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Abstract. Supervisory and Data Acquisition (SCADA) systems control
and monitor modern power networks. As attacks targeting SCADA sys-
tems are increasing, significant research is conducted to defend SCADA
networks including variations of anomaly detection. Due to the sensitiv-
ity of real data, many defence mechanisms have been tested only in small
testbeds or emulated traffic that were designed with assumptions on how
SCADA systems behave. This work provides a timing characterization
of IEC-104 spontaneous traffic and compares the results from emulated
traffic and real traffic to verify if the network characteristics appearing
in testbeds and emulated traffic coincide with real traffic. Among three
verified characteristics, two of them appear in the real dataset but in
a less regular way, and one does not appear in a given real data. The
insights from these observations are discussed in terms of presumed dif-
ferences between emulated and real traffic and how those differences are
generated.
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1 Introduction

A modern power distribution system is a cyber-physical system comprising a
network of geographically distributed devices and processes. Supervisory Control
and Data Acquisition (SCADA) systems are used to control and monitor the
network and processes. The emergence of attacks targeting SCADA systems
and the controlled processes makes SCADA security a pressing issue [6, 8, 18].
Research on defending SCADA networks against such intrusions requires traffic
datasets to develop, evaluate, or compare different defence mechanisms. Due
to the secrecy of SCADA systems as part of critical infrastructure, real traffic
is not openly available for the research community. Where data sharing from a
large testbed is available, for example, in the case of iTrust testbed data from the
EPIC and SWaT testbeds [11], the packet flows have been generated from one of
the many possible SCADA protocols (CIP, GOOSE, MMS). Unfortunately, for
defence mechanisms that need to be tested with other protocols, a large number
of the Intrusion Detection Systems (IDS) are tested on a small-scale testbed



[24] or with simulated/emulated datasets [13, 25]. Hence, how reliable are the
simulated/emulated datasets has become a crucial question for the development
of SCADA specific IDSs.

IEC-60780-5-104 (IEC-104) protocol is an international standard of data
transmission between an electric power SCADA center and outstations over
TCP/IP and widely used in Europe [7]. Unlike other SCADA protocols, such
as Modbus, comprising mainly request-response communications triggered by a
polling mechanism from the SCADA center, IEC-104 traffic contains a great deal
of spontaneous communications [21]. In the spontaneous communication mode,
field devices in the outstations initiate messages when the monitored measure-
ments of process variables change or fall outside a predefined range.

Most of the research on IDSs for SCADA networks model the request-response
communications [23, 5, 12, 25] but fewer solutions are available on spontaneous
communications due to the lack of understanding of spontaneous traffic. Al-
though Lin and Nadjm-Tehrani [19] applied pattern mining techniques based
on Probabilistic Suffix Tree (PST) to two emulated IEC-104 datasets in order
to discover timing patterns, study of IEC-104 traffic characteristics is still in its
infancy. Detailed knowledge of how spontaneous traffic behaves in a real network
is necessary for the development of SCADA-specific IDS and improved SCADA
network simulations/emulations.

This work first reviews potential flow-based characteristics suggested in liter-
ature, and then provides an empirical study of spontaneous traffic generated in
a real-world utility with respect to the reviewed characteristics. It also performs
a comparison with the emulated traffic used in previous works [24, 19].

Our primary contribution in this study is a detailed timing-based charac-
terization of IEC-104 spontaneous traffic collected from a real power station.
The results can be a first step to arrive at a traffic model when deciding about
features and modeling approaches for anomaly detection, expanding the possibil-
ity of testing those IDS so far only tested with simulated/emulated traffic. The
secondary contribution is the outcome of the comparison between behaviour of
traffic from real and emulated power networks. It suggests the emulated traffic
generated in earlier works may not be realistic enough. Some modifications could
be made in those testbeds to improve the usability of the datasets generated for
SCADA security research.

2 Related Work

To guide and facilitate intrusion detection research for SCADA systems, network
analysis and characterization of SCADA traffic has been an active research area.
Most of the works focus on characterizing high level attributes such as band-
width, port number, and the number of protocols. Barbosa et al. [3] conducted a
comparative analysis of SCADA traffic from water treatment facilities and nor-
mal IT traffic. This study found that SCADA traffic lacks traffic patterns that
are used to model IT traffic. The results indicate the need for SCADA-specific
modeling approaches for anomaly detection. In separate work, Barbosa et al.



