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Abstract
Since machine learning components are now being considered for integration in safety-critical systems, safety stakeholders
should be able to provide convincing arguments that the systems are safe for use in realistic deployment settings. In the case
of vision-based systems, the use of tree ensembles calls for formal stability verification against a host of composite geometric
perturbations that the system may encounter. Such perturbations are a combination of an affine transformation like rotation,
scaling, or translation and a pixel-wise transformation like changes in lighting. However, existing verification approaches
mostly target small norm-based perturbations, and do not account for composite geometric perturbations. In this work,
we present a novel method to precisely define the desired stability regions for these types of perturbations. We propose a
feature space modelling process that generates abstract intervals which can be passed to VoTE, an efficient formal verification
engine that is specialised for tree ensembles. Our method is implemented as an extension to VoTE by defining a new property
checker. The applicability of the method is demonstrated by verifying classifier stability and computing metrics associated
with stability and correctness, i.e., robustness, fragility, vulnerability, and breakage, in two case studies. In both case studies,
targeted data augmentation pre-processing steps were applied for robust model training. Our results show that even models
trained with augmented data are unable to handle these types of perturbations, thereby emphasising the need for certified
robust training for tree ensembles.
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1. Introduction
Recent advancements in machine learning are now being
considered for integration in safety-critical systems like
medical equipment, critical infrastructure, and transport
networks (autonomous vehicles, avionics, spaceflights)
where software flaws could be detrimental to humans
and the environment. While these systems are subject to
strict regulations, a lack of evidence that the machine
learning (ML) models deployed in these systems are safe
for operation, can directly affect their trustworthiness.
Considering the inherently probabilistic nature of
these models, standard industry practices like software
testing are often unsuitable to provide any guarantees
about operational safety. In this context, to help ensure
trustworthiness, Artificial Intelligence (AI) systems can
benefit from scrutiny through formal methods. Formal
verification can be a tool to analyse the safety properties
of software operating over a multi-dimensional space.
Evidence based on formal verification can be used in a
safety assurance case, which is a structured record of rea-
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soning with compelling and comprehensible arguments
for a system being acceptably safe in a given context [25].

The formal methods community has recently been
exploring the robustness properties of vision-based AI
systems used in autonomous vehicles [5]. An important
role of these vision-based systems is sending correct
information about road signs to the vehicle’s control
system. However, the road signs encountered in the
real world may appear different to that in the test set.
Real-world phenomena like the banking of roads cause
changes to the road surface topography in which the
outer edges are raised at an angle above the inner edge
to provide the necessary centripetal force to the vehicles
for safe turns. This phenomenon, combined with rapid
changes in lighting (time of day, light reflections from
vehicles), and the fact that road signs have reflective
elements, can produce different versions of the road
signs. Along with being rotated, parts of these signs
may appear lighter and darker depending on the light
interactions (absorption, reflection, and so on). The
same principle can be applied to other geometric
transformations like scaling, in which the road sign
appears zoomed out when the vehicle is at a distance,
and translation, in which the road sign gradually
moves out of the camera frame as it is approached
by the vehicle. While the different versions of these
road signs are correctly interpretable by humans, an
ML model could misread these signs and the effects
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could be disastrous. This calls for formal verification
of these models to ensure classifier stability in the
presence of composite geometric perturbations that the
systemmay encounter in real-world deployment settings.

In this paper, we present a method to precisely
capture these perturbations as abstract intervals to verify
tree-ensemble based classifiers against specified safety
properties. Since our goal is to support safety arguments
in assurance cases, the verifiability of the models is of
paramount importance. The simple structure of the
tree-based models makes them easier to systematically
analyze in the formal verification process. However,
larger models may still prove hard to verify due to the
combinatorial explosion. We present a method where
composite geometric perturbations are applied to input
data and shown to prove a lack of stability even in the
presence of data augmentation during training. This is
demonstrated by applying our method to digit/character
recognition problems. The contributions of this paper
are as follows,

- A method to capture composite geometric perturba-
tions based on real-world phenomena (like the com-
bined effects of axial rotations, scaling, or transla-
tion together with changes in lighting) in the interval
domain through feature space modelling for vision-
based systems.

- Realisation of the method, implemented as an exten-
sion to the Verifier of Tree Ensembles [3] (VoTE), a
formal verification tool that uses abstract interpreta-
tion, along with the application of the method to two
case studies commonly found in the literature.

The rest of the paper is structured as follows. Section
2 discusses related works on the verification of tree en-
sembles against different classes of perturbations. Sec-
tion 3 presents the preliminaries on tree-ensembles, the
VoTE toolsuite, and composite geometric perturbations.
Section 4 presents our abstraction function and feature
space modelling process along with the implementation
in VoTE. Section 5 presents the application of the method
to two case studies commonly found in the literature.
Section 6 concludes the paper and summarizes the learn-
ings.

