
Mapping and Analysis of Common
Vulnerabilities in Popular Web Servers⋆

Matyas Barocsai1, Johan Can2, Martin Karresand1[0009−0009−4203−451X], and
Simin Nadjm-Tehrani2[0000−0002−1485−0802]

1 Dept. of Cyber Defence and C2 Technology, Swedish Defence Research Agency
(FOI), Sweden

matyas.istvan.barocsai@foi.se
martin.karresand@foi.se

2 Dept. of Computer and Information Science, Linköping university, Sweden
johca907@student.liu.se

simin.nadjm-tehrani@liu.se

Keywords: Cybersecurity, Demonstration, Vulnerability, Web Server, NVD, CVE

Abstract The digitalization of the modern society has made many or-
ganizations susceptible to cybercrime through exploitations of software
vulnerabilities. The popular web servers Apache HTTP and Nginx make
up around 65% of the market for web server software and power the ma-
jority of all websites on the internet. Vulnerabilities that occur in these
two software programs therefore pose a significant risk to the millions of
users.
This paper maps the most common vulnerability types in these web
servers by retrieving, filtering, and analyzing information related to around
195,000 reported vulnerabilities. The results not only show that 5 vul-
nerability types according to the NIST classification, namely CWE-20,
CWE-200, CWE-22, CWE-79, and CWE-787, account for almost 25%
of all reported vulnerabilities in Apache HTTP and Nginx, but also that
these vulnerability types are commonly found in other web software as
well. The outcomes of this study are useful for constructing proof-of-
concept insecurity demonstrations and for applying in awareness exer-
cises and cybersecurity education.

⋆ The fourth author was supported by the Resilient Information and Control Systems
(RICS) project financed by the Swedish Civil Contingencies Agency (MSB).



1 Introduction

The prevalence of attacks on enterprise systems and their historical development has
highlighted interfaces that are hard to fix once and for all. Web interfaces have been
shown to be notoriously hard to secure, and remain a fertile ground for attacks through
exploiting both application-related features and weaknesses in mechanisms introduced
to fix security (identity and authentication management, access control, logging and
monitoring, etc) [1]. Stopping adversarial access to systems through vulnerabilities
requires hardening strategies at both the client [2] and the server ends. This paper
focuses on understanding which web server weaknesses persist over time.

Application developer awareness of security controls and attack surfaces is promoted
as a long term approach to improve security while the attack and defence landscapes
change over time [3]. The backdrop of our work is the provision of learning envi-
ronments where demonstration of attacks in a realistic environment can enhance the
security awareness of developers and users. In this paper we attempt to understand the
landscape of web service security in order to identify which types of demonstrations
can be used to show the absence of security. We begin by trying to identify the range
of web server vulnerabilities seen in massively deployed frameworks. We also expose
the historical development of relevant vulnerabilities and provide an overview of the
trends.

Vulnerabilities in software can be reported to organizations that run vulnerability
databases, which aim to evaluate and catalog vulnerabilities. There are several such
databases including Common Vulnerabilities and Exposures (CVE)3, National Vulner-
ability Database (NVD)4, and VulnDB5. CVE is a program with the goal of identifying,
cataloging and disclosing known vulnerabilities to the public, and is operated by the
MITRE Corporation. NVD is a publicly available vulnerability database maintained
by National Institute of Standards and Technology (NIST) under the U.S. Department
of Commerce. VulnDB is maintained by a commercial enterprise.

Many studies have been conducted to analyze these databases and detect trends and
patterns in reported vulnerabilities, but most focus on other software such as operating
systems and programming languages, and less on web servers. However, with the
increasing number of web servers and internet users, the discovery and exploitation of
vulnerabilities in web servers have greater consequences than before.

While education and demonstrations of vulnerabilities can help to increase knowledge
of information security, the demonstration of attacks needs performing the learning
exercise in an environment that does not create harm. Cyber ranges such as CRATE6

can be used for training and testing without risking damage to real systems, but
developing demonstrations and exercises for vulnerabilities can be a slow process due
to the different configurations and versions of software. Thus, it is important to know
3 https://www.cve.org/
4 https://nvd.nist.gov/
5 https://vulndb.cyberriskanalytics.com/
6 https://www.foi.se/en/foi/research/information-security/

crate---swedens-national-cyber-training-facility.html



where the focus of a particular exercise should be to provide high impact outcomes. The
work in this paper helps to identify web server vulnerabilities that can be considered
most relevant when performing such exercises currently.

The paper has the following contributions:

– A systematic investigation of known web server vulnerabilities with the aim of
understanding the trends and current state.

– Devising a set of criteria to identify and extract the most relevant vulnerabilities
to focus current awareness campaigns on those.

The work includes developing tools that automatically extract web server related vul-
nerabilities from the NVD database between 1988 and 2022 (amounting to 1 GB of
data), and then analyzing the extracted records with respect to interesting proper-
ties: the criticality of the vulnerability, the dominance of common weaknesses given
their applicability within highly popular frameworks, and the most frequent Common
Weakness Enumerations (CWEs). We focus on two web server frameworks, Apache and
Nginx, that together comprise the majority of all deployed web software today [4]. All
in all, 195,777 CVE records are included in the collected data (up to and including Oc-
tober 2022), from which 174,448 records have a labelled criticality degree. The records
are further analyzed and mapped to the categories of interest in terms of dominant
weaknesses for each web engine type.

