
Performance Study of Mixed Reality for Edge Computing
Klervie Toczé

klervie.tocze@liu.se
Linköping University
Linköping, Sweden

Johan Lindqvist
johli392@student.liu.se
Linköping University
Linköping, Sweden

Simin Nadjm-Tehrani
simin.nadjm-tehrani@liu.se

Linköping University
Linköping, Sweden

ABSTRACT
Edge computing is a recent paradigm where computing resources
are placed close to the user, at the edge of the network. This is a
promising enabler for applications that are too resource-intensive
to be run on an end device, but at the same time require too low
latency to be run in a cloud, such as for example mixed reality (MR).

In this work, we present MR-Leo, a prototype for creating an
MR-enhanced video stream. It enables offloading of the point cloud
creation and graphic rendering at the edge. We study the perfor-
mance of the prototype with regards to latency and throughput
in five different configurations with different alternatives for the
transport protocol, the video compression format and the end/edge
devices used.

The evaluations show that UDP and MJPEG are good candidates
for achieving acceptable latency and that the design of the commu-
nication protocol is critical for offloading video stream analysis to
the edge.

CCS CONCEPTS
•Networks→Networkperformance analysis; •Human-centered
computing → Empirical studies in ubiquitous and mobile
computing; •Computer systems organization→Cloud com-
puting; Real-time systems.

KEYWORDS
Edge/fog computing; mixed reality; open-source prototype; empiri-
cal performance evaluation.
ACM Reference Format:
Klervie Toczé, Johan Lindqvist, and Simin Nadjm-Tehrani. 2019. Perfor-
mance Study of Mixed Reality for Edge Computing. In Proceedings of the
IEEE/ACM 12th International Conference on Utility and Cloud Computing
(UCC ’19), December 2–5, 2019, Auckland, New Zealand. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3344341.3368816

1 INTRODUCTION
In the last decade, the rise of user resource demand for applications
has led to the emergence of cloud computing, that is especially
heavily used for providing storage as a resource. With the advent of
the Internet of Things (IoT), the amount of data to be processed is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
UCC ’19, December 2–5, 2019, Auckland, New Zealand
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6894-0/19/12. . . $15.00
https://doi.org/10.1145/3344341.3368816

straining networks. Moreover, new application areas such as online
gaming or remote surgery have stringent latency requirements that
the cloud, due to its typically remote location, cannot provide.

Therefore, a new paradigm has appeared where computation and
storage resources are moved closer to the end user, as a complement
to the cloud computing infrastructure. Fog computing [7], edge
computing [23] or distributed cloud bears with it promises such as
low latency, increased privacy and reduced load on the network. In
the rest of the paper, we choose to use the term edge computing to
refer to this new paradigm.

Application areas for edge computing are very diverse, including
content delivery, healthcare, connected vehicles, and smart grid,
and adopt the paradigm in various degrees of maturity[1]. How-
ever, it is hard to find data coming from a real implementation in
some application area in order to make systematic performance
benchmarking studies. This is one motivation for choosing mixed
reality (MR) as a vehicle for such studies in this paper.

What does this MR area correspond to? In a recent survey, Bekele
et al. [5] present the reality-virtuality continuum and its evolution
since the original description by Milgram and Kishino [18]. This
continuum presents the span between reality on one side and virtual
reality (VR) on the other side. In between are augmented reality (AR)
and augmented virtuality (AV), depending on how much virtuality
is embedded in the real-world. MR is the umbrella term for both AR
and AV, designating any technology mixing reality and virtuality.

MR is an application area that is well-suited for edge computing
since it usually requires a high amount of computation and low
latency in order to achieve high quality of service (QoS). In this
study, we consider an MR application that constructs a 3D map of
the user environment and can place virtual objects into it. Such an
application requires advanced computer vision algorithms in order
to perform the task. Our goal is to study the case where such an
application would be run on a device with limited capabilities, and
understand trade-off between various choices from the end device
to the edge and back. To the best of our knowledge, there is no
freely available MR application using edge computing that can be
used to understand the resource-timeliness trade-offs in this area.

We believe that this knowledge is useful for several reasons.
First, it is of interest for all researchers designing algorithms and
techniques for the edge paradigm (e.g. task placement), to have
information about as many workloads as possible in order to test
their work. Further, it gives some insights for technology devel-
opers about the challenges to overcome in order to deploy such
applications and highlights areas for conducting further research.

Hence our work aims at answering the following research ques-
tions: Is offloading all MR-related computations to the edge empiri-
cally feasible? What resources are required (especially for network-
ing, but also for computing on the devices)? What is the impact on

https://doi.org/10.1145/3344341.3368816
https://doi.org/10.1145/3344341.3368816

performance considering different design choices for specific parts
of the system?

Those research questions are answered by the following contri-
butions: 1) MR-Leo, a generic framework for offloading analysis of
video streams to the edge, 2) a prototype implementation of it in
the context of MR, released open-source, 3) a study of the impact of
current one-hop communication on the overall performance, and 4)
a study dissecting the end-to-end latency of one frame on a couple
of hardware configurations. Essentially our study points clearly
to the significance of reducing transmission times for this class of
applications, e.g. through future generation networks.

The paper is structured as follows. Section 2 presents related
works. Section 3 introduces offloading for the edge and our case
study. Then, Section 4 presents the MR-Leo implementation, and
Section 5 describes the performed performance evaluation. Results
with regards to communication are in Section 6 and we dive into
end-to-end frame latency in Section 7. We conclude in Section 8.

2 RELATEDWORKS
In a recent survey, Chatzopoulos et al. [9] describe the current state
of the mobile AR area and the need for offloading some of the heavy
computations required by AR applications. Such an offloading can
be done: on a companion device, in the cloud or at the edge; and
in two ways: either the rendering is still performed locally or both
the rendering and the computing are performed on the remote
device. Another possibility is to use approximate computing but
this technique is still at an early stage. In this paper, we investigate
the case where both rendering and computing are offloaded.

The idea of offloading MR tasks has been studied in the con-
text of cloud computing. Luo [17] implemented a gesture interface
running on a local cloud located within the University of Illinois
that is rendered on a display wall. Naqvi et al. [21] implemented
an enhanced indoor positioning system giving the user extra in-
formation about where she is by analyzing the environment. They
successfully offloaded the object recognition task to the cloud. How-
ever, the recognition latency was high, at best 2 seconds. Shea et al.
[25] created an application similar to the Pokemon Go game where
they offload part of the computation to the cloud. The rendering is
performed in the end device, which differs from our study. Huang
et al. [15] propose a framework called CloudRidAR for creating AR
applications using the cloud for offloading parts of the AR tasks. In
their prototype, the rendering is done on the end device and the
feature tracking at the edge as this part is more computation-heavy.