2. Related Works
Recent machine learning advances are gradually finding
their way into safety-critical systems. However, there
is a lack of verification techniques to build formal
arguments for operational safety in such systems. There
has been extensive research on formal verification of
𝑙𝑝-norm bounded perturbations (mathematical distances
that define the perturbations) in neural networks. A

recent survey [11] gives a broad overview of the safety
and trustworthiness of deep neural networks with
a specific focus on topics like verification, testing,
adversarial defence, and interpretability.

Engstrom et al. [12], show that state of the art
neural network classifiers are vulnerable to natural
classes of perturbations, especially simple translations
and rotations for a significant fraction of their inputs.
Another interesting observation they made is that data
augmentation does not necessarily provide a significant
boost to robustness, which we also confirm for tree
ensembles in this paper.

Pei et al. [13] and Mohapatra et al. [14] propose
verification frameworks called VERIVIS and Semantify-
NN for evaluating the robustness of machine learning
systems. The VERIVIS framework checks for violations
of the parameter space (like the range of angles) when
the inputs are subjected to semantic perturbations
while the Semantify-NN framework converts semantic
perturbations to 𝑙𝑝-norm based threat models thereby
enabling the use of any 𝑙𝑝-norm based verification
method for robustness verification of deep neural
networks. Balunović et al. [15] study the certification
of neural networks against natural geometric transfor-
mations like rotation and scaling. They use sampling,
interpolation and Lipschitz optimisation to find the
bounds for their certification process. The authors
implement their certification framework in a system
called DEEPG that uses a restricted Polyhedra with
custom approximations for the operations used in several
geometric transformations. Our approach, however,
uses a feature space modelling process in conjunction
with an abstraction function to get precise upper and
lower bounds for the inputs as they are perturbed by
real-world elements.

Wu et al. [16], study the certification of deep
neural networks against real-world distribution shifts.
They train a generative model to learn perturbations
from the data to improve robustness precision. Yang
et al. [17] mention that geometric image transforma-
tions that arise in the real world, such as scaling and
rotation, have been shown to easily deceive deep neural
networks. They propose a training formulation known
as Certified Geometric Training (CGT) that improves the
deterministic certified robustness of neural networks
with respect to geometric transformations. Gowal et al.
[19], use generative models to systematically transfer
image attributes that are likely to be misclassified across
image instances to achieve better robustness. They
also mention that 𝑙𝑝-norm bounded perturbations do
not necessarily cover plausible real-world variations
that preserve the semantics of the input. We agree
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that composite geometric perturbations based on
real-world phenomena (that preserve the semantics of
the input) are outside the 𝑙𝑝-norm reach. Hence, we
deploy a feature space modelling process for defining
the multidimensional perturbation regions. Also, while
using generative models can help with robust training,
this in itself cannot be used for building up a safety case
in systems that use ML components. Our approach aims
to provide formal proof-based evidence to support safety
assurances in these systems.

Outside formal verification and robust training,
significant research has been done to tackle the issue of
real-world perturbations like axial rotations in images
in the form of rotation-invariant networks [20] and
rotation-equivariant networks [21]. In Scher et al. [10],
the authors formally define real-world perturbations and
differentiate them between adversarial perturbations and
distribution shifts. They model the perturbations around
a point as a probability distribution and succeed in the
estimation of robustness using Monte Carlo Sampling for
low to medium dimensional data. While their method
provides probabilistic guarantees, our approach aims to
provide formal deterministic guarantees which can form
the basis for reasoning about safety in safety-critical
systems.

3. Preliminaries
In this section, we present the background knowledge on
tree-based ensembles, semantic perturbations, interpolat-
ed/geometric and pixel-wise transformations, composite
geometric perturbations based on real-world phenomena,
and the toolsuite VoTE [3].

3.1. Decision Trees
Decision trees are employed as prediction models in ma-
chine learning and can be used in vision-based systems to
solve image classification problems (among other appli-
cations). A decision tree model contains rules to predict
the output class and implements a prediction function
𝑡 ∶ 𝑋 𝑛 → ℝ𝑚 that maps disjoint sets of points 𝑋𝑖 ⊂ 𝑋 𝑛 to
a single output point 𝑦𝑖 ∈ ℝ𝑚, i.e.,

𝑡(𝑥) =
⎧

⎨
⎩

(𝑦1,1, ..., 𝑦1,𝑚) 𝑥 ∈ 𝑋1
⋮

(𝑦𝑘,1, ..., 𝑦𝑘,𝑚) 𝑥 ∈ 𝑋𝑘

(1)

Where 𝑘 is the number of disjoint sets and 𝑋 𝑛 =
𝑘
⋃
𝑖=1

𝑋𝑖

The n-dimensional input domain 𝑋 𝑛 includes ele-
ments 𝑥 as tuples in which each input variable 𝑥𝑖
captures some feature of interest of the system [3]. The

tree structure is evaluated in a top-down manner, where
decision functions determine which path to take towards
the leaves. Each internal node in the decision tree is
associated with a decision function that recursively splits
the input space, thereby separating regions from each
other. When a leaf is hit, the output 𝑦 ∈ ℝ𝑚 associated
with the leaf becomes the output associated with the
input from which the top-down evaluation started.