The paper is organized as follows. Section 2 covers the needed background and de-
scribes the related works. Section 3 explains the methodology for collecting and pro-
cessing the vulnerability records and the results from each step of the analysis. Section 4
presents the outcomes of the analysis from Section 3. Section 5 discusses the outcomes
presented in Section 4, and main takeaways of the study. Section 6 concludes the paper
and presents future works.

2 Background and related works

The vulnerabilities in the CVE database, known as CVE records, are discovered and
reported to the CVE Program by organizations, researchers or private individuals.
Reported vulnerabilities are evaluated and published by partnered organizations in
the CVE Program. Additionally, each vulnerability processed by the CVE Program
receives an identifier, the CVE ID, which can be used to uniquely identify the vulner-
ability. As of April 2023 a little over 199,000 vulnerabilities have been reported to the
CVE Program.

Many CVE core vulnerabilities can be similar in terms of their characteristics, causes,
or their consequences when exploited. Therefore, there is value in categorizing these
vulnerabilities into different types. CWE is a list of identified vulnerability types found
in software or hardware. Unlike a CVE record, which refers to a specific vulnerability in
a software, a CWE type represents a weakness or characteristic, potentially shared by



multiple vulnerabilities, and can be used to categorize CVE vulnerabilities into larger
groups. Example CWE types, encountered during our study and thereby relevant for
the paper are presented in Table 1.

Table 1. CWE types relevant for the study (sorted by CWE ID)

ID Name
CWE-16 Configuration
CWE-20 Improper Input Validation
CWE-22 Improper Limitation of a Pathname to a Restricted Directory

(’Path Traversal’)
CWE-78 Improper Neutralization of Special Elements used in an OS Com-

mand (’OS Command Injection’)
CWE-79 Improper Neutralization of Input During Web Page Generation

(’Cross-site Scripting’)
CWE-89 Improper Neutralization of Special Elements used in an SQL Com-

mand (’SQL Injection’)
CWE-94 Improper Control of Generation of Code (’Code Injection’)
CWE-119 Improper Restriction of Operations within the Bounds of a Memory

Buffer
CWE-120 Buffer Copy without Checking Size of Input (’Classic Buffer Over-

flow’)
CWE-125 Out-of-bounds Read
CWE-190 Integer Overflow or Wraparound
CWE-200 Exposure of Sensitive Information to an Unauthorized Actor
CWE-264 Permissions, Privileges, and Access Controls
CWE-287 Improper Authentication
CWE-295 Improper Certificate Validation
CWE-310 Cryptographic Issues
CWE-319 Cleartext Transmission of Sensitive Information
CWE-399 Resource Management Errors
CWE-400 Uncontrolled Resource Consumption
CWE-416 Use After Free
CWE-444 Inconsistent Interpretation of HTTP Requests (’HTTP Re-

quest/Response Smuggling’)
CWE-476 NULL Pointer Dereference
CWE-787 Out-of-bounds Write

NVD-CWE-Other Other
NVD-CWE-noinfo Insufficient Information

Common Vulnerability Scoring System (CVSS) is a system for scoring the severity of a
vulnerability. The severity is reflected as a numerical value between 0 and 10 and is the
result of an evaluation of the vulnerabilities’ characteristics. During evaluation multiple
factors are rated, each a member of one of three categories: Base, Environmental or
Temporal. The CVSS scoring is often given as both CVSS v2 and v3 values. In CVSS
v3 the criticality is extended to also include None and Critical and the value ranges



adjusted accordingly. Table 2 shows the CVSS v2 and v3 scores as defined by their
specification documents [5, 6].

Table 2. Comparison of the levels of severity between CVSS v2 and CVSS v3

Severity CVSS v2 CVSS v3
None 0.0
Low 0.0 - 3.9 0.1 - 3.9

Medium 4.0 - 6.9 4.0 - 6.9
High 7.0 - 10.0 7.0 - 8.9

Critical 9.0 - 10.0

The reported vulnerabilities in the NVD are synchronized with the CVE Program,
meaning that newly discovered and published CVE records will be added to the NVD
as well. The purpose of the NVD project is to analyze published CVE records and
contribute additional detailed information to each vulnerability. The NVD extends
the CVE Program by providing evaluations of the CVSS score, the CWE type as well
as giving a list of known configurations of software in which the vulnerability has been
found.

2.1 Vulnerabilities, attacks and security in web servers

Understanding the intricacies of web servers, such as common attacks, security and
development process can greatly aid in understanding why certain vulnerabilities and
CWEs occur to a greater extent.

Morton et al. [7] investigated the risks of the new asynchronous web server architecture,
particularly in Nginx. Asynchronous web servers offer performance and scalability
benefits by enabling memory sharing between clients, something that could potentially
pose risks. The authors aimed to investigate if the risk of memory-based vulnerabilities
is higher in these new architectures. They presented a method and framework to
identify security-critical data by tracking clients’ memory handling and examined how
this can be used to analyze the exploitation of historical vulnerabilities in Nginx. The
study concluded that the asynchronous architecture of Nginx poses a greater risk for
memory-based attacks.

Woo, Alhazmi, and Malaiya [8] conducted a study on the potential number of undiscov-
ered vulnerabilities in the popular web server software Apache and Microsoft Internet
Information Services (IIS). They used two quantitative discovery models primarily de-
signed for operating systems to estimate the number of undiscovered vulnerabilities,
utilizing vulnerability data from NVD. The study revealed that the discovery process
for vulnerabilities in web server software follows a pattern that can be modeled, which
can be used to predict potential undiscovered vulnerabilities. The authors concluded
that the discovery models developed for operating systems can also be applied to web
server software.



