (X)
consisting of labelled samples with the set of features (F).
The dataset (X) used for constructing the counterexample
regions is a combination of the training (Xtrain) and
validation (Xharden) sets. Since VoTE operates in the interval

domain, the function CEX-REGIONS-CLASS-WISE starts by
defining a sequence of empty intervals (per feature in the
dataset) per class. These sequences (Rα,Rβ) are used to
store the counterexample regions per class (attack and benign
respectively). Then X is split according to the class labels
and the CR-PR-SAMPLE function is invoked to generate
the counterexample regions per sample. Once all samples
in the split dataset have been processed, the class-wise
counterexample regions will have been generated.

The CR-PR-SAMPLE (Counterexample Region PeR Sample)
function generates CEX regions for a single sample and it
starts off by defining a variable R, which is a sequence of
empty intervals per feature in the sample. This variable is used
to collect all the intervals associated with the counterexample
regions. When an input sample is passed to the VoTE Core,
abstract mappings (M) are generated which are then passed
on to the VoTE property checker (pc) which is now retrofitted
with our modified mapping checker.

The property checker then processes each mapping separately.
For each mapping m ∈ M, when the modified mapping
checker encounters a VoTE.FAIL response (i.e., a mapping
that violates Ψ), it extends the counterexample region set
R with the corresponding mapping interval for each feature
in the sample. Once the counterexample intervals have been
saved, an “artificial” VoTE.PASS is returned to force VoTE to
continue analysing the remainder of the abstract mappings.
Once all mappings have been analysed, we have successfully
generated the counterexample regions associated with the
input sample.

C. Adversarial Analyzer

Once the counterexample regions have been generated, they
are passed to the adversarial analyzer module that computes
the adversarial score for an incoming sample. The process
begins when an initial classification from the tree ensemble
IDS is obtained. If the classification outcome is attack, then the
distance to the benign counterexample region is assessed and
vice-versa. This measured distance constitutes the adversarial
score and is a measure of how likely a sample is to be
adversarial. To compute this distance, we use the weighted
l0 distance from the counterexample regions. If we have a
counterexample region defined as R = {r1, ..., rn} where ri
is a set of intervals corresponding to a particular feature, then
for an incoming sample x = (x1, . . . , xn) with corresponding
weights w = (w1, . . . , wn), the weighted l0 distance l0,w is
defined as

∑n
i=1 wi · 1(xi ∈ ri). The weight vector (w) is

the permutation-based feature importance vector from the tree
ensemble that a system designer can obtain using scikit-learn1.
Note that the concept of a weighted distance is used because
not all features equally contribute when making predictions
using a tree ensemble. By simply setting a threshold (η) on
this distance, the adversarial analyzer can assess flows as ad-

1https://scikit-learn.org/stable/modules/permutation importance.html

versarial and non-adversarial. The output from this module are
the tuned flow predictions as: {adversarial, non-adversarial}

D. Flow Re-annotator

It is a well known fact that developing the perfect IDS is
not possible (with or without ML) [21]. Hence, to prevent
automated actions based on incorrect or highly uncertain pre-
dictions, detection systems provide decision support to security
managers in the form of alerts. However, modern environments
can generate thousands of alerts every hour, making manual
triaging infeasible [21]. To alleviate this problem, we explore
the well-known idea of alert filtering and prioritisation in a
machine learning context. The basic idea is that instead of the
standard IDS outcomes (attack or benign), we can re-annotate
the flows into four outcomes as shown in figure 3. Note that
an attack corresponds to the positive class and vice-versa.

Fig. 3: Flow Re-annotator

The output from the flow re-annotator consists of annotated
flows with the colors (alert levels) modelled after traffic
signals. In our method, likely true positive attacks or likely
false negative (evasion) attacks are given top priority (hence
coloured red), while likely false positive attacks (for example,
irrelevant alerts closely resembling a DoS attack) are given
lower priority (hence coloured orange). No alerts or recom-
mendations are generated for likely true negative (benign)
flows (hence coloured green). By definition, alerts are not
necessarily attacks as a considerable portion of the alerts
correspond to false positives. Since being incessantly notified
by false alarms renders the system less usable, our method can
be used to filter out redundant alerts.

E. Alert Consolidator

This module resides in the presentation layer of a multi-tier
software architecture where user interaction takes place. The
role of this module is to map the quaternary flow annotations
into a single tuple of (alert level, alert recommendation) for

security managers. Table I presents our mapping strategy.
Note that these levels & recommendations can be tweaked
depending on the application. Several forms of automation are
also possible at this stage depending on a security policy.