In this paper, we only consider binary trees with
linear decision functions with one input variable,
which Irsoy et al. [4] call univariate hard decision
trees. State-of-the-art implementations of tree-based
ensembles typically use univariate hard decision trees,
for example, scikit-learn [6] and CatBoost [7].

3.2. Random Forests
Decision trees are known to suffer from a phenomenon
called overfitting in which the models are fitted so
tightly to their training data that they memorize the data
itself instead of learning the patterns associated with
the data in order to make generalized predictions. To
counteract these issues with decision trees concerning
bias and variance, Breiman [1] proposes Random Forests.

A random forest 𝑓 ∶ 𝑋 𝑛 → ℝ𝑚 is an ensemble of
𝐵 decision trees that produces outputs by averaging the
values emitted by each individual tree. i.e.,

𝑓 (𝑥) = 1
𝐵

𝐵
∑
𝑏=1

𝑡𝑏(𝑥) (2)

Where 𝑡𝑏 is the 𝑏𝑡ℎ tree in the ensemble

To reduce the correlation between trees, each tree
is trained on overlapping random subsets of the training
data (with replacement) using techniques like bagging
or boosting.

3.3. Gradient Boosting Machines
Similar to Random Forests, Freidman [2] proposes
gradient boosting machines that employ several decision
trees to create a prediction function. Unlike Random
Forests, these trees are trained in a sequential manner
with each succeeding tree correcting the errors made
by the predecessor tree. The errors are corrected
using gradient descent (hence the name). Although
conceptually different from random forests in a learning
context, these two models have several features in
common when performing predictions.

A gradient boosting machine 𝑓 ∶ 𝑋 𝑛 → ℝ𝑚 is an
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ensemble of 𝐵 additive decision trees, i.e.,

𝑓 (𝑥) =
𝐵
∑
𝑏=1

𝑡𝑏(𝑥) (3)

Where 𝑡𝑏 is the 𝑏𝑡ℎ tree in the ensemble

3.4. Classifier
Decision trees and tree-ensemble models can be used as
classifiers to categorize samples from an input domain
into one or more classes and assign each sample a la-
bel unique to its class. In this paper, we only consider
functions that map each point from an input domain
to exactly one class. Let 𝑓 (𝑥) = (𝑦1, ..., 𝑦𝑚) represent
a model trained to predict the probability 𝑦𝑖 associated
with a class 𝑖 within disjoint regions in the input domain,
where 𝑚 is the number of classes. A classifier 𝑓𝑐(𝑥) may
then be defined as,

𝑓𝑐(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑖

𝑦𝑖 (4)

3.5. Verifier of Tree Ensembles
VoTE [3] (Verifier of Tree Ensembles) is a toolsuite for for-
mally verifying that tree ensembles comply with specific
properties that the user can define through implementing
a property checker.

Figure 1: Verifier of Tree Ensembles [3] (VoTE)

The tool is based on abstract interpretation which yields
equivalence classes in a tree ensemble, i.e. sets of points
in the input domain that yield the same output tuple
through an iterative refinement in the interval domain,
such that the lowest level of abstract (the concrete) do-
main is equivalent to an exhaustive search down to all
leaves in the model. This technique can be used to verify
any property of interest defined within VoTE’s property
checker. For instance, in [26], VoTE was used to verify
versatile application-specific properties of the aircraft col-
lision avoidance system called ACAS Xu [18]. However,

in this work, the property checker defined earlier (see Fig-
ure 1) checks for stability. The VoTE Core is instantiated
from the ensemble subject to verification, 𝑓 ∶ 𝑋 𝑛 → 𝑅𝑚.
It takes as input a hyperrectangle defining 𝑋 𝑛, and the
outcome of the formal verification is pass (when the tree
ensemble satisfies the concerned property) and fail when
it does not.

3.6. Semantic Perturbations
As opposed to perturbations that change the value of each
feature by a constant value, semantic perturbations take
an input image and 𝑝 parameters to perform a parameter-
ized operation that perturbs the image while preserving
its semantic information. Semantics-preserving pertur-
bations can include object-level shifts (like changing the
shape or size of an object in a color classification prob-
lem), geometric transformations (scaling, rotations) and
common image corruptions (fog, blurs) [8]. Most of these
perturbations cannot be naturally represented using the
𝑙𝑝-norm (‖ 𝑥 − 𝑥′‖𝑝 ≤ 𝜖) that most robustness verification
methods are designed for. Using a large value of 𝜖 to
try and capture these types of perturbations is usually
not recommended in practice as the image quality de-
grades significantly [8]. Hence, we propose a feature
space modelling process to precisely capture these multi-
dimensional perturbations.

