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Abstract

In this paper, we apply a grammar-based approach to generate computation and communication platforms
for avionic applications with mixed classes of time-sensitive communication messages. Then, we propose an
evolutionary algorithm to schedule communication in the platform considering the interaction between time-
triggered and bandwidth-constrained traffic. Together, the platform generation approach and the scheduling
algorithm support the exploration of avionic systems at the concept level.
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1. Introduction
Due to their distributed computation structure, new IMA systems show an increasing demand for
deterministic communication behavior. However, guaranteeing such behavior is still a challenge for
the avionics industry. One part of the problem is the choice of a communication standard, which is
heavily dependent on the type of application and its requirements. The other is the conceptualization
and design of computation and communication platforms (henceforth referred to as a platform) which
must provide adequate resources to meet the requirements of the aforementioned application.
While Ethernet (IEEE 802.3) has long been the preferred communication standard for a wide range
of non-time-sensitive application domains due to its cost-effectiveness, its lack of determinism is a
challenge to its application in time-sensitive domains. To adapt Ethernet to meet the demand for
deterministic communication behavior and guarantee the interoperability of different flows within the
same network, a series of standards such as Time-Sensitive Networking (TSN, part of the IEEE
802.1 standard), time triggered Ethernet (TTEthernet) and Avionics Full-Duplex Switched Ethernet
(AFDX) have been proposed.
Simultaneously, applications with different criticality levels require different guarantees. Some require
strict time-triggered communication, others require rate-constrained communication and bounded
latencies, and the least strict can even accept best-effort communication.
As the most restrictive of the traffic classes, Time-triggered (TT) traffic, requires schedule tables that
define the exact queue transmission times of frames on every egress port along the route of the
respective traffic flows. The generation of these schedule tables, usually called gate-schedules or
gate control lists, however, is an NP-hard problem, which can become even harder to solve once the
routing of traffic flows is considered. Among several techniques described in the literature to solve
the problem, the most common are heuristics, such as genetic algorithms [11] [12], and Satisfiabili-
ty/Optimization Modulo Theories (SMT/OMT) [5].
Rate-constrained (RC) traffic, on the other hand, is a little bit less restrictive. While TT traffic requires
the static scheduling of messages in the network, RC traffic allows the sender to transmit at any time
but enforces the separation of different flows using two limiting parameters: the minimum duration
between two successive frames at the source (known as the bandwidth allocation gap, or BAG); and
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maximum frame size. These parameters enable network controllers to restrict the amount of data
sent in each flow, which can be used to derive an upper bound on the network latency on the flows.
While not as deterministic as TT traffic, RC traffic can still provide enough guarantees on end-to-end
latency while being easier and cheaper to implement since it does not require different nodes to be
perfectly synchronized.
Even though both traffic classes work very well individually, real-world systems with heterogeneous
application subsystems frequently see the interaction of these two traffic classes in the links of the
platform. As TT traffic is scheduled for transmission at specific slots, while RC frame can be sent
almost at any time, their interaction creates inferences that can undermine the real-time guarantees
on determinism or latency of the individual traffic classes.
Despite the advent of many standards for time-sensitive traffic ( i.e. TSN, TTEthernet, AFDX, etc.),
the topology design part of the problem still remains. Timeliness guarantees and communication
determinism are inherently related to the platform on which we deploy the application. Therefore,
chosing the correct platform is an important step in making sure applications behave accordingly
once deployed. Chosing platforms is a complex optimization problem due to the vast number of
choices and different paradigms to be considered when deciding on the architecture and topology.
Due to the complexity of the problem, several techniques have been proposed to tackle platform
design throughout the decades. Some works such as Fischer et al. [9], Zhang et al.[13] and Den-
giz et al.[8], use genetic algorithms to generate industrial network topologies considering real-time
constraints. Other works resort to more robust and exact approaches, such as linear optimization or
constraint-satisfaction problems [3]. A third approach is to use hybrid techniques, such as Feng et
al. [10], who uses use a control-flow-based heuristic to generate architectures compliant with AFDX
specifications and real-time performance requirements.
In this work, we apply NetGAP, our previous work [7] that provides a method based on graph-
grammars for various concept level trade-offs (including security, fault tolerance, timeliness) to an
aerospace related use case where communication timeliness is in focus. More specifically, we use
NetGAP to automatically generate candidate platform designs that are guaranteed to perform well un-
der strict communication constraints for application with mixed traffic classes. As a new contribution
we propose the use of a fast genetic algorithm to generate and analyze a communication schedule
that considers the interaction of time-triggered traffic and rate-constrained traffic on the platform. We
illustrate the methodology with the application to an industrial use case composed of a mix of TT
and RC traffic flows and evaluate a candidate platform generated by the grammar-based method. In
the discussion, we show that the two methods together are a fast and useful solution to support the
exploration of avionic systems at the concept level.
The paper is organized as follows: Section 2 provides an overview of the platform generation process
used on this paper. Section 3 provides details of the methodology such as the implementation of
the genetic algorithm. Section 4 shows the results of the application of the proposed methodology.
Meanwhile, Section 5 presents our conclusions and suggestions for future works.