[4] conducted another comparative analysis of SCADA traffic and SNMP traffic
and found that both of them exhibit periodicity. Jung et al. [14] characterized
SCADA traffic of a power station with variations in frame sizes, TCP connects,
port number, and initial sequence number. In a later work, Formby et al. [9] fur-
ther studied the initial sequence number attribute in the same traffic and found
predictable patterns.

As more intrusion detection studies focus on protocol-specific models, more
protocol-specific attributes are explored. Formby et al. [10] characterized DNP3
power grid traffic and examined a few common hypotheses such as stable traffic
volume and regularity of DNP3 poll time. Mai et al. [22] characterized IEC-104
power grid traffic regarding the number of occurrences of different instructions
and the directions and magnitude of IEC-104 flows, where the flow is defined
by the 4-tuple < srcIP, srcPort, dstIP, dstPort >. Lin and Nadjm-Tehrani [19]
characterized emulated IEC-104 spontaneous traffic with a focus on the pre-
dictability of timing patterns.

The current paper examines three characteristics of IEC-104 spontaneous
traffic using data collected from a real power station. Two of the characteristics
were proposed or observed in earlier work [19]. One characteristic observed in the
emulated datasets of the earlier work is confirmed when analysing the real traffic
while another characteristic is shown to exist only in the emulated datasets. The
third characteristic will be discussed in more detail in Section 5. The confirmed
characteristics have already guided the development of an anomaly detector [20]
for IEC-104 spontaneous traffic.

3 Background on the IEC-60780-5-104 protocol

The protocol that hereafter will be referred to as IEC-104, is widely used in
modern SCADA systems to control and monitor geographically dispersed pro-
cesses, especially for power station automation. The main advantage of IEC-104
is that it connects a control station (Master Terminal Unit, MTU) and one or
more substations (Remote Terminal Unit, RTU) via a standard TCP/IP net-
work. The IEC-104 protocol defines two directions for data transmission: (1)
monitor direction, the direction of transmission from an RTU to the MTU and
(2) control direction, the direction of transmission from the MTU to an RTU.
The monitored data that are transmitted from an RTU to the MTU are also
known to be sourced at Monitor Points. Every monitor point is configured to
locate in a specific address in an RTU device and will be identified by the address
at application level.

In order to improve the communication efficiency, the IEC-104 protocol en-
ables not only the MTU to poll for monitor points periodically but also the
RTUs to generate spontaneous events about data changes at monitor points.
The following explains the important terminologies of IEC-104 protocols used in
this study.



– Information Object: A piece of data containing information from a monitor
point such as measured value and time tag. A spontaneous packet may carry
more than one information object.

– Information Object Address (IOA): The address and identification of a mon-
itor point where an information object is issued from.

– Cause of Transmission (COT): A field in the application layer to specify the
type of the packet. A spontaneous packet is noted as SPONT.

– Type IDentification (TID): A field in the application layer to specify the type
of the monitor point(s) in a packet. The most common data type is Monitored
MEasured point in different formats such as M ME NA (normalized value)
and M ME NB (scaled value). This data type contains a measured value
from a certain IOA. The system administrator needs to set a deadband
(i.e., a range) for each monitored measured point and the RTU will send a
spontaneous event when the value falls outside the deadband. In addition,
Monitored Single Point (e.g., M SP NA) and Monitored Double Point (e.g.,
M DP NA) specifies the state of a point, such as a switch or circuit breaker.
For these points, the RTU will send a spontaneous event whenever the value
changes.

4 The studied datasets

This section first presents an overview of the examined datasets. Then, it de-
scribes how the datasets are collected and preprocessed for the analysis.

In this study we analyze three different IEC-104 datasets: two emulated power
network datasets and one dataset collected in a real power station at utility.

– SmallTB-RTUx: SmallTB-RTUx dataset is collected from a small testbed
with real commercial hardware maintained by the Royal Institute of Tech-
nology (KTH). The setup contains four RTUs, one switch, and a user termi-
nal machine. The data is collected through a mirroring port on the switch.
Traces from two out of the four RTUs are used in previous work [24] and
available to us. For the sake of consistency, we follow the naming scheme of
the RTUs in the previous work and name the traffic as SmallTB-RTU1 and
SmallTB-RTU4.