3.7. Geometric Perturbations
Geometric Perturbations are a class of semantic per-
turbations [8] that involve an affine transformation on
each pixel’s row and column indices, followed by an
interpolation operation [17]. In this paper, we consider
three types of affine transformations - rotations, scaling
and translation.

Let 𝑇𝜃 ∶ ℝ2 → ℝ2 (in 2D) be an invertible affine
transformation (like rotation) parameterized by 𝜃 (like
the angle of rotation). Let 𝜙𝑥(𝑗) and 𝜙𝑦(𝑖) be functions
that transform 𝑖, 𝑗 pixel indices to 𝑥, 𝑦 co-ordinates with
respect to the center of the image. However, as these
transformed co-ordinates may not align exactly with the
integer-valued pixel indices, bilinear interpolation ( 𝐼 ) is
necessary. Yang et al. [17] define the general form of a
geometric perturbation for an image 𝑋 as,

𝑋
′
𝑖,𝑗 = 𝐼 (𝑇−1𝜃 (𝜙𝑥(𝑗) , 𝜙𝑦(𝑖))) (5)

Where 𝑋 ′ is the perturbed image. For each geometric
perturbation, they present the inverse transform
function 𝑇−1𝜃 which is used to instantiate equation (5),

Rotation, parameterized by angle, 𝜃 ∈ [0, 2𝜋]

𝑇−1𝜃 (𝑥, 𝑦) = [ 𝑐𝑜𝑠𝜃 𝑠𝑖𝑛𝜃
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃] [

𝑥
𝑦] = [ 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃

−𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃] (6)
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Translation, parameterized by horizontal and vertical
shifts ℎ ∈ ℝ, 𝑣 ∈ ℝ

𝑇−1ℎ,𝑣 (𝑥, 𝑦) = [𝑥 − ℎ
𝑦 − 𝑣] (7)

Scaling, parameterized by a scaling factor, 𝜙 ∈ ℝ, 𝜙 > −1,

𝑇−1𝜙 (𝑥, 𝑦) = [
1

1+𝜙 0

0 1
1+𝜙

] [𝑥𝑦] = [𝑥/(1 + 𝜙)
𝑦/(1 + 𝜙)] (8)

3.8. Pixel-wise Transformations
Pixel-wise transformations are defined by the cumulative
effects of brightness and contrast (i.e., simply changes
in lighting) acting on a pixel 𝑋𝑖,𝑗 of an image 𝑋 where
the respective brightness and contrast parameters are
𝑐, 𝑏 ∈ ℝ. These transformations are defined by Balunovic
et al. [15] and Mohapatra et al. [14] as,

𝑋
′
𝑖,𝑗 = min(1,max(0, (1 + 𝑐) ⋅ 𝑋𝑖,𝑗 + 𝑏)) (9)

In our work, the pixel-wise transformations are parame-
terized by darkening and brightening offsets, 𝜁𝐿, 𝜁𝐻 ∈ ℝ,
and the upper and lower bounds for the perturbations
are specified as,

𝑋
′
𝑖,𝑗 = (𝑋𝑖,𝑗 − 𝜁𝐿 , 𝑋𝑖,𝑗 + 𝜁𝐻) (10)

3.9. Composite Geometric Perturbations
Composite geometric perturbations based on real-world
phenomena are a combination of one affine transforma-
tion (like rotation, translation or scaling) and a pixel-wise
transformation (like changes in lighting). These pertur-
bations are visually represented in figure 2 as,

Figure 2: Composite geometric perturbations based on
real-world phenomena

4. Proposed Method
In this section, we present a method to capture composite
geometric perturbations based on real-world phenomena
(like the combined effects of axial rotations and changes
in lighting) in the form of abstract intervals. The ba-
sic idea is to pass these abstract intervals to the VoTE
property checker [3] to verify stability and compute the
extended stability metrics, which will be explained in
this section.

4.1. Abstracting the Perturbations
For a particular input pixel 𝑥, if 𝑠 is the total number of
geometric transformation (eg. rotation) steps for a given
transformation, there exists a function, 𝜆(𝑥) that projects
the effects of the transformation on this pixel at each step

𝜆(𝑥) = {𝑥1, ..., 𝑥𝑠} (11)

such that 𝑥𝑖 is the outcome of the transformation at each
step 𝑖, 1 ≤ 𝑖 ≤ 𝑠. In order to capture these pixel values in
the interval domain, we use the abstraction function 𝛼,
which is designed to compute an over-approximation of
the problem,

𝛼(𝜆(𝑥)) = (𝑚𝑖𝑛 𝜆(𝑥), 𝑚𝑎𝑥 𝜆(𝑥)) (12)

For a composite geometric transformation involving a
combination of one affine transformation (rotation, scal-
ing or translation) along with changes in lighting con-
ditions where 𝜁𝐿 and 𝜁𝐻 are real-world darkening and
brightening margins, if 𝑝 represents the initial pixel 𝑣𝑎𝑙𝑢𝑒
before the transformations, the above (single transforma-
tion) abstraction function can be redefined as,