As edge computing aims at reducing application latency, it is
promising for MR and a few works have started investigating it.
For example, Ahn et al. [3] study the filtering of AR application
content using reinforcement learning techniques. They evaluate
their proposed optimized policy in a custom-built AR simulator
based on the Unity game engine. The same group made a later
study [2] about imitation learning for personalized AR, still using
their custom AR simulator. Different from them, we implement and
evaluate an actual implementation of an MR application. Zhang
et al. [31] study the use of different edge devices for performing
the tasks of encoding and rendering, in order to improve quality
of service. They evaluated their optimized solution with simulated
user demand. Our work is complementary, as we study performance

with actual user demand, for one edge device computing both the
rendering and the encoding.

In their work, Chen et al. [10] study prototypes for seven different
wearable cognitive assistance applications. They use their Gabriel
platform [14] for implementation. Their evaluation study includes
a comparison of running the application at the edge or in the cloud,
using 4G or WiFi for the first hop connection, and a comparison of
using smart glasses and mobile phones. Their study shares some
similarities with ours, in the sense that they also study the latency
of AR applications in different setups and investigate the impact
of different hardware characteristics at the edge, however it also
differs on several points: we consider a type of application that has
not been studied in this context (i.e. one that presents an enhanced
video stream to the user and not only visual or auditive indications),
and present an extensive study about the communication link. In
contrast, Gabriel only uses MJPEG over TCP.

Recently, Trinelli et al. [30] investigated Network Function Virtu-
alization for providing computing acceleration for MR by offloading
to the edge. The MR application type considered was object detec-
tion using machine learning (ML) techniques. In their framework,
called NEAR, they consider that the device creating the video stream
is different from the one displaying the MR-enhanced stream. In
our case, this is done in the same device.

Object recognition using ML is also the focus of Zhang et al.
[32]. Their system called Jaguar can recognize an object with low
latency, after an offline training phase of the edge part. Contrary to
our work, they perform some pre-processing of the video frames
on the end device, whereas we do all the processing at the edge.

The field of MR and especially AR is very active, and can be
considered as one of the killer app for edge computing [10]. One of
the latest realisation platforms is WebAR. In WebAR, a browser is
used to provide an AR solution that is supposed to be lightweight
and cross-platform. Qiao et al. [22] evaluate the performance of a
WebAR implementation that showed lower latency when run at
the edge compared to when running on the end device. Different to
them, we use an application MR, which is still the most commonly
used scenario while WebAR is still in the emerging phase [22].

There are few studies comparing different transmission protocols
in client-server relationships in MR-related contexts. For example,
Fernandez et al. [12] found that UDP allows twice as many sup-
ported clients as TCP in a collaborative augmented reality scenario.
However, in this case, the messages exchanged between the clients
are about the location, and not about video streams as in our case.
When implementing their Gabriel prototype, Ha et al. [14] tested
both TCP and UDP and concluded that the difference between them
in terms of response time was negligible when transmitting over
Wi-Fi. They then decided to use TCP to avoid the complexity added
by UDP for maintaining reliable transmission. As our application
differs from the ones studied using the Gabriel framework, we com-
pared the two protocols to see if it makes a difference in this case.
The NEAR framework of Trinelli et al. [30] only considered TCP.

Finally, among the above prototypes or frameworks implemented
by researchers, it is noticeable that only the Gabriel platform is
available as open-source software, thus enabling further research
and easier comparison of similar works. We believe this is an im-
portant aspect and therefore provide our prototype implementation
open-source for the community to use.

To summarize, edge computing promises very short latencies
but the review above shows that so far no benchmarks with strict
timing requirements are used in edge research papers.

3 OFFLOADING MR TO THE EDGE
In this sectionwe first discuss themotivation for performing offload-
ing to the edge, then we define the problem that we are considering
in this paper. Finally, we present our developed application, which
exploits mixed reality.

3.1 Motivation
MR applications usually require a lot of computation resources
for their execution, due to the complexity of the computer vision
algorithms and/or graphic algorithms included. This has the con-
sequence that some applications can only be run on powerful ma-
chines and not on mobile ones [9], even though those are becoming
more and more powerful. This is verified by looking at the MR
frameworks released by Google (ARCore) or Apple (ARKit) to run
on their smartphones. Both are only supported for a limited range
of devices1,2, which have high CPU power and motion sensors, but
can nevertheless get into high temperatures upon this usage.

Even though mobile devices such as smartphones are nowadays
quite powerful, developing techniques for offloading at the edge
is also an enabler for providing MR on other types of end devices
(e.g. wearable devices), that are more resource-constrained than
smartphones [26].

Offloading to the cloud, that can be considered as having un-
limited resources, is one of the solutions that has been envisioned
in the past [15, 17, 21, 25]. However, with the recent advent of
edge computing, works such as the one from Chen et al. [10] have
shown that using edge is clearly preferable to using cloud for AR
applications, because of the reduced latency delay that edge implies.

In addition to latency considerations, offloading to the edge is
also preferable from an energy point of view as the telecommu-
nication networks have the highest share of the overall energy
consumption of ICT, and the fact that edge computing consists of
local traffic is a step in the right direction [4]. Keeping the com-
putation as close as possible to the end users would also keep the
energy cost of MR applications as low as possible.

3.2 Problem Description
In this work, we study the process of edge offloading, i.e. moving
parts of an application to the edge in order to perform the heavy
computation there and free resources in the end devices. The aims
are to either enable the application to run on devices with lower
capabilities and lower heat, free resources on end devices in order
to run other applications, and extend the battery life of end devices
running the application. This generic idea of edge offloading is
illustrated in Figure 1. The input can for example be sensor data
such as a video stream or a GPS location, and the output something
that will be displayed to the end users.

We consider the case of an application that gathers input and
outputs results in the same end device (as shown in Figure 1). Other

1For ARCore: https://developers.google.com/ar/discover/supported-devices
2For ARKit: https://www.apple.com/ios/augmented-reality/

Figure 1: Generic idea of edge offloading

works like the one by Trinelli et al. [30] considered the case where
the input and output devices are different.

In order to make an offloaded version of such an application,
one needs to first identify the parts of the application pipeline that
are resource intensive (in orange on Figure 1) and then to make
them execute at the edge instead. Input and output processing
on the end device can be more or less resource-heavy depending
on the application. In the offloaded scenario, communication is
required between the end and the edge devices in order to make the
application work. Hence, the quality and characteristics of those
two communication links are going to be decisive for the final QoS
of the offloaded application.

Ideally, those communication links should:
• Have a low latency, in order to keep the final total latency
as low as possible

• Have sufficient bandwidth, for handling the data required
by the application

• Be reliable, or have a back-up solution if the link is not
available

• Be secure, to ensure the application will not be affected by
attacks.

• Guarantee privacy, as sensitive data may be required for
the application

It should be noted that the above problem is described in a generic
way and could be used for any application. In this work, we conduct
a case study of the above problem in the context of mixed reality,
and focus on the first two aspects of the communication links.

3.3 Case Study: Mixed Reality
An MR application aims at enhancing reality with virtual elements.
It can be including a few virtual elements, like an Android mascot
in a room , or many virtual elements like real persons moving into
a virtual city.