Alhazmi and Malaiya [9] studied the number of undiscovered vulnerabilities in web
server software and the possibility of predicting the number of vulnerabilities in future
years. Like Woo, Alhazmi, and Malaiya [8], the authors examined the web server
software Apache and Microsoft IIS and used vulnerability data from NVD. They also
investigated the use of two models they created to predict undiscovered vulnerabilities.
Based on their results, the authors argue that both models have applications in software
development processes but that further research is needed to increase their accuracy.

Piantadosi, Scalabrino, and Oliveto [10] investigated the vulnerability fixing process in
open-source software. The authors examined who fixes the vulnerabilities, how long
it takes to fix them, and the process for fixing them. They analyzed 337 reported
CVE vulnerabilities in two open-source programs, Apache HTTP Server and Apache
Tomcat, and linked each vulnerability to the specific changes made in the software to
fix it.

Piantadosi, Scalabrino, and Oliveto found that the programmers who fixed the vulner-
abilities were typically more experienced than the average developer, and that most
vulnerabilities were fixed with just one patch. However, approximately 3% of vulnera-
bilities were not fixed and reappeared in the future. About 80% of vulnerabilities were
fixed before the CVE was announced, which is desirable. The remaining vulnerabilities
varied greatly in the time taken to fix them, ranging from within 10 days to several
years.

While studies such as [7–10] do not provide a list of the most common vulnerabili-
ties in web servers, their research greatly highlights that web server architecture and
development process does have an impact on which vulnerabilities occur and poten-
tially reoccur in web server software. Additionally, they demonstrate how vulnerability
databases such as NVD and CVE can be utilized in the research of web servers. No-
tably, Woo, Alhazmi, and Malaiya [8] and Alhazmi and Malaiya [9] illustrate how
information provided by the NVD can be used to map vulnerabilities to certain web
server technologies. Our work, therefore builds on those insights and extends them to
the full range of web server vulnerabilities.

2.2 Analysis of vulnerability databases

Analyzing records in vulnerability databases such as NVD and CVE can reveal trends
and previously unknown relations between vulnerabilities and web servers. Studies
which have explored NVD data provide a solid foundation for finding trends, and their
methodology can be applied to identify the most common vulnerabilities in web servers.

Gorbenko et al. [11] investigated which operating systems have the highest number of
reported vulnerabilities and the life-cycle of these vulnerabilities. The authors com-
bined and mapped known vulnerabilities from the CVE and NVD databases between
2012 and 2016. The results show that both the number of reported vulnerabilities and
security risk have increased between 2012 and 2016. Furthermore, the authors found
that the average time it takes for developers to fix a vulnerability is the same regardless
of how critical the vulnerability is.



Kuhn, Raunak, and Kacker [12] analyzed trends in older and current vulnerabilities
by examining reported vulnerabilities in the NVD vulnerability database between 2006
and 2016. Their earliest analysis between 2006 and 2010 showed that the most com-
mon vulnerability types were XSS and SQL injection attacks (CWE-79 and CWE-89).
About 15% of the reported vulnerabilities during this time were unclassified and did
not belong to any vulnerability type. A later analysis between 2010 and 2017 showed
that the most common vulnerability types were CWE-16: Configuration and CWE-
20: Improper Input Validation. The authors attribute the decrease in SQL injection
and XSS vulnerabilities partly to new tools and methods that facilitate their discovery.
Furthermore, the later analysis showed that the number of unclassified vulnerabilities
has decreased, which the authors believe shows how the work in cybersecurity has
developed and become normalized over the years.

Fan et al. [13] created a vulnerability database for large open-source software written
in C/C++. They combined information from the CVE vulnerability database with
related vulnerability information, and connected vulnerabilities to the specific code
that was vulnerable and the code that fixed the vulnerability. The authors aimed
to facilitate vulnerability analysis by providing information on the specific vulnerable
code. The result was a database with 3754 vulnerabilities from 348 different GitHub
projects. The authors analyzed trends in their vulnerability database and found that
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer
and CWE-20: Improper Input Validation were the most common vulnerability types
among the examined software.

Anwar et al. [14] investigated the quality of the evaluations performed by NVD for
each reported CVE. The study examines whether NVD’s evaluations are consistent
and, among other things, whether correct CVSS scores and CWE types are provided by
NVD. Furthermore, the authors investigate whether the publication date listed in NVD
adds value and whether it correctly reflects the vulnerability’s public awareness. By
examining URLs listed as references in NVD for each vulnerability, the authors found
that in several cases, the vulnerability’s existence had been publicly disclosed several
months before the publication date in NVD. The authors argue that the publication
date shown in NVD only indicates when a vulnerability was published in the database
and not when it was first mentioned in the public domain. Therefore, the publication
date may not necessarily be valuable, and the first detection date should possibly be
provided instead.

Regarding CWE types, Anwar et al. found that several vulnerabilities categorized
as NVD-CWE-Other actually contained a specified CWE type in the vulnerability
description. Therefore, the authors could correctly categorize an additional 1732 vul-
nerabilities identified as NVD-CWE-Other into their correct CWE types. Finally, the
authors conclude that they have been able to assess and address several of the inconsis-
tent attributes in NVD that they identified. They believe that it is valuable to address
these inconsistencies to increase the quality of NVD, not only because the vulnerabil-
ity database is widely used in cybersecurity but also because a consistent vulnerability
database would provide a better overview of vulnerability trends.