𝛼(𝜆(𝑥)) = ((𝑚𝑖𝑛 𝜆(𝑥)−𝜁𝐿)−𝑝, (𝑚𝑎𝑥 𝜆(𝑥)+𝜁𝐻)−𝑝) (13)

The redefined abstraction function returns a tuple (𝜖𝐿, 𝜖𝐻)
that represents the perturbation margins of the pixel
where,

𝜖𝐿 = (𝑚𝑖𝑛 𝜆(𝑥) − 𝜁𝐿) − 𝑝

𝜖𝐻 = (𝑚𝑎𝑥 𝜆(𝑥) + 𝜁𝐻) − 𝑝

The lower and upper perturbation bounds are computed
by applying the perturbation margins (𝜖𝐿, 𝜖𝐻) to the
pixel’s intensity as (𝑝 + 𝜖𝐿, 𝑝 + 𝜖𝐻)

Running Example

If a pixel 𝑥 in an image with an initial intensity, 𝑝 = 5 is
rotated between 0° and 5° in 5 steps, from equation (11),

𝜆(𝑥) = {6, 2, 3, 1, 4}

Applying equation (12),

𝛼(𝜆(𝑥)) = (1, 6)
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If 𝜁𝐿 = 𝜁𝐻 = 1, applying equation (13),

𝛼(𝜆(𝑥)) = ((1 − 1) − 5, (6 + 1) − 5)

(𝜖𝐿, 𝜖𝐻) = (−5, 2)

These pixel-level perturbation margins are then applied
to the initial pixel value before the transformations to get
the pixel-level perturbation bounds that are representa-
tive of composite geometric perturbations (like rotations
and changes in lighting).

(𝑝 + 𝜖𝐿, 𝑝 + 𝜖𝐻) = (5 + (−5), 5 + 2) = (0, 7)

From this example, we see that the pixel 𝑥 can take on
any value between (0, 7) during a composite geometric
transformation.

4.2. Feature Space Modelling
The abstraction process helps determine the upper and
lower pixel-level perturbationmargins in order to achieve
efficient computations during the verification process.
Since VoTE operates based on abstracting each point
with an interval in one dimension, when applying to a
multidimensional spacewe need to extend the abstraction
function through feature space modelling to simulate
these perturbations for vision-based systems.

Algorithm 1: Feature Space Modelling: Rotation

Input: Angle 1 (𝑛1), Angle 2 (𝑛2), Offset-High (𝜁𝐻),
Rot. Steps (r), Offset-Low (𝜁𝐿), Images (𝐼 )

Output: Perturbation Definitions (𝜏 )

1 𝑁 , 𝜏 ← ∅, ( ) ▷ 𝑁 = Set of angles to apply
2 𝑁 ← generate-set-of-angles (𝑛1, 𝑛2, 𝑟)
3 for 𝑒𝑎𝑐ℎ 𝑖𝑚𝑎𝑔𝑒, 𝑖 ∈ 𝐼 do
4 Δ𝑖 ← ( ) ▷ Image level perturbations
5 for each pixel, 𝑥 ∈ 𝑖 do
6 𝜆 ← ∅ ▷ Transformed pixel values
7 for 𝑒𝑎𝑐ℎ 𝑎𝑛𝑔𝑙𝑒, 𝜈 ∈ 𝑁 do
8 𝑥𝜈 ← rotate-image (𝑖, 𝜈)
9 𝜆 ← 𝜆 ∪ {𝑥𝜈}

10 (𝜖𝐿, 𝜖𝐻) ← 𝛼 (𝜆) ▷ 𝛼 from equation (13)
11 append (𝜖𝐿, 𝜖𝐻) to Δ𝑖

12 append Δ𝑖 to 𝜏

Note that while Algorithm 1 contains axial rotations as
the affine transformation, this can be easily adapted to the
corresponding other affine transformations, i.e., scaling
or translation computed by similar respective algorithms
analogously.

4.3. Verification Workflow
In this section, we present the verification workflow that
shows the feature space modelling process incorporated
into the VoTE [3] framework. We will use one of the case
studies in section 5.1 to illustrate the flow in Figure 3. If
we consider rotations between 0° and 10°, 𝐼𝐿 (which is
the image generated by applying 𝜖𝐿 associated with all
pixels in a particular image) and 𝐼𝐻 (the corresponding
image generated by applying 𝜖𝐻) represent the first and
last images in the verification process. We then ask the
VoTE Property Checker to verify all the images in the
transformed series.

Figure 3: Verification Workflow (MNIST)

The property checker returns a pass when the classifier
makes stable predictions on all the images in the trans-
formed series. If the result of the verification process
is fail, the property does not hold (the classifier is not
stable). In this case, the VoTE property checker can be
configured to return a counterexample that can help with
further analysis. The illustration of the approach in more
detail is described with use cases in section 5.