The basic phases of an MR application are illustrated in Figure 2.
First the reality is captured, usually in the form of a video stream
(1), then this stream is analyzed and a virtual representation of
the world is constructed (called the point cloud) (2). After that, the
virtual graphics are created and placed to be at the wanted position
(3) and finally the resulting video stream is displayed to the user
(4). Next, we describe these in more detail.

Sensor input: The end device can be equipped with different
sensors, the most common being a camera that will gather a video
stream of the reality. This input can also be combined with other
sensory input such as input from the Inertial Measurement Unit, to
give more precise information about the end device’s movement.

https://developers.google.com/ar/discover/supported-devices
https://www.apple.com/ios/augmented-reality/

Figure 2: MR application pipeline

Point cloud: In order for the virtual elements to blend nicely in
the reality and therefore bring the illusion of reality to the end user,
the MR application needs to create a virtual representation of the
surroundings of the end devices and to follow the location of the
end device in this environment. For example, this will enable the
detection of flat surfaces (horizontal or vertical) in order to place
virtual elements, such as a 3D virtual touristic guide at a position
that makes sense for a human. For example, it would seem strange
to have the guide walking on a wall.

In order to create this representation, simultaneous localization
and mapping (SLAM) techniques have been developed in the past
[8, 13]. Those techniques enable the creation of a 3D map of the
surroundings and keep track of the end device’s position within
it. This 3D map is often modelled as a 3D point cloud. This part is
very computationally intensive since advanced computer vision are
required for e.g. edge detection, human face detection, and structure
from motion, to create the surroundings map.

Graphic overlay:Once the point cloud is created, it will be used
to provide the MR functionality, for example to place the virtual
element(s) when needed. A visualization of the point cloud can also
be output to the user. Depending on how fine the virtual objects
should be rendered (only text or 3D objects with use of shadows,
refined textures, etc.) the resource requirements for this part vary.
After creating the virtual element(s), this part uses the point cloud
information to place each element at an appropriate location in
the surroundings of the end device, thus creating an overlay to the
initial video stream.

Display: Finally the resulting video stream comprising the origi-
nal video stream with the added virtual graphic overlay is displayed
to the end user.

In our case study, we want to offload the parts (2) and (3) of
the MR application pipeline shown in Figure 2 as candidates for
heavy computation. The point cloud creation part (part (2)) is always
computationally intensive, whereas the graphic overlay creation
(part (3)) may not be. However, it requires the knowledge of (2) in
order to work correctly. As the point cloud data is quite important
and modified all the time, it is not desirable to transmit it frequently.
Parts (1) and (4) are kept in the end device and correspond to the
input and the output steps in Figure 1.

4 PROTOTYPE IMPLEMENTATION
In order to make an empirical study of the feasibility of offloading
to the edge for an MR application, we developed our own prototype.
This is to the best of our knowledge the first available open-source
prototype for MR that allows video streaming back to the end device
and in-depth study of the communication link.

In the following sections, we present the architecture of the pro-
totype, some design choices and discuss insights gained during the
implementation process. The code for the prototype is made fully

Figure 3: Overview of the MR-Leo architecture.

available online3,4 in the hope to contribute to further development
and studies of MR. In addition to the code, readers interested in
implementation details are referred to [16].

4.1 Architecture
MR-Leo has a client/server architecture. On the client side (the
end device), only the input/output tasks of Figure 1 are performed,
corresponding to parts (1) and (4) of the MR pipeline presented in
Figure 2. On the server side (the edge device), the heavy computa-
tion part of Figure 1 is performed, corresponding to parts (2) and
(3) of Figure 2.

To implement the communication link that will transport the
required data between the end and the edge devices (yellow arrows
in Figure 1), two major aspects had to be dealt with. First, there was
a need to perform encoding and decoding of the video stream on
both the end and the edge device. Second, a transmission protocol
had to be chosen for the video stream. As we want to study different
alternatives for those parts, the architecture is made modular to
allow switching between different variants for those components.

Figure 3 presents a high-level view of the MR-Leo architecture.
The client part takes two types of input: video input (either coming
from the end device’s camera or a recording) and user input (e.g.
pressing the screen to add an MR element). The client outputs via
the user interface both the original video stream and the resulting
MR-enhanced video stream on the end device display. The video
streamer and the video receiver are in charge of preparing the video
for transmission, respectively reception over the communication
link (including encoding, respectively decoding).

On the server part of MR-Leo, there are two kinds of input
possible, both coming from the client part: the encoded video stream
and messages indicating user input. The server outputs an MR-
enhanced video stream to the client. Mirrored from the client, the
arriving video stream has to be decoded and the MR-enhanced
stream is encoded before leaving the server. The central part of the
server software is theMR component, where the heavy computation
described in parts (2) and (3) of Figure 2 is performed.

The MR-Leo architecture is modular, making it easy to test dif-
ferent networking protocols, encoders/decoders or MR frameworks
(for example other implementations of SLAM techniques such as
CNN-SLAM [29] or LSD-SLAM[11]).

3https://gitlab.liu.se/ida-rtslab/public-code/2019_mrleo_server
4https://gitlab.liu.se/ida-rtslab/public-code/2019_mrleo_client

https://gitlab.liu.se/ida-rtslab/public-code/2019_mrleo_server
https://gitlab.liu.se/ida-rtslab/public-code/2019_mrleo_client

4.2 Design choices
MR-Leo was implemented to work on an Android smartphone
acting as the client and a Linux machine acting as the server. To
implement the MR-Leo architecture, we use a mix of already exist-
ing software frameworks and libraries and custom-implemented
components, when off-the-shelf alternatives were not suitable or
available. Figure 3 also indicates the parts we implemented com-
pletely ourselves (in blue), the parts where we reused existing
open-source libraries (in pink) and the parts for which we modified
existing open-source libraries (in purple). For some parts (indicated
with a blue/pink fading), it depends on the configuration chosen.

The open-source frameworks that were used were: Gstreamer5
for implementing the video streaming/receiving parts, ORB-SLAM2
[20] for SLAM techniques for MR, and Pangolin6 for rendering MR
graphics to an image feed. It was out of the scope of this work to
evaluate the performance of the SLAM algorithms used. Therefore,
we selected the ORB-SLAM2 framework that obtained good results
in the SLAM benchmark SLAMBench2 [6], as a representative for
state-of-the-art SLAM framework. For the server video streamer
and the client video receiver, we use Gstreamer or a custom im-
plementation of an MJPEG encoder/decoder as alternatives in our
evaluations below.

4.3 Insights
During the implementation of MR-Leo, we gained several important
insights about what to consider when developing anMR application.
We describe them here as they might be guidelines for further work
in this area.

Currently, the SLAM algorithms used at the edge for creating
the point cloud do not have a bounded execution time. This means
that it can take variable time analyzing a specific frame. During
that time, the next frames cannot be analyzed and are queued
in the server. In order to avoid latency accumulation, a resilient
mechanism has been implemented to ensure that outdated frames
will not be handled by the application and are dropped. However,
this should not be happening too often in order to keep the QoS.
Therefore, one guideline for developing a responsiveMR application
is to strive towards handling a frame before the next one comes.