TABLE I: Flow Mapping to Alert Level & Recommendation

F. Proposed Workflow
In this subsection, we present the workflow of our proposed
method. For ease of understanding, the workflow is split into
two phases: pre-deployment and post-deployment.

Fig. 4: Proposed Workflow

Figure 4 shows our proposed workflow in action. The key in-
gredient of our prototype system (Iceman), i.e., the counterex-
ample regions are constructed in the pre-deployment phase as
follows. The system designer defines a property (Ψ) which is
passed to our counterexample region generator module (which
is basically VoTEΨ retrofitted with our modified mapping
checker) to generate the class-wise counterexample regions.
In the post-deployment phase, these regions are used in con-
junction with a distance function by the adversarial analyzer
to assess runtime flows as adversarial or non-adversarial. The
flow re-annotator then annotates these tuned flow predictions
into true positive, false positive, false negative, and true nega-
tive annotations. The quaternary annotations from the flow re-
annotator are finally amalgamated into a single tuple of (alert

level, alert recommendation) by the alert consolidator module.
This tuple normally forms the basis for further automation that
security managers can implement in a SOC depending on their
organisation’s security policies.

VI. EXPERIMENTAL EVALUATION

We present the experimental evaluation of Iceman in four real-
world case studies, and compare our method to the state of
the art. Our evaluation addresses three questions:

- Can Iceman provide similar or better adversarial detection
as compared to the state of the art?

- How is the runtime latency for Iceman affected by the added
evasion-hardening and flow re-annotating capabilities?

- How accurately does Iceman filter and prioritize the most
critical IDS alerts?

For the first question, we compare Iceman to two approaches
(published in top conferences and forums) namely GROOT
[17], and OC-Score [9] as mentioned in section II. In our
experiments, we generate adversarial examples for the baseline
tree ensemble detectors and then evaluate the performance of
GROOT, OC-Score, and Iceman which are responsible for de-
fending these baseline tree ensemble detectors. Regarding the
implementation, GROOT Forests and OC-Score are available
as open-source software packages on Github. We make use of
the entire reference set for the OC-Score method and use the
the uint16 variant as it does not place any tight restrictions on
the number of leaf nodes or trees in the ensemble. Pertaining
to the baseline tree ensemble detectors, we use the scikit-
learn2 implementation for the random forests and the dmlc3

implementation for XGBoost Gradient Boosting Machines.
Finally, all experiments are conducted on a Windows 11
Machine running Ubuntu 20.04 in Windows Subsystem for
Linux mode. The machine comes equipped with an Intel Core
i7-10875H CPU and 16 GB of RAM. The code for Iceman
and the data files for the experimental outcomes in tables and
charts in this section are available for future repeatability at
https://github.com/val-co/iceman.

A. Datasets

In this work, we use four datasets that focus on the intersection
between AI, safety & security, namely, APA-DDoS4, CIC-IoT-
2023 [22], HCRL-Survival-Analysis [23], and CIC-IoV-2024
[24]. The first two case studies deal with real network traffic
and IoT data, while the last two case studies deal with real
CAN (Controller Area Network) traffic from a 2010 Hyundai
Sonata and a 2019 Ford car respectively. We will use these case
studies in this order to streamline the explanation of certain
aspects of the experimental setup & results.

2https://scikit-learn.org/stable/
3https://xgboost.readthedocs.io/en/stable/
4https://www.kaggle.com/datasets/yashwanthkumbam/apaddos-dataset

B. Experimental Setup

All four datasets were split into Xtrain, Xharden, and Xtest in
a 60% : 30% : 10% ratio. Xtrain was used to train the baseline
tree ensemble detectors as model{depth, trees} for each
case study respectively as, xgboost{5, 50}, xgboost{5, 25},
randomforest{10, 50}, and randomforest{10, 25}. Both
Xtrain & Xharden were used to construct the counterexample
regions in Iceman, which took 33, 37, 132, and 155 minutes
respectively per case study. Note that this is a one-off cost
and happens offline, as frequently as model training. All the
datasets were min-max normalized to make perturbations of
the same size to different attributes comparable.