– VirtualTB: VirtualTB dataset is collected in a virtual testbed developed
within the RICS project [1]. The testbed is formed of an office network and
a SCADA network. The setup of SCADA network contains some twenty
substations, two SCADA servers, and a virtual WAN (Wide Area Network)
with 15 nodes connecting the control room and the substations. The data is
collected at the communication gateway to the WAN on the main SCADA
server. There are no network delays or traffic congestion in this virtual net-
work. Traces of one substation with an emulated RTU is used in earlier work
[19] and available to us.

– Real-RTUx: Real-RTUx dataset is collected from a real power facility. The
SCADA network contains several RTUs communicating with the SCADA



server with different protocols. Among them, there are two RTUs that com-
municate through IEC-104 which are included in earlier work [20] and this
study. The traffic is collected by the utility personnel running our data col-
lection software in their operation site, here named Real-RTUA and Real-
RTUB.

To perform our timing-based characterization, we need to transform the col-
lected PCAP traces into desired formats: event sequence and time series of
flows. The process includes the following steps. (1) It starts by identifying spon-
taneous packets with COT=SPONT. (2) For all the spontaneous traffic, the
process separates them into unique flows, where a flow is defined by the tuple
< RTU(SrcIP ), IOA, TID >. Note that a packet may contain multiple infor-
mation objects and thus multiple IOA but only one TID as stated in Section 3.
(3) The next step in preprocessing forms an event sequence for each flow and
records the PCAP timestamps as event arrival times for timing analysis. (4)
Finally, the process transforms each event sequence to time series by calculating
the number of events per some configurable interval of time.

No matter in which format, we split the events per flow into 10 parts, use
the first part for learning and the remaining nine parts to evaluate the stability
of the attributes. Table 1 shows an overview of the studied datasets with the
associated throughput for each RTU. The TID column lists instructions found
in the traffic from each RTU, and the last two columns present the number of
flows found and used. In the previous works, the flows with low event rates were
not included to avoid biased learning results. This study too excludes the flows
with an event rate of fewer than 0.3 events per hour since these flows contain
only sporadic events that apparently show very different attributes.

Dataset Duration Throughput (#events/hr) TID # Flows # Used Flows

SmallTB-RTU1 12 days 19182 M ME NA 4 4
SmallTB-RTU4 12 days 10712 M ME NA 3 3

VirtualTB 6 days 2433 M ME NA 15 12
Real-RTUA 30 days 13981 M ME NA 21 19

M DP TB 8 0
M SP TB 3 0

Real-RTUB 30 days 401 M ME NA 16 14
Table 1. Overview of time series obtained from the datasets.

5 Data characterisation methods

This section describes flow-based characteristics observed in the literature and
how do we examine the characteristics in this paper.

5.1 A review of potential characteristics

This subsection briefly reviews three hypotheses about spontaneous traffic timing
characteristics observed from earlier papers. [19, 15, 16, 2].



– Spiky distribution. Lin and Nadjm-Tehrani’s work [19] studies the timing
predictability of the spontaneous events based on an assumption, namely
that inter-arrival time distribution for events is spiky, without verifying it.
A spiky distribution means the probability of some inter-arrival time to be
present is higher than others as shown in Figure 1(a).

– Timing predictability. Timing predictability analysis addresses the re-
search question: can we predict when the next spontaneous event will come
by learning the historical timing data? In earlier work [19] it is shown that
in 11 out of 14 tested data sequences, there exists evidence of sequential
patterns. Hence, there is a hypothesis that historical data provides timing
predictability even in spontaneous traffic.

– Correlation. There are a number of works that model sensor signals with
clustering techniques based on correlations between sensors [15, 16, 2]. As
stated in Section 3, sensor measurements of the processes and spontaneous
events have a cause-effect relationship. The results indicate that sensors in
SCADA systems are correlated. Therefore, we propose the correlation hy-
pothesis that posits spontaneous events from different IOAs (i.e., connecting
to different sensors) could be also correlated.

Fig. 1. Distribution of inter-arrival times from a inter-arrival time sequence in the
emulated VirtualTB dataset [19]: (a) Histogram for inter-arrival times δi ≤ 10 seconds.
(b) The smoothed version of the sequence, bandwidth= 0.008

5.2 A review of characterization methods

This subsection describes the known methods that will be used to analyze the
characteristics.