Although the communication between the end and the edge
devices and the MR calculations may appear as being two separate
parts of offloading to the edge, they are in reality intertwined. In-
deed, what is chosen as communication link will have an impact
on the quality of the video stream to be used as input for the MR
algorithm. If this quality is too low for the chosen MR algorithms,
then the QoS of the application will degrade, not because of the
choices made for MR but due to the communication link.

Some important benefits of taking off-the-shelf components for
implementing MR-Leo are: reduced developing time, access to a
community and less frequent (or patchable) bugs. However, this
choice also comes with important drawbacks in the context of MR.
We noticed that in order to achieve the low latency which was
our target for MR at the edge, one has to optimize both the MR
framework and create tailored streaming components that are more
specialized than the current ones.

5https://gstreamer.freedesktop.org/
6https://github.com/stevenlovegrove/Pangolin

Figure 4: Mixed Reality scenario used in the experiments.

Finally, encoders/decoders used are sensitive to the frame rate of
the video stream and irregular frame arrivals will have a negative
effect on performance. Therefore, another guideline for develop-
ing an MR application is to reduce the difference in time spent
for analysis of each frame, so that the MR output is as regular as
possible.

5 PERFORMANCE EVALUATION
In this section, we present the experimental setup in which all the
following experiments were conducted. Then, we discuss the used
metrics and in particular the concept of end-to-end (E2E) latency
for mixed reality. After that, we present the evaluation results for
our baseline configuration and discuss acceptable performance.

5.1 Evaluation Setup
We first describe the scenario and then the test environment.

5.1.1 Experiment scenario. An experiment consists in capturing a
dynamic scene with a smartphone and sending the captured video
stream to an edge device that will analyze it to create a point cloud.
The scene is dynamic because the camera is moving. Then, the
stream is augmented with a visualization of the point cloud sent
back to the smartphone. Figure 4 presents this scenario. We can
see that in addition to the steps present in Figure 2, the prototype
requires additional steps related to the video transmission between
the end and the edge devices. In addition, the smartphone user can
press a button in order to add a virtual element to the scene. In this
case, the steps performed are a bit different, as shown in green on
Figure 4. The main difference is that the uplink transmission now
only consists of a message indicating the element to be added, and
not of the full video stream.

The evaluation in this work consist in comparing different con-
figurations that can be used for the scenario presented in Figure 4.
The configurable parts were i) the video compression format used
for encoding at the end device (and necessarily, for decoding at the
edge device) (i.e. (b) and (d) on Figure 4), ii) the transport protocol
used for the uplink transmission ((c)), iii) the video compression for-
mat for encoding at the edge device (and necessarily, for decoding
at the end device) ((g) and (i)), iv) the transport protocol used for
the downlink transmission ((h)). The other parts of the prototype
can be modified but this was out of the scope of this work.

Each experiment was conducted 30 times for the same config-
uration in order to mask any network interference or computing

https://gstreamer.freedesktop.org/
https://github.com/stevenlovegrove/Pangolin

Figure 5: Test environment.

hardware performance fluctuations. In order to ensure reproducibil-
ity between the runs, a video play-back is used instead of the actual
camera feed. The test video used is 60 seconds long and is set up in
an indoor environment. The full video is available online7, and has
a resolution of 640x480 pixels and a frame rate of 30 fps.

During each experiment run, the addition of a virtual element
was automatically triggered five times, every 10 seconds.

5.1.2 Test environment. We first ran the experiments with a first
edge/end device pair, hereafter called the baseline devices. Then,
we conducted a second set of experiences with another edge device
or end device that exhibit different characteristics of interest. Those
are denoted as the extra devices in the paper.

Regarding edge devices, the baseline device is a Lenovo Thinkpad
T450s laptop. The laptop runs Ubuntu 18.04 and has 12 GB RAM
and an Intel Core i5-5200U CPU (2.2 GHz, 2 cores, 4 threads), which
is classified as a high mid-range CPU as of July 2019 [27]. The extra
edge device is an HP Elitebook 840 G5. It runs Ubuntu 18.10 and
has 16 GB RAM and an Intel Core i7-8550U CPU (1.8 GHz, 4 cores,
8 threads), which is classified as a high end CPU as of July 2019
[28]. Therefore, the extra edge device is expected to be somewhat
more powerful than the baseline one.

The baseline end device is an LG G6 smartphone running An-
droid 8.0 and equipped with the Qualcomm Snapdragon 821 mobile
platform. It contains a Qualcomm Kryo CPU (2.4 GHz, 4 cores) and
4 GB RAM. The extra end device is a Samsung A5 (2017 model)
also running Android 8.0 and equipped with the Samsung Exynos
7880 mobile processor. It contains a Cortex A53 CPU (1.9 GHz, 8
cores) and 3 GB RAM. Compared to the baseline device it is a bit
less powerful but provided hardware from a different vendor.

During the experiments, all third-party applications on the end
devices were uninstalled, and the internal applications that could be
disabled were disabled. On the edge devices, no other application,
scheduled tasks or other services were running in the background.

The experiments were performed over a local network set up
using an Asus RT-N12 router disconnected from the Internet. The
edge device was connected to the network using an Ethernet ca-
ble and Gigabit Ethernet (1000 Mbit/sec), and the end device was
connected using an 802.11n wireless network. The end and edge de-
vices were placed within one meter from the network gateway, and
the same positions were used for all tests using the same devices.
Figure 5 shows a picture of the test environment.

7https://gitlab.liu.se/ida-rtslab/public-code/2019_mrleo_video

5.2 Performance Metrics
In order to measure the performance of the prototype application
in the different configurations, we study two different aspects. Both
are of importance so that the virtual elements integrate seamlessly
with the reality, i.e. for QoS. The first aspect is the latency of the
application. This one should be low in order for the application
to be reactive enough the user’s movement and interactions. The
second aspect is the throughput of the application, i.e. how much
of the incoming stream is displayed with the added virtual elements
to the user. This contributes to QoS by being related to how well the
virtual elements integrate with the reality in a seamless manner.

For the latency aspect, the metric commonly used [10] is end-
to-end (E2E) latency. However, in the context of this study, this
could mean two different things. The first way to consider E2E
latency is to measure at the end device the time elapsed between
the moment the end user presses the "Add virtual element" button
and the moment when the virtual element appears on the display
(Steps (a-bis) to (j) on Figure 4). We denote this first latency metric
as the time to virtual element (T2VE). This is the metric considered
for E2E latency by Chen et al. [10].

However, we argue that in our MR scenario, E2E latency could
also be understood and measured as the time it takes for a captured
video frame to be displayed with the MR enhancement on the
display (Steps (a) to (j) on Figure 4). In our scenario, this is expected
to be different from the T2VE as the video has to be transmitted to
the edge device and back, and not only one way. We denote this
second latency metric as the frame round trip time (FRTT).