2. Background
2.1 On graph-grammar-based approach to platform generation
For the sake of completion and readability, in this section we restate some parts of the methodology
framework from our previous work [7] that relate to the generation of candidate topology designs with
graph grammars.
In our methodology, candidate platform designs are abstracted as directed graphs in which nodes
represent platform components (i.e. processing modules or switches) and edges represent physical
network links between the components. In this framework, a candidate platform design is constructed
through the iterative application of graph transformations, orderly adding or removing nodes and/or
edges, until a candidate design with the desired characteristics is found. We express each of these
transformations as a rule in a custom-built networked systems graph-grammar [6] that limits the
topology arrangement of the platform. An example of a networked systems grammar is given in
Listing 1, a deeper view into the lexical and semantics of the proposed grammar can be found in the
original paper [7]. Figure 1 illustrates the iterative process of generating a candidate design using the
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gramar in Listing 1.

Listing 1: A simple grammar example
r0 : φ ⇒ S # Adds switch node to an empty graph
r1 : S⇒ S ↔M # Adds module M to switch S
r2 : S1⇒ S1↔ S2 # Adds switch S2 to switch S1
r3 : S1,S2⇒ S1↔ S2 # Connects two switches S1 and S2

Figure 1 – Grammar-based generation of a networked platform using the grammar of Listing 1. The
list of rules below the diagrams indicates the set of possible rules available on each step of the

process. Meanwhile, the labels above the arrows indicate the rule applied to proceed to the next
step.

As illustrated in Figure 1, each step of the process generates a graph representing a partial platform
design. For each partial design, there might exist multiple rules that can be applied to the graph at
that stage. Furthermore, the application of a rule in any given stage limits and influences and limits
the types of platforms obtained from that point on in the process. The choice of the best rule to apply
at each step is, therefore, crucial.
By nature, this type of problem can be encoded as a tree, in which each node represents a partial
platform design, which we will call the state of the system, and each edge represents the action of
applying a transformation rule to the graph. In our methodology, we use a Monte-Carlo tree search
algorithm (MCTS)[4] to explore the tree and decide which action to take at every step.
In general words, the Monte-Carlo tree search is an iterative process that allows for efficient evalua-
tion of tree branches by means of Monte-Carlo sampling. Starting at the root node, multiple random
simulations are run in succession in order to estimate which branch of the tree leads to the best
solution to the problem. During each of these simulations, a tree branch is selected and expanded
into its sub-branches. After the expansion, a random sub-branch is chosen and a depth-first search
is performed until a leaf node representing a complete platform design is found. The leaf node is then
evaluated according to a and it’s fitness is back-propagated through the tree. In the end, the action
leading down the branch with the highest fitness is chosen and the transformation rule associated to
this action is applied to the graph.

3. Methodology
The methodology presented in this work consists of a two-step process. In the first step, a graph-
grammar-based approach is used to generate a candidate time-sensitive network platform to support
a real-time application. In the second step, the platform generated in the previous step is analysed for
schedulability of time-triggered data using a genetic algorithm approach that considers the interplay
between time-triggered and rate-constrained traffic classes. Note that the methodology we present
in this paper is centered around guiding and supporting the exploration of concept platform designs
and does not aim to find optimal solutions to the addressed problems.
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3.1 Part 1: Platform Generation
Up to this point, the platform generation process discussed in Section 2 is very generic and does not
define what type of platform should be generated. In order for the platform generation approach to
know what it should optimize for, we need to provide it with three important pieces of information:
a system-specific grammar; an application model; and a fitness function to define how to evaluate
a candidate platform with respect to the requirements of an application. In the context of this work,
we will define our platform based on the grammar presented in Listing 1. The avionic application
will be presented later in Section 4.1, for now, it suffices to know it contains both time-triggered and
rate-constrained traffic classes. The evaluation function, in turn, is presented below.