Spiky distribution. Lin and Nadjm-Tehrani [19] propose an algorithm to
learn the areas with high probability to have spikes as legitimate areas. The al-
gorithm finds the relatively low point pairs on the smoothed curves of histogram
as shown in Figure 1(b), where the smoothing is done by the kernel density esti-
mation method with a bandwidth parameter that decides the smoothness level.
The low point pairs are considered as the boundaries of legitimate areas.



Timing predictability. Following application of the algorithm mentioned in
the previous paragraph, the same work separates inter-arrival times into groups,
with one spike per group. The method translates the numeric event inter-arrival
time sequence observed in a PCAP file (e.g., 3.15, 3.17, 0.51, 0.48) into a sym-
bolic sequence by replacing each numeric inter-arrival time with its group symbol
in the symbolic alphabet (e.g., aabb). Then, using the symbolic sequences, the
method builds a PST for each flow in the learning phase and tests the pre-
dictability of the learned PST. In the testing phase, the method runs with a
sliding window over the symbolic sequence. With a given window size (6 sym-
bols in the mentioned study), the method queries the built PST for the next
element that is most likely to happen as its prediction.

The mentioned work evaluates the timing predictability with predication
accuracy and Kappa statistics [17]. With the resulting confusion matrix, the
observed prediction accuracy P0 is defined as:

P0 =

∑c
i=1 nii
N

(1)

where N is the number of predictions performed in the testing phase, c is the
number of possible symbols (i.e., number of rows/columns of the confusion ma-
trix), and njk is the number of times the symbol k (ground truth) is predicted
as j. The expected prediction accuracy by a random observer is:

Pe =

c∑
i=1

(
ni+
N

× n+i

N
) (2)

where ni+ is the total number of times the symbol i appears in the testing
data and n+i is the total number of times any symbol is predicted as i. Kappa
statistics is:

Kappa =
P0 − Pe

1 − Pe
(3)

A random observer is a pseudo observer who randomly picks up a value from the
learned probability distribution of inter-arrival time. Kappa statistics compares
the observed accuracy and expected accuracy. If our prediction model is similar
to a random observer, the Kappa value will be around 0. On the other hand,
if our prediction model and the testing data contains clear sequential patterns,
the Kappa value will be close to 1.

Correlation. Spearman correlation coefficient (ρ) is a measure of the mono-
tonic relationship of two time series. For any two time series Xp = x−ip, . . . , xpm
and Xq = xqi , . . . , x

q
m, we have ranked time series R(Xp) = R(xp1), . . . , R(xpm)

and R(Xq) = R(xq1), . . . , R(xqm), where the numeric values are replaced by their
rank in the sorting. Then, the Spearman correlation coefficient is:

ρpq =
COV (R(Xp), R(Xq))

σR(Xp)σR(Xq)
(4)

where COV (R(Xp), R(Xq)) denotes the covariance of the ranked time series and
σR(Xp) and σR(Xq) are the standard deviations.



The correlation coefficient values are between -1 and 1. The values close to
1 or -1 indicate a strong relation between the two time series in the same or
opposite direction, and values close to 0 indicate a low association between time
series.

5.3 Methods and parameter choices for the comparative analysis

The comparative analysis in this paper aims to not only understand whether
the above characteristics exist in the three datasets from Section 4 but also how
persistent they are. This subsection elaborates the workflows and parameter
choices for the comparative analysis.

Spiky distribution. The analysis first illustrates and categorizes the Prob-
ability Density Function (PDF) of inter-arrival times. Then, it tests whether the
characteristics are stable and persistent. In this paper we will learn the legiti-
mate areas with a high probability to have spikes as shown in Section 5.2. The
major difference between the implementation in this paper and the earlier work
is the limitation of maximum number of spikes. Our implementation can find as
many spikes as possible while the previous work has a limit on number of spikes
set as 12, which means only the twelve largest spikes can be modeled.

Further, we test if the learned results remain in the following data using the
metric of unknown data rate. The unknown data rate (UDR) is defined as:

UDR =
nx
N

(5)

where nx denotes number of observations in the testing data that do not locate
in any of the learned legitimate areas, and N denotes number of observations in
the testing data. Thus, the lower the UDR, the higher the degree of stability of
the spiky distribution.