The T2VE is automatically measured by adding in the mixed
reality part, in addition to the virtual element, a row of pixels
with a uniform color not present in the video and detecting in the
end device the appearance of this row. Our tests showed that this
detection is lightweight and do not impact the results. Similarly,
we modify some frames of the original video to contain a row of
pixel with a second color for the FRTT measurements.

The throughput aspect corresponds to how many of the incom-
ing frames are processed by the edge device and how many are
discarded due to the resilient mechanism described in Section 4.2.
Indeed, in order for the SLAM algorithms to perform well, the num-
ber of frames dropped should be as low as possible. We measure
this second aspect as the number of frames received at the end
device. This way, we account for frames loss in the MR algorithms,
but also during transmission, which is part of the prototype under
evaluation.

5.3 Evaluation of the Baseline Configuration
In the rest of the paper, the baseline configuration consists of the
baseline end device and the baseline edge device using a H.264
video stream transmitted over TCP. Those two were chosen because
H.264 is widely used for video streaming, and TCP has been chosen
for other MR prototypes [10]. We evaluate this baseline using the
performance metrics presented in Section 5.2.

Figure 6a shows the cumulative distribution function (CDF) of
the T2VE measurements for the baseline configuration. It can be
seen that the value at the 90th percentile is 1122 ms, but also that
the it can be as low as 208 ms or as high as 4363 ms. Since this data
includes the measurements made during the 30 runs for the five

https://gitlab.liu.se/ida-rtslab/public-code/2019_mrleo_video

(a) T2VE, all virtual elements (b) T2VE, virtual element added
at 30 sec (unstable point cloud)

(c) T2VE, virtual element added
at 40 sec (stable point cloud)

(d) FRTT

Figure 6: Latency CDFs for the baseline configuration.

times a virtual element is triggered, we performed further analysis
to identify what is causing those extreme values.

We find out that in the test video, there is in particular one
moment where the SLAM framework has difficulties in constructing
the point cloud. This moment happens around 30 seconds, when the
camera moves out of the previous scene to film the surroundings.
If we isolate the measurements for the virtual element triggered at
30 seconds (presented in Figure 6b), we can see that they show a
lot higher latency with the 90th percentile at 2313 ms, more than
double compared to the whole dataset. This is a direct consequence
of the point cloud being lost in theMR system, so the virtual element
cannot be placed and rendered until the point cloud is recovered.

On the contrary, Figure 6c shows the CDF for the T2VE the next
time a virtual element is triggered. At this moment in the video,
the point cloud creation is stable, and then the T2VE is 6.8 times
lower than for the previous one, with a 90th percentile at 342 ms.

During each experiment run, we measure the FRTT for six differ-
ent frames, with ten seconds within them. Figure 6d shows the CDF
for the FRTT measurements. We note two interesting aspects. The
first one is that contrary to the T2VE measurements, the FRTT mea-
surements are less spread. This is due to the FRTT measurements
occurring when the point cloud is stable. The second aspect is that
the FRTT measurements show 1.6 times higher latency at the 90th
percentile than the T2VE ones (538 vs 342 ms). This is expected as
the "add a virtual element" message is transmitted faster than the
video stream itself, in its own data link.

Finally, we find that the baseline throughput varies but in 95%
of the cases is superior or equal to 24 fps (not shown due to space
limitations).

5.4 Acceptable Performance
In order to evaluate the intrinsic performance of the prototype,
we look up for performance guidelines for MR applications in the
literature, related to the two aspects of performance investigated.

With regards to the latency aspect, the idea is that the MR en-
hancement should appear as immediate to the user. In his study of
acceptable response time for human-computer interactions, Miller
[19] present the limit of 100 ms for the system’s answer to be
perceived as immediate. 100 ms is also the higher bound that is
considered as the limit after which an online action-based game will
be perceived as unplayable [24]. However, the latency is dependent
on the end device used. For example, mixed reality projected inside
VR glasses requires latency to be under 20 ms in order to prevent

Comm.
service

Point
cloud

Graphics Transmission

Average time spent
per frame (ms)

5 31 5 448

Standard deviation
(ms)

7.8 6.5 1.7 45.6

% of total FRTT 1% 6% 1% 92%
Table 1: Breakdown of the average FRTT.

motion sickness [9]. In our phone-based scenario, we adopt the
threshold for acceptable performance as 100 ms.

With regards to the throughput, the displayed video stream
should display a high-enough frame rate so that the user cannot
identify individual frames. We consider that an acceptable perfor-
mance on the end device is a video stream returned from the edge
device at 24 fps, which is the standard used in the movie industry.

5.5 Discussion
With regards to the thresholds defined above, the baseline configu-
ration achieves acceptable performance for the 90th percentile with
regards to throughput but not with regards to latency, whether it is
T2VE or FRTT. In order to identify which part of the system is the
bottleneck, we perform a breakdown of the average FRTT (Table
1).

We can see that the vast majority (92%) of the latency is spent
in the transmission. Therefore, we investigate alternatives to the
baseline configuration for the video transmission in Section 6. More-
over, the latency breakdown indicates that time is spent in the
communication service. In particular, frames are queued before
being processed by the edge device due to the MR framework being
occupied at processing one of the previous frames. Therefore, it
is also relevant to investigate the impact of added computational
resources, which we do in Section 7.

Another interesting thing that came out of the baseline configu-
ration evaluation is the fact that the video stream used will have an
important impact on the performance of the application. When the
point cloud is stable (i.e. measurements at the 20th, 40th and 50th
seconds), T2VE is lower than when the SLAM framework used is
having issues.

Finally, the difference in measured latency for T2VE and FRTT
shows that when studying the performance of an MR application
that offloads both the computing and the rendering it is important

Figure 7: Number of tracked points depending on transport
protocol and bandwidth.

to consider both in order to get a correct idea of how the application
is performing.

6 STUDY OF THE COMMUNICATION LINK
The prototype was designed so that it is easy to study the impact of
changed modules, e.g. the video compression format. Previous work
focused on the computational part. Here, we investigate what could
be done in order to decrease the time spent in the communication
link, compared to the baseline solution. We study two aspects of
the communication link between the end and the edge device: the
transport protocol and the video compression format.

6.1 Impact of the Transport Protocol
The transport protocol typically used in related works is TCP. This
protocol ensures all the video frames will arrive and in the correct
order. However, this comes at the cost of the overhead for the
acknowledgment packets. Using UDP, there is no guarantee that all
the frames will arrive and in which order, but it is more lightweight.
In this section, we study the impact of replacing TCP with UDP
in the baseline configuration used in steps (c) and (h) depicted on
Figure 4. The rest of the steps are not modified.

We find that changing the transmission protocol has an impact on
three aspects of the communication link: the minimum bandwidth
required, the latency of the MR application (both T2VE and FRTT),
and the application throughput.