VoTE [12] and VERITAS [25] were used to simulate evasion
attacks through stealthy manipulations using empirically
selected E attack models of 0.0001, 0.001, 0.00015, and
0.005 respectively per case study. These E attack models
were also used to train GROOT. Finally, since both OC-Score
and Iceman require setting thresholds to distinguish between
adversarial and non-adversarial samples, we perform extensive
hyperparameter tuning of this threshold to select the best
values that reflect the optimal detection performance for both
methods in our experiments. We set these thresholds for each
case study as follows: {ocscore, iceman} as {1, 0.4997},
{1, 0.024}, {13, 0.436}, and {10, 0.18}. The evaluations for
each case study were performed using approximately 7k, 23k,
20k, and 2k adversarial examples, respectively, along with
an equal number of randomly selected samples from their
respective Xtest datasets to prevent any experimental bias
towards either the adversarial or the non-adversarial scenario.

C. Evaluation Metrics

In all case studies, we report a host of metrics in terms of
Accuracy (Acc.), F1-score (F1-Sc.), True Positive Rate (TPR),
True Negative Rate (TNR), False Positive Rate (FPR), False
Negative Rate (FNR), AUC (Area under the Receiver Op-
erating Characteristic Curve), and the Matthew’s Correlation
Coefficient (MCC). In order to compute the average latency of
each approach, we measure the average prediction time for 100
experimental runs. Finally, for Iceman, we perform additional
evaluations for alert filtering and prioritization.

D. Detection Performance

The task is to correctly classify samples in both adversarial
and non-adversarial scenarios in the four case studies (CS)
presented in the following order: (1) APA-DDoS, (2) CIC-IoT-
2023, (3) HCRL-Survival-Analysis, and (4) CIC-IoV-2024.
Prior to presenting the performance comparisons of the de-
fenders, we first evaluate the IDS decision accuracy of the
baseline detectors on their respective Xtest datasets, i.e., in
scenarios not subject to adversarial attacks as shown in table
II. This serves as a baseline evaluation criterion, assessing
the defenders on their ability to maintain the accuracy of
the original IDS decisions whilst being subjected to both
adversarial and non-adversarial scenarios.

CS Baseline IDS Acc. F1-Sc. TPR TNR FPR FNR AUC MCC

1 xgboost{5, 50} 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00

2 xgboost{5, 25} 1.00 1.00 1.00 0.93 0.07 0.00 0.95 0.91

3 randomforest{10, 50} 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00

4 randomforest{10, 25} 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00

TABLE II: Baseline Detector Performance

CS Method Acc. F1-Sc. TPR TNR FPR FNR AUC MCC

1

GROOT 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00

OC-Score 0.50 0.50 1.00 0.33 0.67 0.00 0.5 0.33

Iceman 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00

2

GROOT 0.85 0.89 0.83 0.89 0.11 0.17 0.80 0.66

OC-Score 0.97 0.98 0.97 0.97 0.03 0.03 0.99 0.93

Iceman 0.98 0.99 0.99 0.96 0.04 0.01 0.98 0.95

3

GROOT 0.88 0.86 0.75 1.00 0.00 0.25 0.90 0.78

OC-Score 0.98 0.98 0.96 1.00 0.00 0.04 1.00 0.96

Iceman 0.99 0.99 1.00 0.98 0.02 0.00 0.99 0.98

4

GROOT 0.74 0.84 0.94 0.11 0.89 0.06 0.58 0.09

OC-Score 0.56 0.63 0.50 0.74 0.26 0.50 0.38 0.21

Iceman 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00

TABLE III: Detection Performance Comparisons (Defenders)

From table III, we see that Iceman offers comparable (and
slightly better) performance as compared to OC-Score and
GROOT. Except for the first case study where Iceman
and GROOT have the same MCCs, the OC-Score method
outperforms GROOT in the subsequent three case studies.
However, since Iceman produces a slightly better MCC
compared to OC-Score in these three case studies, we deem
the OC-Score method to be Iceman’s closest competitor. We
use this aspect in the next subsection to show that Iceman’s
maintained level of performance comes with significant
timing improvements.

In the last case study, while GROOT has a higher accuracy
than OC-Score, the MCC values for GROOT are almost
half that of OC-Score. We find this interesting, considering
GROOT was trained for that specific E attack model. Upon
further inspection using VERITAS [25], we found that a
larger proportion of the attack samples were closer to the
decision boundary compared to benign samples. We believe
that GROOT’s robust splitting criteria expanded the attack
regions based on this observation, leading to benign test
samples being misclassified as attacks during testing (due to
the larger regions). This, in turn, increased the False Positive
Rate (FPR) and consequently resulted in a lower Matthews
Correlation Coefficient (MCC).

E. Runtime Performance

Figure 5 shows that Iceman has a very low prediction latency
compared to OC-Score. We believe that the iteration over the
entire reference set for the OC-Score method is the likely exp-
lanation. Our method is relatively faster (5-115x, by com-
paring the average prediction times) than OC-Score, as it
only requires simple distance calculations between a vector
and a region. GROOT is consistently fast as it only requires
executing a tree ensemble. However, this comes at the expense
of slightly lower performance as shown in table III.