Williams et al. [15] investigated hidden trends in NVD by analyzing its content with
machine learning. They aimed to examine how the most common vulnerabilities relate



to the products with the most reported vulnerabilities by analyzing recurring words
and phrases in vulnerability descriptions. The study identified the top 50 software
products and top 50 vulnerability types between 2000 and 2017. The results show
unexplored trends in NVD and clear connections between common vulnerability types
and products they occur in. The authors suggest that the results, reinforced by various
machine learning models, are valuable for developing secure software. Further research
will be conducted on the presented analysis model, Supervised Topical Evolution Model
(STEM), to predict vulnerabilities in software in the future.

None of the studies by Gorbenko et al., Kuhn, Raunak, and Kacker, Fan et al., Anwar
et al., Williams et al. provide an overview and analysis of the vulnerability trends
in web servers and which CWEs that contribute to the most vulnerabilities in these
technologies. Williams et al. for example uses machine learning to detect phrases
related to CWEs. Their results estimate which of these phrases are most commonly
associated with vulnerabilities, but they do not identify the specific CWE types that
are most prevalent. Furthermore, Williams et al. only examine vulnerabilities reported
to NVD between 2000 and 2017, which means that a great amount of vulnerabilities
since 2017 remain unmapped.

Despite being unrelated to web technologies, the methodology used in [11–15] can be
viewed as an evidence that conducting a quantitative investigation of vulnerability
trends is feasible, relevant, and valuable. Furthermore, it highlights how valuable the
data in the NVD is. To the best of our knowledge, no other works have devised tools
to systematically extract and analyze the web server-specific vulnerabilities from the
NVD/CVE databases and CWE categorizations, in order to provide insights on trends
and weaknesses in this domain.

3 Systematic analysis of web server vulnerabilities

The analysis and investigation of potential trends in vulnerabilities were pursued by
adopting a methodology that consisted of four stages. The four stages were as follows:

Data collection: Collect data on reported vulnerabilities
Data filtering: Convert/filter the data into a manageable format
Analysis: Analyze the data for trends and patterns and identify relationships between

common vulnerabilities and popular web servers
Presentation: Present the results of the analysis using a suitable visualization

Each of the four stages presented challenges that had to be overcome. The subsequent
subsections provide an account of these challenges and their corresponding solutions.



3.1 Vulnerability data collection

In this study, data was retrieved from NVD, as this database is; openly accessible to
individuals, large and contains many vulnerabilities, reliable, and has frequently been
used in previous research [8, 9, 11, 12, 14, 15]. Furthermore, NVD can be seen as an
extension of the CVE database. The two databases are fully synchronized, but NVD
also provides some additional information about vulnerabilities, such as CVSS score,
references, CWE type, and possible vulnerable system configurations. The data in
the NVD can be accessed through their website or by downloading the vulnerability
data to a local machine. The NVD offers various formats for downloading the data,
such as XML and JSON. For this study, JSON was selected as it was considered to be
the most manageable. A total of 21 separate JSON files were downloaded, containing
unfiltered information on all reported vulnerabilities between the years 1988 and 2022,
summarised in Table 3.

Table 3. Overview of downloaded JSON files

JSON-file Year Lines Size [MB]
1 1988 - 2002 622,643 21.1
2 2003 170,922 6.0
3 2004 352,021 12.6
4 2005 565,333 19.9
5 2006 862,034 30.5
6 2007 807,329 28.5
7 2008 940,392 33.3
8 2009 890,111 32.4
9 2010 946,944 34.7
10 2011 942,934 34.8
11 2012 1,096,774 40.1
12 2013 1,240,427 45.5
13 2014 1,124,411 40.8
14 2015 1,114,185 40.2
15 2016 1,433,754 51.6
16 2017 2,070,494 73.9
17 2018 2,174,419 77.1
18 2019 2,476,073 87.2
19 2020 3,247,700 112.8
20 2021 3,585,469 124.4
21 2022 1,665,930 58.7

Total 34 years 28,330,299 1 006.1

3.2 Vulnerability data filtering

In Table 3, it is clear that manual filtering of vulnerabilities would not be feasible
due to the large amount of data that would need to be manually reviewed. For this



reason, there was a need to automate the filtering of the data obtained from the JSON
files. To this end, a tool was developed with the purpose of automatically filtering all
vulnerabilities in the downloaded JSON files and storing them in a local database. The
tool was developed in the Python programming language7, as this language has good
compatibility with JSON files. Furthermore, the SQLite database8 was chosen because
it has good compatibility with Python.

The developed tool was useful and necessary because it could filter out useful fields
of each vulnerability instead of having to deal with irrelevant data related to the
vulnerabilities. Much of the information provided about CVE vulnerabilities from the
JSON files was unnecessary and therefore needed to be filtered out. The majority of all
data such as reference links, information about configurations, details about how CVSS
values were calculated, the latest modification date, and who assigned the vulnerability
CVE ID were not relevant to this work.

The purpose of the filtering was to find vulnerabilities based on the type of vulnerability,
when it was reported, how serious it was, and its ID. Therefore, data fields that did
not have information about this could be filtered out. The following fields were left
after filtering the JSON files through the developed Python tool:

CVE ID: This field is used to identify the vulnerability. The CVE ID assigned to a
vulnerability is unique and is therefore well suited as a key for a database entry.

CVSS v3: The newer CVSS v3 is the primary way of rating the severity level of
vulnerabilities from 2016 onwards. Using this field, the severity level among the
reported vulnerabilities can be analyzed.