As described before, the MR framework requires images of a high
enough quality in order to create a point cloud. If the video frames
have been compressed so much that interesting features are not dis-
tinguishable anymore, then the MR application will not be able to
deliver its service. In the prototype, how much the frames from the
video stream are compressed is directly related to how much band-
width is available on the link. Therefore, we performed a separate
experiment that step-wise increased the bandwidth available on the
communication link and measured the number of feature points
tracked by the MR framework. The results ae shown in Figure 7 and
we found that a suitable and stable amount of feature points (around
250) can be achieved for a bandwidth of 2000 kbit/sec for TCP and
4000 kbit/sec for UDP. The difference is due to the fact that UDP
has to transmit complete frames all the time because some could be
lost whereas TCP only needs to send the difference between frames
most of the time. We use those bandwidth values for the latency
measurement in order to compare latency and throughput for a
similar frame quality used as input to the communication service.

(a) T2VE, virtual elements added
with a stable point cloud.

(b) FRTT

Figure 8: Latency CDFs for the UDP configuration.

With regards to latency, Figure 8a shows the CDF of T2VE mea-
surement for the UDP configuration, with data when the point
cloud is stable. At the 90th percentile, the T2VE with UDP is 3.7
times lower than for the baseline using TCP (177 ms vs 654 ms).

Similarly, Figure 8b shows the CDF for FRTT with UDP. We
observe that the behaviour is similar to the one for TCP but the
latency is also lower for this metric, with a 90th percentile at 392
ms. However, the gap between TCP and UDP is lower for FRTT;
UDP is only 1.4 times faster than TCP for this metric.

With regards to throughput, the acceptable frame rate of 24 fps
is achieved 79% of the time with UDP, which is lower than for TCP.
This is explained by the fact that frame losses are going to be higher
with UDP since the protocol has no guarantee for receiving them
and this can impact not only the frames loss during the communica-
tion but also the performance of the SLAM framework as it may be
harder to maintain the point cloud if frames are missing (meaning
that the computing time per frame at the edge may increase).

6.2 Impact of the Video Compression Format
Another interesting part of the communication link is the video
compression format, because it will have an effect on how long the
encoding/decoding phases will be. As an alternative to the common
H.264 format used in the baseline, we use in this section another
common format: the MJPEG one, for the steps (g) and (i) of Figure
4. No other step is modified and the bandwidth used is the same.

We find that using the MJPEG format improves the latency (both
T2VE and FRTT), as shown in Figures 9a and 9b. The latency at the
90th percentile is indeed 6.7 times lower (98 ms) for T2VE and 2.2
times lower (245 ms) for FRTT.

With regards to the throughput, the MJPEG configuration per-
forms similarly to the H.264 one, with a frame rate superior or
equal to 24 fps 96% of the time. Since the MR edge part gets exactly
the same input as the baseline, this shows that the MJPEG encod-
ing/decoding does not impact the frame rate negatively at the same
time as it improves the latency.

6.3 Summary
We showed that using UDP instead of TCP has the potential of
reducing the latency of the MR application. However, this comes at
the cost of higher bandwidth required for the communication link
and theMR framework has to tolerate potential loss of frames. Thus,
application developers or edge infrastructure providers will have
to keep these trade-offs in mind when deploying their services.

(a) T2VE, virtual elements added
with a stable point cloud.

(b) FRTT

Figure 9: Latency CDFs for the MJPEG configuration.

Our study of the video compression format showed that our cus-
tom implementation of an MJPEG encoder/decoder for the down-
link keeps the high frame rate of GStreamer using H.264 but at a
lot lower latency. Further quality of experience (QoE) studies are
however required in order to determine the impact of using a differ-
ent video compression format on the quality of the resulting video
depending on the bandwidth used. Indeed, the current prototype is
not affected with regards to QoS by an unsufficient bandwidth on
the downlink, but the end user QoE might be.

One further performance gain is to use hardware encoding in-
stead of the software encoding used at the moment. Preliminary
tests performed indicate that this has the potential of lowering the
latency even more when using UDP.

7 A DEEPER LOOK AT FRTT
FRTT is important in the studied MR application as it has a high
impact on the QoS. If the FRTT is too high, the user will notice that
the video stream containing the virtual elements is not matching
what he/she is currently filming.

In this section we test two hypotheses. As visible in Table 1,
although the bulk of the FRTT is spent for transmission, around 1%
of the total (corresponding to 5% of the acceptable performance) is
spent in queuing frames in the edge part since the MR framework
is already busy. Therefore, the first hypothesis (H1) is that using a
more powerful edge device will remove this queuing time, and thus
reduce the FRTT. Then, as all the heavy computations are performed
at the edge, the FRTT should not be impacted by changing the end
device. This is the second hypothesis (H2).

7.1 H1: A better CPU improves FRTT
In order to test H1, we compare the performance of the prototype
application when running on the baseline edge device and on the
extra, high-end edge device. Table 2 summarizes measurement
statistics, where MR includes point cloud creation and graphics.

In particular, we present in Figure 10a a breakdown of the aver-
age FRTT for different configurations. The results are surprising,
because the average FRTT for the high-end configuration is 1.13
times higher than for the baseline configuration. Hence, an edge
device with a more powerful CPU does not necessarily reduce the
FRTT, it can actually increase it.

Even though the overall FRTT is increased, we zoomed in on the
part of it that is spent at the edge. Figure 10b shows that the queuing
time in the communication service is indeed reduced when using
the high-end configuration. The MR framework is also executing

Avg σ 90th Min Max

Ba
se
lin

e Graphics 5 2 6 3 50
MR 36 7 44 19 131
Edge 41 12 58 20 132
FRTT 489 50 538 380 759

H
ig
h-
en
d Graphics 4 1 4 2 18

MR 24 4 27 15 93
Edge 24 5 27 16 93
FRTT 552 50 635 472 676

Sa
m
su
ng Graphics 5 2 6 3 49

MR 36 7 45 20 133
Edge 42 13 61 20 138
FRTT 666 37 705 591 827

Table 2: Performance measurements statistics (ms).

(a) Average FRTT (b) Average edge processing time

Figure 10: Latency breakdown for different configurations.

faster. However, the high-end configuration had negligible impact
on the time spent on graphics. We conjecture that to decrease this
part, other improvements such as using graphic accelerators are
needed, if the SLAM framework used can take advantage of it.

7.2 H2: FRTT is smartphone-independent
Chen et al. [10] showed that in the context of wearable devices,
there is a performance impact based on the hardware used. With
major computations done at the edge, we now compare the baseline
device with an additional smartphone (Samsung), that, although a
bit less powerful than the baseline one, should be fully capable of
handling the MR application. The results are presented in Table 2.

Unexpectedly again, the values show that the Samsung config-
uration as 1.36 times higher FRTT on average. This indicates that
some part of the application is handled differently by the two end
devices considered. By looking at Figures 10a and 10b, it appears
that it is the transmission part that behaves differently, i.e. either
the encoding/decoding, the WiFi transmission or the way the TCP
protocol is handled. Interestingly, preliminary results with UDP
showed that the difference in FRTT in this case is lower between the
two configurations, indicating that the protocol handling should
be investigated further.