Timing predictability. The timing predictability comparative analysis ap-
plies the proposed method in Section 5.2 to all three datasets from Section 4.
There are two different parameter choices from the earlier work. First, based on
the results of spiky distribution analysis, we can get as many symbolic alpha-
bets as possible from an inter-arrival time sequence. This change makes the PST
sequence model more accurate. Compared to the earlier work, the inter-arrival
times located in the spikes that are smaller than the twelfth largest spike won’t
be considered as the same. Second, this study uses one-tenth of the datasets as
learning data, which contains more observations than the 2-hour (short) learning
data in the earlier work. This change enables the PST model to discover longer
sequential patterns if there are any.

Correlation. We calculate how many pairs of time series are significantly
correlated by computing p-values for null-hypothesis H0 : ρpq = 0, and compare
the correlation rates between different datasets. The bin size of the time series
in this study is 1 minute. With the resulting correlation rate of flows, we further
examine how the spontaneous traffic flows are correlated with each other using
dendrograms and if there’s any change on the dendrograms for learning period
and testing period.



6 Observations and Discussions

The section summarises the results of our comparisons between the emulated
and real data sets, using the above hypotheses and applied methods.

6.1 Spiky distribution

A few common patterns appear in the PDFs of event inter-arrival times for each
flow from the emulated datasets. These patterns contain multiple spikes with
different heights and weights that are distributed as different shapes of curves.
Figure 2 (a) presents a centered pattern. the pattern contains one major spike
and a few minor spikes located around it. Figure 2 (b) is a long-tail pattern.
The spikes are distributed with a long-tail. Figure 2 (c) presents the multiple
centered pattern in a long-tail distribution. Figure 2 (d) presents spikes in a
dispersed unknown distribution.

All the PDFs presented in emulated datasets show the roughly equal spacing
between the spikes and all the flows from emulated datasets have a constant size
of gaps between spikes. The gap size between spikes in emulated datasets is the
update rate at which the emulated RTUs update the information of simulated
processes. If the value of monitored points changes or exceeds a predefined range
when an RTU updates the information, the RTU sends a spontaneous event.
VirtualTB has a gap size of 5 seconds and SmallTB has a gap size of 0.5 seconds.

Table 2 presents the inter-arrival time analysis results in column Spiky Dis-
tribution. As expected, most of the flows from the real traffic present spiky
inter-arrival time distributions and equal spacing between the spikes. However,
not all of the flows have the same gap size even if they are from the same RTU.
The real data has the lowest gap size of 0.625 seconds and the largest gap size of
7.5 seconds. Moreover, in this dataset, traffic from different RTUs exhibit very
different timing characteristics. Most of the flows issued by RTUA present cen-
tered patterns, whereas, in 10 out of 14 flows issued by RTUB, we did not find
clear spikes as shown in Figure 2 (e). The flows without spikes have relatively
low event rates (around 20 events per hour). We speculate that the real system
monitors the processes with different granularities. Some are updated more often
while some are not regularly updated.

The flows with a resulting unknown data rate (see equation 5) less 3% are
highlighted in gray. Except for the flows that have less than 23 events per hour,
all the flows with spiky inter-arrival time distributions exhibit a low UDR, which
means the learned characteristics are stable and persistent within the data col-
lection period. After a manual examination of the flows having low event rate
and showing higher UDR, we observe that there are not enough elements in the
learning period for the used algorithm to properly estimate the legitimate areas.

6.2 Timing predictability

The timing predictability analysis results are presented in Table 2, the last two
columns.



Fig. 2. Common patterns in the PDF of event inter-arrival times. (a) A centered pat-
tern from VirtualTB, IOA 10091 (b) A long-tail pattern from SmallTB-RTU4, IOA 2
(c) A multi-center pattern from VirtualTB, IOA 10002. (d) A dispersed pattern from
VirtualTB, IOA 10010. (e) No clear pattern from Real-RTUB, IOA 3018.



Spiky Distribution Timing Predictability

Dataset IOA Event rate (#events/hr) Distribution Type UDR (%) Accuracy Kappa

SmallTB-RTU1 1 2384 long-tail ≈ 0 0.57 0.1
2 6955 centered ≈ 0 0.99 ≈ 0
3 2875 long-tail 0.08 0.38 0.1
4 6968 centered ≈ 0 0.99 ≈ 0

SmallTB-RTU4 2 2053 long-tail ≈ 0 0.52 0.1
3 7024 centered ≈ 0 0.99 ≈ 0
4 1095 long-tail 0.11 0.61 0.4