4.4. Classifier Correctness
The correctness of a classifier (𝑓𝑐), with respect to an input
𝑥, denoted by 𝐼 𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡(𝑓𝑐 , 𝑥) is proven when 𝑓𝑐 predicts
the correct label (𝑙) for an input sample (𝑥) according to
a ground truth. This notion of correctness computed
over a test set (𝑋𝑡𝑒𝑠𝑡) can be used to quantify accuracy as
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accuracy =
|{ 𝑥 ∈ 𝑋𝑡𝑒𝑠𝑡 | 𝐼 𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡(𝑓𝑐 , 𝑥)}|

|𝑋𝑡𝑒𝑠𝑡|
(14)

4.5. Safety Property: Classifier Stability
Accuracy on a test set is the most commonly used metric
to evaluate a classification model. However, accuracy
alone is not enough for convincing safety arguments
in models that use machine learning. In this paper, we
consider Stability, a property commonly used in related
works. Robustness (and other metrics consistent with
the literature) are generalised to a notion of classifier
stability and correctness [9]. Note that compliance with
stability and its associated metrics alone isn’t generally
enough to ensure system safety. Safety Engineers
typically define requirements on software functions that
are much richer than this property alone.

Let 𝑓𝑐 ∶ 𝑥 → 𝑦 be the classifier subject to veri-
fication where 𝑥 (the image) is an n-array vector
consisting of individual pixels, and 𝑦 is the output class
or label. 𝜖𝐿 , 𝜖𝐻 ∈ ℝ are lower and upper perturbation
margins (𝜖𝐿 < 𝜖𝐻) associated with an individual pixel
in the image. If 𝑛 is the number of pixels in the image,
Δ = ((𝜖𝐿1 , 𝜖𝐻1), ..., (𝜖𝐿𝑛 , 𝜖𝐻𝑛)) is a sequence containing
tuples of pixel-level perturbation margins associated
with the image. 𝜔 is an n-tuple of perturbations, with
𝜔 = (𝜔1, ..., 𝜔𝑛) and 𝜖𝐿𝑖 ⩽ 𝜔𝑖 ⩽ 𝜖𝐻𝑖 . If we consider a test
sample 𝑥 and all possible variations of 𝜔, the classifier 𝑓𝑐
is stable on that sample (denoted by 𝐼 𝑠𝑆𝑡𝑎𝑏𝑙𝑒(𝑓𝑐 , 𝑥)) if
and only if

𝑓𝑐(𝑥) = 𝑓𝑐(𝑥′) , where 𝑥′ = 𝑥 + 𝜔 (15)

The above expression can easily be extended over a test
set (𝑋𝑡𝑒𝑠𝑡). Note that 𝜔 when added to the base image
(𝑥) produces a version of that base image that represents
the combined effects of a geometric transformation and
changes in lighting. These different versions of the base
image can then be analyzed by the verification engine.

4.6. Extended Stability Metrics
Stability and Robustness are standard metrics commonly
used in the literature on adversarial machine learning.
They are generally used to quantify the security of clas-
sifiers at test time (for e.g., evasion attacks). Beyond
stability, Ranzato and Zanella [9] define four additional
metrics - robustness (R), fragility (F), vulnerability (V) and
breakage (B) that combine classifier stability with predic-
tion accuracy in the presence of input perturbations. We
recall

R =
|{ 𝑥 ∈ 𝑋𝑡𝑒𝑠𝑡 | 𝐼 𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡(𝑓𝑐 , 𝑥) ∧ 𝐼 𝑠𝑆𝑡𝑎𝑏𝑙𝑒(𝑓𝑐 , 𝑥) }|

|𝑋𝑡𝑒𝑠𝑡|

F =
|{ 𝑥 ∈ 𝑋𝑡𝑒𝑠𝑡 | 𝐼 𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡(𝑓𝑐 , 𝑥) ∧ ¬𝐼 𝑠𝑆𝑡𝑎𝑏𝑙𝑒(𝑓𝑐 , 𝑥) }|

|𝑋𝑡𝑒𝑠𝑡|

V =
|{ 𝑥 ∈ 𝑋𝑡𝑒𝑠𝑡 | ¬𝐼 𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡(𝑓𝑐 , 𝑥) ∧ 𝐼 𝑠𝑆𝑡𝑎𝑏𝑙𝑒(𝑓𝑐 , 𝑥) }|

|𝑋𝑡𝑒𝑠𝑡|

B =
|{ 𝑥 ∈ 𝑋𝑡𝑒𝑠𝑡 | ¬𝐼 𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡(𝑓𝑐 , 𝑥) ∧ ¬𝐼 𝑠𝑆𝑡𝑎𝑏𝑙𝑒(𝑓𝑐 , 𝑥) }|

|𝑋𝑡𝑒𝑠𝑡|

We incorporate these definitions into VoTE’s Property
Checker which formally verifies classifier stability and
automatically computes these metrics at the same time.