8 CONCLUSION
Mixed reality applications are a good candidate for offloading at the
edge. Indeed, they require heavy computation and very low latency
in order to deliver high quality of service to the end user. However,
deploying anMR application that performs video streaming towards

the edge and back is not trivial due to the different components
that need to be brought together.

In this work, we present an open-source prototype for such an
MR application and dissect its performance with regards to latency
and throughput using different alternatives for the communication
link and the hardware used. We found that bringing down the time
spent in the communication link is critical for such MR applications
and we see the different alternatives considered in this paper as a
first step towards further studies of this aspect.

Future works include investigating other possibilities for re-
ducing the latency of the MR application such as using hardware
acceleration for encoding/decoding, using other SLAM frameworks,
using other types of protocols and dissecting combinations of those.
Moreover, it would be interesting to study the application with
regards to its energy usage. Finally, this work could be extended
to execute within a future 5G deployment where other protocols
are in use and where hardware accelerators are exploited. The MR
prototype is provided open-source to encourage other researchers
to experiment with it and test other interesting aspects of MR of-
floading at the edge.

ACKNOWLEDGMENTS
This work was supported by the Swedish National Graduate School
in Computer Science (CUGS). The authors would like to thank
Marcus Gårdman and his team at Ericsson for our discussions that
led to this work.

REFERENCES
[1] Nasir Abbas, Yan Zhang, Amir Taherkordi, and Tor Skeie. 2018. Mobile Edge

Computing: A Survey. IEEE Internet of Things Journal 5, 1 (2018), 450–465.
https://doi.org/10.1109/JIOT.2017.2750180

[2] Surin Ahn, Maria Gorlatova, Parinaz Naghizadeh, and Mung Chiang. 2019.
Personalized Augmented Reality via Fog-based Imitation Learning. In Pro-
ceedings of the Workshop on Fog Computing and the IoT (IoT-Fog ’19). 11–15.
https://doi.org/10.1145/3313150.3313219

[3] Surin Ahn, Maria Gorlatova, Parinaz Naghizadeh, Mung Chiang, and Prateek
Mittal. 2018. Adaptive Fog-Based Output Security for Augmented Reality. In
Proceedings of the 2018 Morning Workshop on Virtual Reality and Augmented
Reality Network (VR/AR Network ’18). 1–6. https://doi.org/10.1145/3229625.
3229626

[4] Ehsan Ahvar, Anne-Cecile Orgerie, and Adrien Lébre. 2019. Estimating Energy
Consumption of Cloud, Fog and Edge Computing Infrastructures. IEEE Trans-
actions on Sustainable Computing (March 2019), 1–1. https://doi.org/10.1109/
TSUSC.2019.2905900

[5] Mafkereseb K. Bekele, Roberto Pierdicca, Emanuele Frontoni, Eva Savina Ma-
linverni, and James Gain. 2018. A Survey of Augmented, Virtual, and Mixed
Reality for Cultural Heritage. J. Comput. Cult. Herit. 11, 2, Article 7 (March 2018),
36 pages. https://doi.org/10.1145/3145534

[6] Bruno Bodin, Harry Wagstaff, Sajad Saecdi, Luigi Nardi, Emanuele Vespa, John
Mawer, Andy Nisbet, Mikel Luján, Steve Furber, Andrew J. Davison, Paul H. J.
Kelly, and Michael F. P. O’Boyle. 2018. SLAMBench2: Multi-Objective Head-to-
Head Benchmarking for Visual SLAM. In 2018 IEEE International Conference on
Robotics and Automation (ICRA). 1–8. https://doi.org/10.1109/ICRA.2018.8460558

[7] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog
Computing and Its Role in the Internet of Things. In Proceedings of the First
Edition of the MCC Workshop on Mobile Cloud Computing (MCC ’12). ACM, New
York, NY, USA, 13–16. https://doi.org/10.1145/2342509.2342513

[8] Guillaume Bresson, Zayed Alsayed, Li Yu, and Sébastien Glaser. 2017. Simultane-
ous Localization and Mapping: A Survey of Current Trends in Autonomous
Driving. IEEE Transactions on Intelligent Vehicles 2, 3 (Sep. 2017), 194–220.
https://doi.org/10.1109/TIV.2017.2749181

[9] Dimitris Chatzopoulos, Carlos Bermejo, Zhanpeng Huang, and Pan Hui. 2017.
Mobile Augmented Reality Survey: From Where We Are to Where We Go. IEEE
Access 5 (2017), 6917–6950. https://doi.org/10.1109/ACCESS.2017.2698164

[10] Zhuo Chen, Wenlu Hu, Junjue Wang, Siyan Zhao, Brandon Amos, Guanhang
Wu, Kiryong Ha, Khalid Elgazzar, Padmanabhan Pillai, Roberta Klatzky, Daniel
Siewiorek, and Mahadev Satyanarayanan. 2017. An Empirical Study of Latency

in an Emerging Class of Edge Computing Applications for Wearable Cognitive
Assistance. In Proceedings of the Second ACM/IEEE Symposium on Edge Computing
(SEC ’17). 14:1–14:14. https://doi.org/10.1145/3132211.3134458

[11] Jakob Engel, Thomas Schöps, and Daniel Cremers. 2014. LSD-SLAM: Large-Scale
Direct Monocular SLAM. In Computer Vision – ECCV 2014. 834–849. https:
//doi.org/10.1007/978-3-319-10605-2_54

[12] Víctor Fernández, Juan Manuel Orduña, and Pedro Morillo. 2014. Server im-
plementations for improving the performance of CAR systems based on mo-
bile phones. Journal of Network and Computer Applications 44 (2014), 72 – 82.
https://doi.org/10.1016/j.jnca.2014.04.012

[13] Jorge Fuentes-Pacheco, José Ruiz-Ascencio, and Juan Manuel Rendón-Mancha.
2015. Visual Simultaneous Localization and Mapping: A Survey. Artif. Intell. Rev.
43, 1 (Jan. 2015), 55–81. https://doi.org/10.1007/s10462-012-9365-8

[14] Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai,
and Mahadev Satyanarayanan. 2014. Towards Wearable Cognitive Assistance.
In Proceedings of the 12th Annual International Conference on Mobile Systems,
Applications, and Services (MobiSys ’14). 68–81. https://doi.org/10.1145/2594368.
2594383

[15] Zhanpeng Huang, Weikai Li, Pan Hui, and Christoph Peylo. 2014. CloudRidAR:
A Cloud-based Architecture for Mobile Augmented Reality. In Proceedings of
the 2014 Workshop on Mobile Augmented Reality and Robotic Technology-based
Systems (MARS ’14). 29–34. https://doi.org/10.1145/2609829.2609832

[16] Johan Lindqvist. 2019. Edge Computing for Mixed Reality. Master’s thesis.
Linköping University.