3.1.1 Platform generation evaluation function
The platform generation objective is expressed in the form of a maximization problem. The op-
timization objective, as implemented, is a weighted sum of three characteristics of interest: path
redundancy for time-triggered traffic; estimated latency; and total platform cost.

max
α(redScore)+β (latScore)+ γ(costScore)

α +β + γ
(1)

The redScore term represents the ratio between the number of time-triggered flows with redundant
paths between source and destination (ttred) and the total number of time-triggered traffic flows (tttotal).
Behind this term is the assumption that time-triggered flows are usually of the utmost importance
for the system, therefore, they must be resilient to failures of network components in their path.
Furthermore, having multiple routing options to choose from when trying to define a static schedule
for these flows helps avoiding overloaded paths, which potentially contributes to lower end-to-end
latency. This term is defined by:

redScore =
ttred

tttotal
(2)

Meanwhile, the latScore is used to estimated the overall latency experienced by the application traffic
flows on this platform. The term is a negative exponential composed of 3 evaluation metrics relating to
network performance. The first metric, bmax, is related to the maximum bandwidth utilization observed
in any link ei j between two nodes ni and n j. This metric assumes that all traffic flows will be routed
following the shortest path between it source and destination, and is defined as the ratio between
the current allocated bandwidth and the maximum theoretical bandwidth supported by link ei j. The
second metric, vt represents the number of links in which bmax≥ 1, meaning link in which the utilization
is bigger than 100% (which should not be possible). The third and last metric, havg is the average
number of network nodes each traffic flow has to go through when traversing the network through it’s
shortest path. latScore is defined as:

latScore = e(bmax∗havg−vt) (3)

Finally, the last term costScore is the current solution cost in monetary units. To calculate the costs,
each node on the network is assigned a value of 100 units and each link is assigned a value of 1 unit.

3.2 Part 2: Network Traffic Schedule generation
In order to guarantee whether our generated platform is able to support a set of applications with dif-
ferent classes of time-sensitive traffic, we also need to consider whether we can provide assurances
that the data going through the network will be delivered in time. In this second part of the process we
consider the interplay between time-triggered traffic and the rate-constrained traffic in network links
to establish a feasible routing scheme for the time-triggered flows in order to minimize the latency for
both traffic classes. Simultaneously, we generate a valid static-schedule for all time-triggered traffic
flows and generate a gate-schedule to control the access of time-triggered flows to the network links.
As with the platform-generation step, the process is designed to support the exploration of concept
platform designs and does not aim to find optimal solution.
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3.2.1 Genetic Algorithm Scheduler
In this work, a genetic algorithm is used to solve the traffic scheduling problem for a fixed platform
and application model with different traffic classes. Figure 2 shows a flowchart of the proposed
genetic algorithm. The specifics of the implementation, such as the chromosome representation, the
mutation and crossover operators, and the chosen fitness functions are described in the following
subsections.

Figure 2 – Structure of the proposed genetic algorithm.

3.2.2 Chromosome representation
As usual, genetic algorithms represent candidate solutions in the form of a genome, with individual
genes representing individual characteristics of the solution. In this study, inspiration was taken from
Hyeong et al.[11] where genes are used to represent an ordering of flows to be considered during the
schedule generation process, and from [12], where genes are used to represent the routing choices
for each flow. The implemented genome is composed of two halves composed each of n genes (to
total size of 2n genes ) as shown in Figure 3. The first n genes represent an absolute order in which a
flow should be considered when generating a schedule (thus providing this flow with a virtual priority
of sorts). Therefore, the first (last) gene in contains the identifier of the traffic flow that was considered
first (last) in the schedule generation process. The second set of n genes represents the path chosen
for the respective flow from the list of possible paths. Note that, in the second part of the genome,
gene n j gene relates to the path chosen by the flow with identifier j (henceforth f j ) and not by the jth
flow from the first half of the genome.

Figure 3 – Chromosome representation of ordering and route.

3.2.3 Mutation and Crossover Operators
Since the genome is divided in two different parts with different characteristics, two different mutation
and crossover operators are implemented. In the first part of the genome, the important characteristic
is the relative order of the flows. In other words, it is important for flow fi to come before flow f j. For
these types of problems, the ordered crossover operator (also known as OX operator) is amongst the
best performers [1]. For this reason, the OX operator has been chosen for first part of the genome. On
the other hand, in the second part of the genome only the absolute value of the gene is important.
Therefore, a simple single point crossover operator was implemented for that part. The mutation
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operators were chosen according to the same logic. Where order mattered, a RSM operator [2] was
chosen. Where order did not matter, genes were mutated randomly.