4.7. VoTE Property Checker
Recall that from the preliminaries, the VoTE property
checker (VoTE-Pc) returns a pass if the property is satis-
fied. For a tree-ensemble model (𝑓𝑐), and a test sample 𝑥
(𝑥 ∈ 𝑋𝑡𝑒𝑠𝑡), the following equations are used to verify sta-
bility and correctness, which can be extended to compute
the metrics from the equations in section 4.6.

is_correct ← VoTE-Pc (𝑥 , 𝐼 𝑠𝐶𝑜𝑟𝑟𝑒𝑐𝑡(𝑓𝑐 , 𝑥)) (16)

is_stable ← VoTE-Pc (𝑥 , 𝐼 𝑠𝑆𝑡𝑎𝑏𝑙𝑒(𝑓𝑐 , 𝑥)) (17)

5. Case Studies
We apply our three affine transformations combined with
changes in lighting to two case studies. We verify sta-
bility and compute the extended metrics associated with
classifier stability and correctness. Due to space restric-
tions, we will only show the outcomes of composite rota-
tions in one study and composite scaling in the other. We
use scikit-learn [6] to train random forests and CatBoost
[7] to train gradient boosting machines. Experiments are
conducted on a Windows 11 Machine running Ubuntu
20.04 inWSLMode (Windows Subsystem for Linux). The
machine comes equipped with an Intel Core i7-10875H
CPU and 16 GB RAM.

5.1. Digit Recognition
The MNIST dataset [22] is a collection of hand-written
digits commonly used to evaluate machine learning al-
gorithms. The dataset contains 70,000 gray scale images
with a resolution of 28x28 pixels at 8bpp, encoded as a
tuple of 784 pixels. The input regions surrounding each
sample in the test set were defined using feature space
modelling (section 4.3). The parameters for rotation were
chosen as follows: Rotation Range = 0 − 10°, Rotation
Steps = 1001. For the changes in lighting, the parameters
were chosen as: 𝜁𝐿 = 2 (darkening) and 𝜁𝐻 = 3 (bright-
ening). To make this case study even more realistic, the
training data was augmented (doubled to 120,000 training
samples) by adding samples that were randomly rotated

7



in the range of ±10° using Keras [24]. The verification
process was carried out on 10,000 test samples.

Param. A (%) R (%) F (%) B (%) T (s)
d B RF GB RF GB RF GB RF GB RF GB
3 3 51.26 61.75 14.36 13.61 36.90 48.14 48.74 38.25 0.21 0.40
3 5 57.26 71.60 7.03 15.81 50.23 55.82 42.74 28.37 0.22 0.26
5 5 76.59 79.56 2.75 40.89 73.84 38.67 23.41 20.44 0.22 0.26
5 10 80.23 87.16 0.69 31.00 79.54 56.16 19.77 12.84 0.23 0.56
5 15 81.95 89.94 0.88 23.74 81.07 66.20 18.05 10.06 0.36 13.33
5 20 83.20 91.61 1.37 20.21 81.83 71.40 16.80 8.39 1.81 168.12

Table 1: Results (Combined Rotations and Lighting)

Table 1 lists random forests (RF) and gradient boost-
ing machines (GB) included in the experiments with
their maximum tree depth (d), number of trees (B), ac-
curacy (A), the extended stability metrics - robustness
(R), fragility (F), and breakage (B) along with the elapsed
time (T) taken for verification (in seconds). The column
for vulnerability was omitted as it was zero in all experi-
ments.

Figure 4: Crafting Perturbations (Composite Rotations)

Figure 4 shows the construction of the first and last im-
ages in the verification series for a particular sample.
From this figure, it is visible that the two images, i.e., the
first and the last resemble the ground truth, and the rest
of the images in the series are similar in that sense.

5.2. Handwritten Character Recognition
In our next experiments, we use the EMNIST-Letters
dataset, which is a variant of the EMNIST Dataset [23]
that includes upper and lower case handwritten char-
acters. This dataset contains 145,600 samples across 26
balanced classes. Each sample has a resolution of 28x28
pixels at 8bpp, encoded as a tuple of 784 pixels. The in-
put regions surrounding each sample in the test set were
defined using feature space modelling. The parameters
for scaling were chosen as follows: Scaling Steps = 201,
Scale Factor = ±10% which represents a 10% Zoom (in

and out). For the changes in lighting, the parameters
were chosen as: 𝜁𝐿 = 2 (darkening) and 𝜁𝐻 = 3 (bright-
ening). To make this case study even more realistic, the
training data was augmented (doubled to 249,600 training
samples) by adding samples that were randomly scaled
in the range of ±10% using Keras [24]. The verification
process was carried out on 10,000 test samples.