CVSS v2: The older CVSS v2 was used to rate the severity level of vulnerabilities
before 2016, but it also appears frequently in newer vulnerabilities.

Publication date: This field shows on which date the vulnerability was published in
the NVD. This field can be used to examine vulnerability trends over time.

CWE: This field shows the CWEs that are associated with the vulnerability and can
be used to investigate how different vulnerability types have developed over time.

Description: This field provides a brief summary and explanation of the vulnerability
and in which software it can be found. This field can be used to find vulnerabilities
related to specific technologies, in our case web servers.

By using these limited number of database fields, the amount of information stored
about each vulnerability was greatly decreased. Consequently, it became significantly
easier to find desired data and investigate potential trends in the reported vulnerabil-
ities.

3.3 Criteria for vulnerability selection

With the local database, which contained the filtered contents of the NVD, extraction
and exploration of hidden vulnerability trends was made significantly easier. The use
7 https://www.python.org/
8 https://www.sqlite.org/index.html



of an SQLite database made it possible to write SQL queries in order to extract the
data which was pursued.

Some vulnerability types would clearly be more prevalent than others. Nevertheless,
most software systems still have a wide variety of vulnerability types reported, some
which have only been reported once throughout the software’s lifespan. To focus only
on the most common vulnerability types, those types that were only reported once or
twice were disregarded and grouped together. This way only the historically 15 most
reported vulnerabilities were analyzed and investigated.

A few points of interest were pursued when extracting data for the analysis of trends
in the reported vulnerabilities for the web servers Apache HTTP and Nginx. When
examining the data extracted, the following points were studied:

– Has the number of reported vulnerabilities increased or decreased since the intro-
duction of the web server?

– Which vulnerability types have been the most common?
– Is there a uniquely prominent vulnerability type, which has occurred in a far greater

extent?
– Are there any specific years which are distinctive for the web servers?
– How does the most common vulnerability types compare between the two web

servers?

Fig. 1, shows how trends in the NVD can be explored using the SQL queries, in this
case simply the number of reported vulnerabilities each year.

Figure 1. Reported vulnerabilities in the NVD between the years 1988 and 2022

Even in this simple example, Fig. 1, interesting trends and characteristics can be seen.
It is evident that the number of reported vulnerabilities increases each year when
examining the long-term trend. There are also two significant increases in 2005 and



2017. Between these two major increases, during the years 2000-2005 and 2006-2016,
the number of reported vulnerabilities remained relatively stable. Since 2017, there
has been a consistent annual increase in the number of reported vulnerabilities. Apart
from the two major spikes of increase, the year 2014 stands out, with a visibly higher
number of reported vulnerabilities compared to the surrounding years.

4 Analysis outcomes

By collecting, filtering, and examining the reported CVE records in the NVD, the
investigation for the most common vulnerability types in Apache HTTP and Nginx
could be completed. This section presents the results of this analysis.

4.1 General overview of the vulnerabilities in the NVD

When not considering the program or system in which a reported vulnerability occurs,
the most common vulnerability type reported in the NVD can be found. Studying
which vulnerability types are the most common in the entire NVD can be beneficial
as it gives an insight into which types are common regardless of system. In Fig. 2, the
three most commonly reported vulnerabilities each year can be seen, without regard
to the system it occurred in.

Figure 2. The 3 most common vulnerabilities each year in NVD

In Fig. 2, it can be observed that until 2008, the vulnerability type NVD-CWE-Other
dominated, followed by the dominance of the vulnerability type NVD-CWE-noinfo.
Both types are used in the publication of unclassified vulnerabilities by the NVD.



Furthermore, it is evident that the vulnerability types CWE-79 and CWE-119 have
been commonly occurring for an extended period between 2007 and 2017, while the
type CWE-787 has had a clear presence since 2019.

Year 2014 stands out, as the vulnerability type CWE-310 suddenly becomes one of the
most prevalent types, only to diminish in the year after. Similarly, the types CWE-
200 and CWE-20 emerge among the most reported vulnerability types in 2016 and
2018, respectively, but diminish in later years. Table 4 presents the 5 most reported
vulnerability types out of a total 195,477 reported vulnerabilities.

Table 4. The 5 most common vulnerability types in NVD

Vulnerability type N % of total
NVD-CWE-Other 23,419 11.9
NVD-CWE-noinfo 20,273 10.3

CWE-79 18,979 9.7
CWE-119 7,479 3.8
CWE-787 5,319 2.7

Sum 75,469 38.4

In Table 4, it is clear that the vulnerability types NVD-CWE-Other and NVD-CWE-
noinfo constitute the largest proportion of all reported vulnerabilities in the NVD,
accounting for over 20% of all reported vulnerabilities. Furthermore, when considering
only properly classified vulnerabilities, it can be observed that the type CWE-79: Im-
proper Neutralization of Input During Web Page Generation, stands out as the most
prevalent vulnerability type.

4.2 Historical view of web server vulnerabilities

The result of the investigation analyzing reported vulnerabilities related to the web
servers Apache HTTP and Nginx shows that between 1997 and 2022, 300 different
vulnerabilities related to Apache HTTP were reported. Furthermore, 141 vulnerabil-
ities related to the web server software Nginx were reported between 2009 and 2022.
In Fig. 3, the development of the 15 most common CWE types and their frequency for
vulnerabilities related to Apache HTTP can be seen, and in Fig. 4, the corresponding
information for Nginx are displayed.