3.2.4 Schedule Generator
This additional module, is responsible for transforming a genome into a candidate schedule for the
time-triggered flows. Taking each flow fi as they appear in the first half of the genome, the schedule
generator injects the flow into the links that compose the path selected for fi in the second half of the
genome. Every time a new flow fi is inserted into a link e j, the schedule generator searches for empty
slots in the gate-schedule controlling that link considering the necessary guard band, the processing
delay on the interface, and the transmission delay for the packet to leave the interface. Once a new
slot is found, the gate-schedule for the link e j is updated and the process restarts for the next link
e j+1 in the path of fi. Note that it is assumed that a packet can only be transmitted forward once it
has been completely received at the end of a link, therefore the the search for a slot for fi on the
gate-schedule of e j+1 starts at the end of the slot of fi in e j (there is no pass-through). Once fi has
reached it’s destination, the process restarts for the next flow in the ordered portion of the genome.
Listing 2 describes the pseudo-algorithm of the schedule generator module.

Listing 2: Schedule generator module
Inputs: genome ,
Outputs: gate_schedule , f i t n e s s

g a t e _ l i s t ← empty l i s t

f i t n e s s ← ar ray [ genome . s ize ]

for f l ow i n genome . f l o w _ l i s t :
n_cycles ← 1600us / f low . per iod
path ← genome . p a t h _ l i s t [ f l ow ]
la tency ← ar ray [ n_cycles ]
for n i n [0 , n_cycles ] :

s t a r t ← 0*n
for hop i n p a t h _ l i s t :

s l o t ← f i n d _ n e x t _ a v a i l a b l e _ s l o t ( g a t e _ l i s t )
s t a r t ← s l o t . end

la tency [ n ] ← ca l cu la te_cyc l e_ la tency ( )

f i t n e s s [ f low ]← c a l c u l a t e _ f i t n e s s ( la tency )

t o t a l _ f i t n e s s ← sum( f i t n e s s )

return gate_schedule , t o t a l _ f i t n e s s

Note that, for convenience purposes, the schedule generator works on a fixed scheduling window
defined as the least-common-multiplier of the periods of all flows. This scheduling windows is called
a hyper-period after [11] and refers to the shortest period in which the transmission pattern of all flows
is repeated.

3.2.5 Schedule Generation fitness function
In this work, the fitness function for the evaluation of individuals in the GA is a weighted sum of
two terms. The first part of the evaluation function relates to the evaluation of the quality of the
schedule of time-triggered traffic. The second, deals with the interaction between time-triggered and
rate-constrained traffic.
For the first part, this study takes inspiration from [11] to evaluate the fitness of each individual of
the population. In line with the cited work, three indicators of the performance of the time-triggered
schedule represented by each solution were chosen.
The first indicator was inspired on the end-to-end latency performance indicator from [11] and refor-
mulated to fit the implementation presented here. In this study, the latency performance indicator
expresses the percentual difference between the calculated latency for a given TT flow, and the ideal
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latency for the same flow under perfect circumstances (i.e. when there is no queuing and packets are
able to traverse a switch with no delay). This metric is defined as follows:

LPI =
n

∑
i=0

1
k

k

∑
j=0

(
dk,i

calc−di
ideal

di
ideal

) (4)

where di
ideal represents the ideal latency for flow fi, and d j,i

calc represents the calculated latency for
instance j of a packet pertaining to flow fi.
The second indicator, is the jitter observed on flow fi. This parameter is calculated as the mean of
the standard deviation of the latencies observed for each instance of a packet pertaining to flow fi

during the scheduling window.
The third and last parameter is ratio between the number of individual packet deadline overruns
observed across a hyper period and all packets sent during a scheduling window. It is calculated by:

DO =
1
m

m

∑
i=0

vi (5)

where vi = 1 in case packet i has missed its deadline and vi = 0 otherwise, and m is the total number
of packets sent during a hyper-period.
The second part of the evaluation function is a simple evaluation of the bandwidth left over by the
time-triggered traffic to the rate-constrained traffic. Since the time-triggered traffic is generally well
behaved and easy to control, one can chose its routing as to leave the more direct or busier links
available for the rate-constrained traffic flows. Therefore, the idea is to minimize the bandwith taken
by time-triggered traffic across all links.