Param. A (%) R (%) F (%) B (%) T (s)
d B RF GB RF GB RF GB RF GB RF GB
3 3 30.85 36.44 2.34 1.55 28.51 34.89 69.15 65.36 0.22 0.19
3 5 35.39 43.92 1.72 1.43 33.67 42.49 64.61 56.08 0.24 0.22
5 5 45.83 50.75 3.46 2.23 42.37 48.52 54.17 49.25 0.23 0.26
5 10 51.27 61.83 2.99 0.68 48.28 61.15 48.73 38.17 0.33 0.79
5 15 53.42 68.04 2.83 0.13 50.59 67.91 46.58 31.96 2.01 21.50
5 20 54.41 71.56 3.51 0.10 50.90 71.46 45.59 28.44 6.10 264.69

Table 2: Results (Combined Scaling and Lighting)

Table 2 lists random forests (RF) and gradient boosting
machines (GB) included in the experiments with their
maximum tree depth (d), number of trees (B), accuracy
(A), the extended stability metrics - robustness (R),
fragility (F), and breakage (B) along with the elapsed
time (T) taken for verification (in seconds). Again, the
column for vulnerability was omitted as it was zero in
all experiments.

In regard to this case study, if we consider the
EMNIST [23] letter a and scaling in the range of ±10 %,
with 𝜁𝐿 = 2 and 𝜁𝐻 = 3, 𝐼𝐿 and 𝐼𝐻 represent the first and
last images in the verification process. We then ask the
VoTE Property Checker to verify all the images in the
transformed series. Figure 5 shows a fragment of the
verification flow.

Figure 5: Verification Workflow Fragment (EMNIST)

Discussions
From the experimental results in Table 1 and Table 2,
we note that the robustness of the learned models with
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respect to composite geometric perturbations is much
lower compared to the standard model accuracy (which
is somewhat expected). In the first case study, gradi-
ent boosting machines performed slightly better than
random forests in terms of robustness. Increasing the
number of trees improves accuracy but causes a drop in
robustness. This indicates that the models were over-
fitted and that adding compositely perturbed images to
the training set may improve robustness. The high num-
bers for fragility indicated that while these samples were
identified correctly, the classifier was unable to make
stable predictions on them in presence of these types of
perturbations. Wewould also like tomention that the ver-
ification process would require a domain expert, due to
the complex nature of these perturbations. For instance,
if you pick a large rotation range (or a large scaling or
translation range), there will be a significant number of
images in the verification series that won’t resemble the
ground truth label. In this case, the verification process
needs to be done in small ranges.

Figure 6: Comparing Verification Metrics

We repeated the experiments in the second case study by
varying the scale factors as: ±2%, ±4%, ±6%, ±8%, ±10%
for the largest Gradient Boosting Machine. In figure
6, we can see that as the scale factor is increased, the
robustness of the model decreases and the verification
runtime increases. This is expected as the number of
perturbed pixels increases as the scale factor is increased.

Also, while the tree ensemble models chosen for
the experiments could be considered trivial, we would
like to point out that the verification problem was
certainly non-trivial considering the composite nature
of these perturbations, and the fact that the models were
trained on high-dimensional data. What is positive in
this context is the fact that performing such analyses
in tractable time is at all possible given the enormous
search space for these perturbations.

Considering the complexity of the verification
problem, it is impressive that VoTE was able to efficiently

verify these models within a fraction of a second for
most of the experiments. For larger models, while the
verification time does increase, this issue is resolvable
since due to the memory-efficient structure of the VoTE
core algorithm, computations can always be parallelised
(not used in our experiments).

VoTE captures multiple inputs (precisely) in the
interval domain, but whenever a prediction model
violates the stability property, the property checker
returns a counterexample which lies in the violating
region. Figure 7 represents a few of the many coun-
terexamples discovered by VoTE during the verification
process (MNIST-Digits). Since the perturbations are
almost indistinguishable by the naked eye, they are
highlighted in pink. These counterexamples can be used
for debugging or further analysis to repair or retrofit the
models iteratively until provable stability is eventually
achieved. For instance, counterexamples used for guided
model training can be embedded into a loss function to
achieve better stability.

Figure 7: Counterexamples

6. Conclusions and Future Works
Applying formal verification to show that a system
exhibits its intended behaviour can help increase the
trustworthiness of the decisions made by intelligent
systems. In this work, we show that tree-ensemble based
models with comparatively good prediction accuracies
perform spectacularly poorly when presented with
samples containing composite geometric perturbations
based on real-world phenomena.

Apart from the profound impacts on safety, these
types of perturbations can also violate the security
properties of classifiers which could be detrimental
in safety-critical scenarios. To address this issue,
the parameters in our method can be tweaked to
simultaneously check for adversarial perturbations in
addition to composite geometric perturbations. This
represents a step towards safe and secure AI. Finally, our
method can also be used with different types of models
and verification engines depending on the context.

For future works, we plan on exploring different
abstract domains which can be used to tightly capture
these perturbations to increase the scalability of VoTE to
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even higher-dimensional inputs. We also plan to explore
different tree selection strategies, i.e., a systematic
analysis of the order in which the trees in the ensemble
are analyzed in VoTE’s abstraction-refinement pipeline
to further enhance the efficiency of the verification
process against the large nature of these perturbations.
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