VirtualTB 10002 61 long-tail 3.00 0.20 0.1
10005 128 multi-center 0.63 0.26 0.2
10010 3 dispersed 80.36 0.67 ≈ 0
10011 763 centered 0.01 0.74 0.3
10012 23 multi-center 5.48 0.06 ≈ 0
10013 4 dispersed 68.95 0.38 0.1
10014 56 multi-center 1.81 0.22 0.1
10015 12 multi-center 18.48 0.09 0.1
10016 57 multi-center 1.18 0.23 0.1
10017 12 multi-center 17.46 0.08 0.1
10091 642 centered ≈ 0 0.65 0.3
10092 671 centered ≈ 0 0.68 0.3

Real-RTUA 3002 394 centered 0.19 0.71 ≈ 0
3003 372 centered 0.02 0.65 ≈ 0
3004 414 centered 0.07 0.49 ≈ 0
3005 628 centered 0.03 0.79 ≈ 0
3007 425 centered 0.02 0.76 ≈ 0
3008 372 centered 0.04 0.65 ≈ 0
3009 261 multi-center 0.14 0.32 ≈ 0
3010 683 centered 0.01 0.86 ≈ 0
3011 973 centered 0.09 0.78 0.1
3012 1051 centered 0.24 0.82 ≈ 0
3013 1088 centered 0.24 0.82 ≈ 0
3014 1084 centered 0.14 0.82 ≈ 0
3015 902 centered 0.02 0.67 0.1
3016 793 multi-center ≈ 0 0.52 ≈ 0
3017 886 multi-center ≈ 0 0.60 ≈ 0
3018 568 centered 0.19 0.88 ≈ 0
3019 1288 centered 0.01 0.86 ≈ 0
3020 1103 centered 0.01 0.73 ≈ 0
3021 697 multi-center 0.02 0.58 0.1

Real-RTUB 3002 28 no pattern 3.59 0.01 ≈ 0
3004 22 no pattern 5.93 ≈ 0 ≈ 0
3005 14 no pattern 10.86 ≈ 0 ≈ 0
3006 66 multi-center 0.73 0.09 0.1
3008 18 no pattern 6.87 0.01 ≈ 0
3009 28 no pattern 3.55 0.01 ≈ 0
3011 21 no pattern 6.11 0.01 ≈ 0
3012 21 no pattern 4.37 0.01 ≈ 0
3013 15 no pattern 9.52 ≈ 0 ≈ 0
3014 18 no pattern 6.43 ≈ 0 ≈ 0
3015 7 dispersed 18.86 0.05 ≈ 0
3016 63 long-tail 0.72 0.02 ≈ 0
3018 19 no pattern 6.37 ≈ 0 ≈ 0
3019 63 long-tail 0.83 0.02 ≈ 0

Table 2. Analysis results for spiky distribution and timing predictability hypotheses.
UDR stands for unknown data rate (equation 5).



There are a few insights obtained in this analysis. First, as discovered in
the earlier work [19], there are some flows in the emulated datasets that show
evidence of the existence of sequential patterns. In 14 out of the 19 flows, we
get a Kappa value that agrees on the existence of sequential patterns1 (i.e.,
Kappa is not around 0). Among them, 9 Kappa values show slight agreement
(Kappa values around 0.1) and 4 show medium agreement (Kappa values 0.3-
0.4). However, most of the flows from the Real-RTUx datasets have a Kappa
value around 0 and only four flows have a slight agreement on the existence of
sequential patterns. We speculate that the underlying sequences found in the
emulated datasets could be generated by the repeated workflow of the process
simulation programs.

Second, a first look at prediction accuracy may provide an impression that
real data have lower accuracy. However, if we only look into the flows containing
sufficient elements for learning (i.e., rows highlighted in gray), prediction accu-
racy is more related to distribution type than the type of datasets. Among all
the highlighted flows, centered patterns give better accurracy in predictability
irrespective of evidence of sequential patterns or not. Most of the flows of cen-
tered distribution type have high accuracy and a low Kappa value because most
of the intervals fall into the major spike2. Only the VirtualTB IOA 10011 flow
has high accuracy and Kappa. Long-tail patterns show higher prediction accu-
racy when there exists evidence of sequential patterns3. Multi-centered patterns
have higher prediction accuracy when the distribution is closer to a centered
distribution that most of the intervals fall into a few major spikes.