In Fig. 3, it is clear that vulnerability types representing non-classifiable vulnerabilities,
CWE-Other and NVD-CWE-noinfo, constitute a significantly large portion of the 15
most common vulnerability types. Furthermore, it can be seen that NVD-CWE-Other
was more common between 1997 and 2007, while NVD-CWE-noinfo was more common
after 2007.

Two vulnerability types representing classifiable vulnerabilities, CWE-20 and CWE-
200, are commonly found between 2011 and 2017. CWE-79 is common between 2007



Figure 3. The 15 most common vulnerabilities in Apache HTTP

Figure 4. The 15 most common vulnerabilities in Nginx



and 2013 but has since then decreased in frequency. Of the total of 300 vulnerabilities
related to Apache HTTP, 152 vulnerabilities are classified in one of the 15 most common
CWE types. 87 vulnerabilities have not been classified and therefore belong to either
CWE-Other or NVD-CWE-noinfo, and 61 vulnerabilities were classified to CWE types
that are not among the 15 most common.

The number of reported vulnerabilities each year since 2006 is approximately the same,
around 15-20. Distinctive years are 2007 and 2019 when more vulnerabilities were
reported than the average. Furthermore, 2015, 2016, and 2020 are distinctive years
when significantly fewer vulnerabilities were reported than the average during these
years.

For reported vulnerabilities in Nginx, as shown in Fig. 4, it can be seen that the vulnera-
bility type representing non-classifiable vulnerabilities, NVD-CWE-noinfo, is prevalent,
especially in the last three years. Vulnerability types CWE-22 and CWE-787 have a
clear occurrence for many years. Of the total of 141 vulnerabilities related to Nginx,
78 of these are classified in one of the 15 most common CWE types, while 42 vulner-
abilities have been classified to CWE types that are not among the 15 most common.
21 vulnerabilities have not been classified and belong to NVD-CWE-noinfo. Between
2009 and 2017, approximately the same number of vulnerabilities were reported each
year. From 2018 onwards, there is a clear increase in reported vulnerabilities each year.
A distinctive year is 2022, where almost twice as many vulnerabilities were reported
as the previous year.

4.3 The most common vulnerabilities

The analysis of reported vulnerabilities in Apache HTTP and Nginx web servers reveals
that the most common vulnerability types represent over 50% of all reported vulnera-
bilities, with slight variations in occurrence percentages. The analysis investigated 441
vulnerabilities in web servers and found that some vulnerability types are common in
both web server software.

As shown in Table 5, the 15 most common vulnerability types represent just over
51% of all reported vulnerabilities related to the Apache HTTP web server, and the
vulnerability type CWE-20 is the most common.

Analogously, in Table 6, it is clear that the 15 most common vulnerability types rep-
resent around 55% of all reported vulnerabilities related to the Nginx web server. Fur-
thermore, the vulnerability type CWE-22 is the most common. The table shows that
the number of the three most common vulnerability types differs very little. CWE-
22 has only occurred in 1-2 more instances than CWE-787 and CWE-416. The gap
between CWE-416 and CWE-20 is clearer, with a difference in percentage of more
than 2 percentage points. For the other vulnerability types in the table, there are no
significant differences in either number or percentage, with most vulnerability types
being equally common.



Table 5. The 15 most common
vulnerabilities in Apache HTTP,
excluding NVD-CWE-Other and
NVD-CWE-noinfo

Apache HTTP
CWE-ID N % of total (300)
CWE-20 21 7.0
CWE-200 17 5.7
CWE-79 17 5.7
CWE-399 14 4.7
CWE-476 13 4.3
CWE-119 10 3.3
CWE-22 9 3.0
CWE-787 9 3.0
CWE-400 8 2.7
CWE-94 7 2.3
CWE-444 6 2.0
CWE-264 6 2.0
CWE-287 5 1.7
CWE-89 5 1.7
CWE-416 5 1.7

Sum 152 51

Table 6. The 15 most common
vulnerabilities in Nginx, excluding
NVD-CWE-Other and NVD-CWE-
noinfo

Nginx
CWE-ID N % of total (141)
CWE-22 11 7.8
CWE-787 10 7.1
CWE-416 9 6.4
CWE-20 6 4.3
CWE-125 6 4.3
CWE-400 6 4.3
CWE-295 5 3.5
CWE-287 4 2.8
CWE-200 3 2.1
CWE-190 3 2.1
CWE-119 3 2.1
CWE-319 3 2.1
CWE-476 3 2.1
CWE-78 3 2.1
CWE-79 3 2.1

Sum 78 55

The result of the analysis, which investigated 441 vulnerabilities in web servers, 300
in Apache HTTP and 141 in Nginx, shows that some vulnerability types occur more
frequently than others and that some vulnerability types are prevalent in both web
server softwares. Table 7 presents the 5 most common vulnerability types in Apache
HTTP and Nginx.

Table 7. The 5 most common vulnerability types in both web servers Apache HTTP
and Nginx

Top 5
CWE-ID N % of total (441) Rank (Apache HTTP) Rank (Nginx)
CWE-20 27 6.1 1 4
CWE-200 20 4.5 2 9
CWE-22 20 4.5 7 1
CWE-79 20 4.5 3 15
CWE-787 19 4.3 8 2

Sum 106 23.9



In Table 7, vulnerability CWE-20 is the most common vulnerability type among the
web servers Apache HTTP and Nginx. This vulnerability type has occurred 7 times
more than other vulnerability types. CWE-200, CWE-22, and CWE-79 are equally
common, occurring on a par with CWE-787, and each account for 4.5% of the 441
reported vulnerabilities. Together, the top 5 most common vulnerability types make
up 24% of all reported vulnerabilities among the web servers.