4. Experimental Results
4.1 Avionic Application Use-Case
As part of the assessment of the proposed methodology, the platform generation workflow was ap-
plied to a synthetic industrial use-case provided by SAAB AB. The use-case consists of a synthetic
avionic application model constructed to look like and have the same properties of those actually
deployed by the partner in an early concept design stage. It is divided into two independent parts,
a mission-oriented part (MOP) and a flight-critical part (FCP). The mission-oriented part contains 8
applications and 31 data-flows, and the mission-oriented part is composed of 44 applications and
629 data-flows. For the purpose of this study, the processes of the different parts were allocated to
processing modules before the platform generation process started. As a result of the allocation, it
was established that the platform should contain 14 processing modules. The data-flows pertaining
to the MOP part were considered to be time-triggered, while the MOP data-flows were classified as
rate-constrained flows.
For convenience, the payloads of the packets composing the time-triggered flows were chosen so
that the periods and deadlines of these flows were harmonic. Figure 4 presents the characteristics
of the time-triggered flows, while Figure 5 shows a graphical representation of the total bandwidth
required by all rate-constrained traffic flows between any two nodes in the platform.

4.2 Platform Generation Results
For the purpose of the platform generation part of the solution, the grammar presented in Listing 1
is used in order do describe and to generate generic switched-mesh topologies. Figure 6 shows the
final platform generated to support our application. Here, the S terms denote network switches and
the M terms denote computation modules. The final platform has a latScore of 0.12, with the maximum
bandwidth utilization of 97% being observed in the link Sg0 - SY10, while the average number of hops
per traffic flow amounts to 2.2. The platforms manifests a redScore of 0.94, meaning 29 of the 31 TT
flows had more than on possible route to their destination. The platform is composed of 14 modules,
6 switches and 48 directed links (24 full-duplex links), totalling a cost of 2048 monetary units.
The process of generating the platform in Figure 6 took 56.01s, attesting to the scalability of the
approach.
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Figure 4 – Payloads and frame periods of the time-triggered traffic

Figure 5 – Combined bandwidth requirements of rate-constrained traffic between nodes

4.3 Schedulability Results
Table 1 shows the parameters used in by the genetic schedulability algorithm during the test runs, in
total, 30 experiments were run. Figure 7 shows a comparison between the average latencies obtained
by the genetic scheduler and by a random scheduler. It is clear that the genetic scheduler presents
lower latencies for almost all flows when compared to the random case, with the difference being
exacerbated for flows 3 and 16, which turned out to be very difficult to schedule even for the genetic
scheduler. Figure 8 illustrates one gate control list (GCL) obtained by the genetic schedulability
algorithm for the first 24 interfaces (out of 50).
In all cases, there were no deadline overruns and the jitter for each time-triggered flow was reduced
to zero (meaning it was possible to maintain constant and uniform latency times across all packets
belonging to the same flow). When it comes to scalability, the gate-schedule of Figure 8 was found
in 62.55s, indicating that the method tends to be scalable.
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Figure 6 – Platform chosen as target for the schedulability verification. The color of the edges
between different nodes represents the observed load on that link.

Figure 7 – End-to-end latencies obtained for each flow by a random scheduler and by the genetic
scheduler.

network bandwidth 100Mbps
number of generations 60
genome size 62
population size 250

Table 1 – Parameters of the genetic algorithm experiment

5. Conlusion
In this work, we show the application of a grammar-based generation scheme to generate candidate
computation and communication platform designs. Building upon the idea of procedural generation
and exploration of candidate platforms, we propose an evolutionary method to schedule and analyze
a communication schedule that considers the interaction of time-triggered traffic and rate-constrained
traffic on the platform. We show that, together both methods scale well and can be used in conjunc-
tion to analyze the merits of different platform candidates in terms of determinism and latency of
time-triggered and rate-constrained traffic flows (respectively).
Future improvements to the work presented in this study could feature the inclusion different priority
classes for time-triggered traffic to the algorithm to improve the determinism of higher-priority traffic
flows. Another possibility worth consideration is that of utilizing a different link base encoding for the
chromosome representation in the scheduling, creating a per-link priority list for the scheduling of
flows in the links (as opposed to the current global priority presented on the algorithm of the paper).
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Figure 8 – Gate control list generated by the genetic scheduler for the first 24 interfaces. Colored
segments represent an open gate for TT traffic. Two colors are used in order to illustrate the

contribution of the individual data packets to gate status.
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