Third, compared with earlier work, our analysis gets improved accuracy for
some flows from the emulated datasets4 due to the choice of learning parameters.
The changes of the parameters include higher bandwidth for the kernel density
estimation, extended learning phase, and unlimited number of symbols for the
PSTs.

6.3 Correlation

With a p-value of 0.05, there are respectively 86%, 89%, and 74% of the flows are
significantly correlated within SmallTB, VirtualTB, and Real datasets. Figure 3
presents the dendrograms using Euclidean distance between observations/clusters
based on the absolute correlation. They show the observations/clusters for SmallTB,
VirtualTB, and Real datasets in learning (left side) and testing period (right
side), respectively. The leaves are the flow IDs, the height stands for Euclidean
distance and the dotted line is an example cut-off line that separates the flows
into clusters. The dendrograms of VirtualTB dataset have the same structure

1 SmallTB-RTU1 IOA: 1, 3, SmallTB-RTU4 IOA: 2, 4, VirtualTB IOA: 10002, 10005,
10011, 10013 10014, 10015, 10016, 10017, 10091, 10092

2 SmallTB-RTU1 IOA: 2, 4, SmallTB-RTU4 IOA: 3, Real-RTUA IOA: 3002, 3003,
3004, 3005, 3007, 3008, 3010, 3011, 3012, 3013, 3014, 3015, 3018, 3019, 3020

3 SmallTB-RTU1 IOA: 1, 3, SmallTB-RTU4 IOA: 2, 4, VirtualTB IOA: 10002
4 SmallTB-RTU1 IOA: 2, 4 and SmallTB-RTU4 IOA: 3



for learning and testing data. That is, for every cut-off line in the learning den-
drogram, one can find a corresponding cut-off line in the testing dendrogram
that generates the same clustering results.

In the dendrograms for SmallTB and Real dataset, there are a few flows that
jump from one group to another but the structure remains the same for most of
the time. For example, the cut-off line for Real data generates 6 groups in both
the learning and testing period. There are two highlighted groups G1 and G2 in
both trees. Flow RTUA 3016 is included in G2 of the learning tree, but it moves
to G1 of the testing tree in the testing period.

The results suggest that correlations between flows are complicated. A flow
can be correlated with multiple flows and the magnitude of correlations between
different flows may change from time to time. We speculate that the virtual
testbed has fewer dynamical processes so that it exhibits overly stable relations
between flows.

7 Conclusions

Due to the secrecy nature of SCADA traffic, lack of openly available datasets for
intrusion detection research has been an open question. Many research efforts
on intrusion detection systems in SCADA networks are tested with emulated
or simulated datasets. This study examined three hypotheses about IEC-104
spontaneous traffic attributes that were proposed or observed in previous work
with a comparison between emulated and real datasets. The results show that
emulated datasets are prone to simple and regular patterns.

In the spiky distribution analysis, the emulated datasets exhibit a unified
update rate of information that shows up as a unique gap size between spikes in
the whole system. The real datasets, on the other hand, exhibit a wide variety of
gap sizes in a system. Some of the flows even do not present a spiky inter-arrival
time distribution.

In the predictability analysis, the emulated datasets exhibit evidence of un-
derlying inter-arrival time sequences that make the timing of the next event
predictable. However, the real dataset suggests little evidence of underlying se-
quences.

In the correlation analysis, both the emulated and real datasets indicate that
traffic flows are intricately correlated. However, the correlations between flows
seem to be less dynamic in emulated datasets.

The study of differences between emulated and real datasets ought to be a
precondition for intrusion detection research, especially learning-based anomaly
detection systems. The results in this paper show that traffic attributes that exist
in emulated datasets may be not valid in real datasets. Therefore, it’s crucial to
select explainable features for anomaly detection systems when only emulated
datasets are available for learning and testing. The simpler and more regular
attributes can lead to overestimation of performance as well. This indicates room
for improvement of emulated datasets, such as more detailed and complicated
system configurations or adding random events to the process simulators.



Fig. 3. Correlation dendrograms for learning and testing period. Top: the small emu-
lated network, Middle: the RICS-el virtual network, Bottom: the real utility network.



One obvious future work is to find more attributes from different real datasets
and a systematic approach to generate realistic synthetic datasets. The results
in this study suggest the need to characterize the uncertainty of the selected
features. Another way is to make sanitized real datasets openly available by
applying traffic anonymization methods.
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