5 Why do we need to act?

The above analysis brings us insights about the current state of common web server
vulnerabilities. In this section we discuss why having this data can help us to focus on
problems that are most relevant to fix. But before that, we need to get the attention
of software developers and system owners about these issues.

5.1 Impact of severe vulnerabilities

The exploitation of a vulnerability can have a large impact on systems used globally.
Noteworthy examples such as HeartBleed (2014) [16], EternalBlue (2017) [17], and
ZeroLogon (2020) [18] have all caused severe impacts on numerous systems worldwide.
A more recent example is Log4Shell (2021) [19, 20], a vulnerability in the Apache Log4j
logging utility, which led to significant disruptions worldwide due to the broad usage
of the logging library.

While severe and impactful vulnerabilities most likely will not disappear entirely, de-
velopers can prepare by having a good understanding of what vulnerabilities they can
expect. Possessing a deep understanding of all the vulnerability types found in the
CWE list is an unrealistic demand. Therefore, it becomes highly valuable to identify
a narrower subset of vulnerability types that occur in the systems in which they work,
such as the most common or the most severe ones. Even for the narrower class of
vulnerabilities the recent history tells us that systems are not patched immediately
once a CWE has been associated with a component in them. Therefore, we need to
keep pressing for attention towards the prevalent ones.

5.2 Demonstrations to raise awareness

Cybersecurity demonstrations serve not only as a means to raise awareness about cy-
bersecurity issues but can also be valuable as an educational tool. Puys, Thevenon,
and Mocanu [21] and Kalyanam and Yang [22] show that incorporating cybersecurity
demonstrations into training platforms for cybersecurity education can have a signif-
icant effect on the participants’ understanding of challenges within cybersecurity and
secure development practices.



In order for cybersecurity demonstrations to be effective, it is necessary that they
demonstrate interesting and relevant cybersecurity issues. When focusing on web
servers, demonstrating the exploitation of a well-known vulnerability can provide valu-
able insight into the impacts and consequences of insecure systems. However, selecting
an appropriate well-known vulnerability to base a demonstration on is a non-trivial
task.

Simplifying this task could potentially be achieved through mapping the most common
vulnerabilities in the most popular web servers. The identification of the most common
vulnerability types can prove to be valuable as they signify recurring security concerns
and highlight design flaws within the systems. For developers working with these web
servers, understanding the impact and consequences of the most common vulnerability
types can be advantageous, as well as understanding the reason for the vulnerabilities
occurrence. Subsequent to our analysis, demonstrations of the most relevant ones were
realised in a virtualized environment. However, the details of these implementations
are beyond the scope of this paper and the interested reader is referred to the work
by Barocsai and Can [23] for details.

6 Conclusions

Vulnerability databases offer immense value with their contents, but they can also
potentially provide far more information, beyond their intended purpose. Through
thorough analysis, one can extract valuable information about vulnerability trends
and the relationship between vulnerability and software.

In this study, over 195,000 vulnerability records were collected, filtered and analyzed
to investigate the prevalence of different vulnerability types in the two widely used
web server softwares, Apache HTTP and Nginx. Results show that the top 15 most
frequently reported CWE types account for almost half of all reported vulnerabilities.
Furthermore, it can be seen that almost 25% of the reported vulnerabilities in these
web servers are categorised to be of just 5 CWE types.

Cybersecurity demonstrations play a crucial role in education and raising awareness.
However, they require that their contents and demonstrated vulnerabilities are both
interesting and relevant. Finding suitable vulnerabilities to demonstrate is therefore a
challenging and time-consuming task. This study aims to contribute to this area, by
narrowing the down the selection of vulnerabilities, making it easier to find a suitable
match.

References

[1] A. van der Stock, B. Glas, N. Smithline, and T. Gigler. OWASP Top
10:2021. Last accessed 2023-06-07. Sept. 2021. url: https://owasp.org/
Top10/.



[2] S. Roth, S. Calzavara, M. Wilhelm, A. Rabitti, and B. Stock. “The Se-
curity Lottery: Measuring Client-Side Web Security Inconsistencies.” In:
31st USENIX Security Symposium (USENIX Security 22). Boston, MA:
USENIX Association, Aug. 2022, pp. 2047–2064. isbn: 978-1-939133-31-
1. url: https://www.usenix.org/conference/usenixsecurity22/
presentation/roth.

[3] M. Sahin, T. Ünlü, C. Hébert, L. A. Shepherd, N. Coull, and C. M. Lean.
“Measuring Developers’ Web Security Awareness from Attack and Defense
Perspectives.” In: 2022 IEEE Security and Privacy Workshops (SPW).
2022, pp. 31–43. doi: 10.1109/SPW54247.2022.9833858.

[4] Netcraft: May 2023 Web Server Survey. Last accessed 2023-10-27. url:
https://www.netcraft.com/blog/may-2023-web-server-survey/.

[5] Common Vulnerability Scoring System Version 2. Last accessed 2023-10-
27. url: https://www.first.org/cvss/v2/guide.

[6] Common Vulnerability Scoring System Version 3.1. Last accessed 2023-10-
27. url: https://www.first.org/cvss/specification-document.

[7] M. Morton, J. Werner, P. Kintis, K. Snow, M. Antonakakis, M. Poly-
chronakis, and F. Monrose. “Security Risks in Asynchronous Web Servers:
When Performance Optimizations Amplify the Impact of Data-Oriented
Attacks.” In: 2018 IEEE European Symposium on Security and Privacy
(EuroS&P). 2018, pp. 167–182. doi: 10.1109/EuroSP.2018.00020.