Fig. 5: Runtime Performance Comparisons

F. Alert Management Performance

The alert filtering process is successful when Iceman can
correctly filter the alerts into four classes (TPA - true positive
alerts, TNA - true negative alerts, FPA - false positive
alerts, FNA - false negative alerts). The alert prioritization
process is successful when Iceman can correctly assign a
suitable alert priority level (0, 1, 2, or 3) to incoming samples.

Table IV highlights Iceman’s alert filtering & prioritization
accuracy per case study, along with some statistics on the
amount of reduced false alarms which was calculated using
the recall metric for the FPA class. The results in table IV
show that Iceman can correctly filter and prioritize IDS alerts
with an accuracy of more than 98%. Finally, Iceman was also
capable of significantly reducing the amount of false alarms.

CS Alert Prioritization
Accuracy

Alert Filtering
Accuracy

False Alarms
(before Iceman)

False Alarms
(after Iceman)

1 1.00 1.00 7552 0
2 0.98 0.98 11520 0
3 0.99 0.99 10800 0
4 1.00 1.00 0 0

TABLE IV: Alert Management Performance

VII. CONCLUSION

This paper explores how to detect evasion attacks in tree-
ensemble-based network intrusion detection systems. Our
approach works with any tree ensemble implementation
as long as the IDS can be hardened by making calls
to the open-source VoTE. Moreover, our approach does
not require training an additional model. The method re-
annotates an alert for a sample if it lies within or close to a
counterexample region, assuming it as likely to be adversarial.
Empirically, Iceman displays good detection performance in
both adversarial and non-adversarial scenarios with a very
low prediction latency compared to several state of the art
methods. Additionally, Iceman is capable of correctly filtering
& prioritizing the most urgent IDS alerts. We find that the
counterexample region-based analysis of evasion detection
seems plausible and applicable to other IDS methods as long
as tools for systematically generating them exist.

The preliminary analysis in this paper shows that the strategy
of using counterexample regions to detect adversarial attacks
against tree-ensemble-based IDSs can not only help improve
security, but can also have benefits for safety. This is because
successful security breaches in safety-critical systems like
autonomous vehicles can lead to safety hazards including
unpredictable behavior in the vehicle, sudden control system
failures, unexpected sensor readings, or even unintended
acceleration or braking. This makes Iceman a step in the right
direction towards safe and secure AI.

Regarding limitations, we acknowledge that crafting the
counterexample regions in Iceman can be time-consuming
due to the exhaustive multi-dimensional search space
exploration. However, this issue can be mitigated through
the use of parallelization techniques (not used in our
experiments) or by leveraging GPUs for faster processing,
and we leave this for future works. In addition, extending
our method to incorporate semantic-aware perturbations
while crafting the adversarial defence is an idea worth
exploring. Finally, we remark that our method allows for
the generation of counterexample regions as opposed to
individual counterexamples which could lead to future lines
of research in terms of new scalable counterexample-guided
inductive synthesis implementations for training robust tree
ensembles.

ACKNOWLEDGEMENTS

This work was partially supported by the Wallenberg AI,
Autonomous Systems and Software Program (WASP) funded
by the Knut and Alice Wallenberg Foundation.

REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, 2015.

[2] M. Coccia, “Deep learning technology for improving cancer care in so-
ciety: New directions in cancer imaging driven by artificial intelligence,”
Technology in Society, vol. 60, 2020.

[3] N. Papernot, P. McDaniel, A. Sinha, and M. P. Wellman, “Sok: Security
and privacy in machine learning,” in IEEE European symposium on
security and privacy (EuroS&P). IEEE, 2018.

[4] G. Apruzzese, M. Andreolini, M. Colajanni, and M. Marchetti, “Hard-
ening random forest cyber detectors against adversarial attacks,” IEEE
Transactions on Emerging Topics in Computational Intelligence, vol. 4,
no. 4, 2020.

[5] T. Zoppi, A. Ceccarelli, T. Puccetti, and A. Bondavalli, “Which algo-
rithm can detect unknown attacks? comparison of supervised, unsuper-
vised and meta-learning algorithms for intrusion detection,” Computers
& Security, vol. 127, 2023.

[6] G. Apruzzese, M. Colajanni, L. Ferretti, and M. Marchetti, “Addressing
adversarial attacks against security systems based on machine learning,”
in 11th international conference on cyber conflict (CyCon), vol. 900.
IEEE, 2019.