[8] S.-w. Woo, O. H. Alhazmi, and Y. K. Malaiya. “Assessing Vulnerabili-
ties in Apache and IIS HTTP Servers.” In: 2006 2nd IEEE International
Symposium on Dependable, Autonomic and Secure Computing. 2006. doi:
10.1109/DASC.2006.21.

[9] O. H. Alhazmi and Y. K. Malaiya. “Measuring and Enhancing Prediction
Capabilities of Vulnerability Discovery Models for Apache and IIS HTTP
Servers.” In: 2006 17th International Symposium on Software Reliability
Engineering. 2006, pp. 343–352. doi: 10.1109/ISSRE.2006.26.

[10] V. Piantadosi, S. Scalabrino, and R. Oliveto. “Fixing of Security Vulner-
abilities in Open Source Projects: A Case Study of Apache HTTP Server
and Apache Tomcat.” In: 2019 12th IEEE Conference on Software Testing,
Validation and Verification (ICST). 2019, pp. 68–78. doi: 10.1109/ICST.
2019.00017.

[11] A. Gorbenko, A. Romanovsky, O. Tarasyuk, and O. Biloborodov. “Expe-
rience Report: Study of Vulnerabilities of Enterprise Operating Systems.”
In: 2017 IEEE 28th International Symposium on Software Reliability En-
gineering (ISSRE). 2017, pp. 205–215. doi: 10.1109/ISSRE.2017.20.

[12] R. Kuhn, M. Raunak, and R. Kacker. “It Doesn’t Have to Be Like This: Cy-
bersecurity Vulnerability Trends.” In: IT Professional 19.6 (2017), pp. 66–
70. doi: 10.1109/MITP.2017.4241462.

[13] J. Fan, Y. Li, S. Wang, and T. N. Nguyen. “AC/C++ code vulnerability
dataset with code changes and CVE summaries.” In: Proceedings of the 17th
International Conference on Mining Software Repositories. 2020, pp. 508–
512. doi: 10.1145/3379597.3387501.



[14] A. Anwar, A. Abusnaina, S. Chen, F. Li, and D. Mohaisen. “Cleaning the
NVD: Comprehensive Quality Assessment, Improvements, and Analyses.”
In: IEEE Transactions on Dependable and Secure Computing 19.6 (2022),
pp. 4255–4269. doi: 10.1109/TDSC.2021.3125270.

[15] M. A. Williams, S. Dey, R. C. Barranco, S. M. Naim, M. S. Hossain,
and M. Akbar. “Analyzing Evolving Trends of Vulnerabilities in National
Vulnerability Database.” In: 2018 IEEE International Conference on Big
Data (Big Data). 2018, pp. 3011–3020. doi: 10.1109/BigData.2018.
8622299.

[16] Z. Durumeric, F. Li, J. Kasten, J. Amann, J. Beekman, M. Payer, N.
Weaver, D. Adrian, V. Paxson, M. Bailey, and J. A. Halderman. “The
Matter of Heartbleed.” In: IMC ’14. Vancouver, BC, Canada: Association
for Computing Machinery, 2014, pp. 475–488. isbn: 9781450332132. doi:
10.1145/2663716.2663755.

[17] D. Goodin. “NSA-leaking Shadow Brokers just dumped its most damag-
ing release yet.” In: ArsTechnica (Apr. 2017). Last accessed 2023-06-09.
url: https://arstechnica.com/information-technology/2017/04/
nsa- leaking- shadow- brokers- just- dumped- its- most- damaging-
release-yet/.

[18] NIST. CVE-2020-1472 Detail. Last accessed 2023-06-09. Aug. 2020. url:
https://nvd.nist.gov/vuln/detail/CVE-2020-1472.

[19] R. Hiesgen, M. Nawrocki, T. C. Schmidt, and M. Wählisch. The Race to the
Vulnerable: Measuring the Log4j Shell Incident. 2022. arXiv: 2205.02544
[cs.CR].

[20] S. Feng and M. Lubis. “Defense-In-Depth Security Strategy in Log4j Vul-
nerability Analysis.” In: 2022 International Conference Advancement in
Data Science, E-learning and Information Systems (ICADEIS). 2022, pp. 01–
04. doi: 10.1109/ICADEIS56544.2022.10037384.

[21] M. Puys, P.-H. Thevenon, and S. Mocanu. “Hardware-In-The-Loop Labs
for SCADA Cybersecurity Awareness and Training.” In: Proceedings of
the 16th International Conference on Availability, Reliability and Security.
ARES 21. Vienna, Austria: Association for Computing Machinery, 2021.
isbn: 9781450390514. doi: 10.1145/3465481.3469185.

[22] R. Kalyanam and B. Yang. “Try-CybSI: An Extensible Cybersecurity
Learning and Demonstration Platform.” In: Proceedings of the 18th Annual
Conference on Information Technology Education. SIGITE ’17. Rochester,
New York, USA: Association for Computing Machinery, 2017, pp. 41–46.
isbn: 9781450351003. doi: 10.1145/3125659.3125683.

[23] M. Barocsai and J. Can. “Kartläggning, demonstration och hantering av
vanliga sårbarheter i populära webbservrar.” MSc thesis. Linköping Uni-
versity, Sweden, Mar. 2023. url: https://www.diva-portal.org/smash/
get/diva2:1743044/FULLTEXT01.pdf.