[7] M. Wagner, M. Borg, and P. Runeson, “Navigating the upcoming
European Union AI act,” IEEE Software, vol. 41, no. 1, 2023.

[8] M. Catillo, A. Pecchia, and U. Villano, “Machine learning on public
intrusion datasets: Academic hype or concrete advances in NIDS?”
in 53rd Annual IEEE/IFIP International Conference on Dependable
Systems and Networks-Supplemental Volume (DSN-S). IEEE, 2023.

[9] L. Devos, L. Perini, W. Meert, and J. Davis, “Detecting evasion attacks
in deployed tree ensembles,” in Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer, 2023.

[10] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates,
“Nodoze: Combatting threat alert fatigue with automated provenance
triage,” in network and distributed systems security symposium, 2019.

[11] V. O. Colaco and S. Nadjm-Tehrani, “Formal verification of tree ensem-
bles against real-world composite geometric perturbations,” in Workshop
on Artificial Intelligence Safety 2023 (SafeAI 2023) co-located with
the Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI).
CEUR-WS, 2023.

[12] J. Törnblom and S. Nadjm-Tehrani, “An abstraction-refinement approach
to formal verification of tree ensembles,” in Computer Safety, Relia-
bility, and Security: SAFECOMP Workshops, WAISE, Proceedings 38.
Springer, 2019.

[13] K. He, D. D. Kim, and M. R. Asghar, “Adversarial machine learning
for network intrusion detection systems: A comprehensive survey,” IEEE
Communications Surveys & Tutorials, vol. 25, no. 1, 2023.

[14] I. Zenden, H. Wang, A. Iacovazzi, A. Vahidi, R. Blom, and S. Raza, “On
the resilience of machine learning-based ids for automotive networks,”
in IEEE Vehicular Networking Conference (VNC). IEEE, 2023.

[15] J. Vitorino, I. Praça, and E. Maia, “Towards adversarial realism and
robust learning for IOT intrusion detection and classification,” Annals
of Telecommunications, vol. 78, no. 7, 2023.

[16] M. Sadeghi and E. G. Larsson, “Physical adversarial attacks against end-
to-end autoencoder communication systems,” IEEE Communications
Letters, vol. 23, no. 5, 2019.

[17] D. Vos and S. Verwer, “Efficient training of robust decision trees
against adversarial examples,” in International Conference on Machine
Learning. PMLR, 2021.

[18] Y. Chen, S. Wang, Y. Qin, X. Liao, S. Jana, and D. Wagner, “Learn-
ing security classifiers with verified global robustness properties,” in
Proceedings of the ACM SIGSAC Conference on Computer and Com-
munications Security, 2021.

[19] B. Biggio, I. Corona, B. Nelson, B. I. Rubinstein, D. Maiorca,
G. Fumera, G. Giacinto, and F. Roli, “Security evaluation of support
vector machines in adversarial environments,” Support vector machines
applications, 2014.

[20] G. Apruzzese, M. Andreolini, L. Ferretti, M. Marchetti, and M. Cola-
janni, “Modeling realistic adversarial attacks against network intrusion
detection systems,” Digital Threats: Research and Practice (DTRAP),
vol. 3, no. 3, 2022.

[21] G. Apruzzese, P. Laskov, E. Montes de Oca, W. Mallouli,
L. Brdalo Rapa, A. V. Grammatopoulos, and F. Di Franco, “The role
of machine learning in cybersecurity,” Digital Threats: Research and
Practice, vol. 4, no. 1, 2023.

[22] E. C. P. Neto, S. Dadkhah, R. Ferreira, A. Zohourian, R. Lu, and A. A.
Ghorbani, “CICIoT2023: A real-time dataset and benchmark for large-
scale attacks in IoT environments,” Sensors, vol. 23, no. 13, 2023.

[23] M. L. Han, B. I. Kwak, and H. K. Kim, “Anomaly intrusion detection
method for vehicular networks based on survival analysis,” Vehicular
communications, vol. 14, 2018.

[24] E. C. P. Neto, H. Taslimasa, S. Dadkhah, S. Iqbal, P. Xiong, T. Rahman,
and A. A. Ghorbani, “CICIoV2024: Advancing realistic IDS approaches
against DoS and spoofing attack in IoV CAN bus,” Internet of Things,
vol. 26, 2024.

[25] L. Devos, W. Meert, and J. Davis, “Versatile verification of tree
ensembles,” in International Conference on Machine Learning. PMLR,
2021.