[17] Xun Luo. 2009. From Augmented Reality to Augmented Computing: A Look
at Cloud-Mobile Convergence. In 2009 International Symposium on Ubiquitous
Virtual Reality. 29–32. https://doi.org/10.1109/ISUVR.2009.13

[18] Paul Milgram and Fumio Kishino. 1994. A taxonomy of mixed reality visual
displays. IEICE Trans. Inf. Syst 77, 12 (1994), 1321–1329.

[19] Robert B. Miller. 1968. Response Time in Man-computer Conversational Trans-
actions. In Proceedings of the December 9-11, 1968, Fall Joint Computer Conference,
Part I (AFIPS ’68 (Fall, part I)). 267–277. https://doi.org/10.1145/1476589.1476628

[20] Raúl Mur-Artal and Juan D. Tardós. 2017. ORB-SLAM2: An Open-Source SLAM
System for Monocular, Stereo, and RGB-D Cameras. IEEE Transactions on Robotics
33, 5 (Oct 2017), 1255–1262. https://doi.org/10.1109/TRO.2017.2705103

[21] Nayyab Zia Naqvi, Karel Moens, Arun Ramakrishnan, Davy Preuveneers, Danny
Hughes, and Yolande Berbers. 2015. To Cloud or Not to Cloud: A Context-
aware Deployment Perspective of Augmented Reality Mobile Applications. In
Proceedings of the 30th Annual ACM Symposium on Applied Computing (SAC ’15).
ACM, New York, NY, USA, 555–562. https://doi.org/10.1145/2695664.2695880

[22] Xiuquan Qiao, Pei Ren, Schahram Dustdar, and Junliang Chen. 2018. A New Era
for Web AR with Mobile Edge Computing. IEEE Internet Computing 22, 4 (2018),
46–55. https://doi.org/10.1109/MIC.2018.043051464

[23] Mahadev Satyanarayanan. 2017. The Emergence of Edge Computing. Computer
50, 1 (2017), 30–39. https://doi.org/10.1109/MC.2017.9

[24] Ryan Shea, Jiangchuan Liu, Edith C.-H. Ngai, and Yong Cui. 2013. Cloud gaming:
architecture and performance. IEEE Network 27, 4 (July 2013), 16–21. https:
//doi.org/10.1109/MNET.2013.6574660

[25] Ryan Shea, Andy Sun, Silvery Fu, and Jiangchuan Liu. 2017. Towards Fully
Offloaded Cloud-based AR: Design, Implementation and Experience. In Proceed-
ings of the 8th ACM on Multimedia Systems Conference (MMSys’17). 321–330.
https://doi.org/10.1145/3083187.3084012

[26] Bowen Shi, Ji Yang, Zhanpeng Huang, and Pan Hui. 2015. Offloading Guidelines
for Augmented Reality Applications on Wearable Devices. In Proceedings of the
23rd ACM International Conference on Multimedia (MM ’15). 1271–1274. https:
//doi.org/10.1145/2733373.2806402

[27] PassMark Software. 2019. PassMark CPU Benchmarks - High Mid Range CPUs.
https://www.cpubenchmark.net/mid_range_cpus.html Accessed 19th July 2019.

[28] PassMark Software. 2019. PassMark Intel vs AMD CPU Benchmarks - High End.
https://www.cpubenchmark.net/high_end_cpus.html Accessed 19th July 2019.

[29] Keisuke Tateno, Federico Tombari, Iro Laina, and Nassir Navab. 2017. CNN-
SLAM: Real-Time Dense Monocular SLAM with Learned Depth Prediction. In
2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 6565–
6574. https://doi.org/10.1109/CVPR.2017.695

[30] Marco Trinelli, Massimo Gallo, Myriana Rifai, and Fabio Pianese. 2019. Transpar-
ent AR Processing Acceleration at the Edge. In Proceedings of the 2Nd Interna-
tional Workshop on Edge Systems, Analytics and Networking (EdgeSys ’19). 30–35.
https://doi.org/10.1145/3301418.3313942

[31] Lei Zhang, Andy Sun, Ryan Shea, Jiangchuan Liu, and Miao Zhang. 2019. Ren-
dering Multi-party Mobile Augmented Reality from Edge. In Proceedings of the
29th ACM Workshop on Network and Operating Systems Support for Digital Audio
and Video (NOSSDAV ’19). 67–72. https://doi.org/10.1145/3304112.3325612

[32] Wenxiao Zhang, Bo Han, and Pan Hui. 2018. Jaguar: Low Latency Mobile Aug-
mented Reality with Flexible Tracking. In Proceedings of the 26th ACM Interna-
tional Conference on Multimedia (MM ’18). 355–363. https://doi.org/10.1145/
3240508.3240561

https://doi.org/10.1109/JIOT.2017.2750180
https://doi.org/10.1145/3313150.3313219
https://doi.org/10.1145/3229625.3229626
https://doi.org/10.1145/3229625.3229626
https://doi.org/10.1109/TSUSC.2019.2905900
https://doi.org/10.1109/TSUSC.2019.2905900
https://doi.org/10.1145/3145534
https://doi.org/10.1109/ICRA.2018.8460558
https://doi.org/10.1145/2342509.2342513
https://doi.org/10.1109/TIV.2017.2749181
https://doi.org/10.1109/ACCESS.2017.2698164
https://doi.org/10.1145/3132211.3134458
https://doi.org/10.1007/978-3-319-10605-2_54
https://doi.org/10.1007/978-3-319-10605-2_54
https://doi.org/10.1016/j.jnca.2014.04.012
https://doi.org/10.1007/s10462-012-9365-8
https://doi.org/10.1145/2594368.2594383
https://doi.org/10.1145/2594368.2594383
https://doi.org/10.1145/2609829.2609832
https://doi.org/10.1109/ISUVR.2009.13
https://doi.org/10.1145/1476589.1476628
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1145/2695664.2695880
https://doi.org/10.1109/MIC.2018.043051464
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/MNET.2013.6574660
https://doi.org/10.1109/MNET.2013.6574660
https://doi.org/10.1145/3083187.3084012
https://doi.org/10.1145/2733373.2806402
https://doi.org/10.1145/2733373.2806402
https://www.cpubenchmark.net/mid_range_cpus.html
https://www.cpubenchmark.net/high_end_cpus.html
https://doi.org/10.1109/CVPR.2017.695
https://doi.org/10.1145/3301418.3313942
https://doi.org/10.1145/3304112.3325612
https://doi.org/10.1145/3240508.3240561
https://doi.org/10.1145/3240508.3240561

	Abstract
	1 Introduction
	2 Related Works
	3 Offloading MR to the Edge
	3.1 Motivation
	3.2 Problem Description
	3.3 Case Study: Mixed Reality

	4 Prototype Implementation
	4.1 Architecture
	4.2 Design choices
	4.3 Insights

	5 Performance Evaluation
	5.1 Evaluation Setup
	5.2 Performance Metrics
	5.3 Evaluation of the Baseline Configuration
	5.4 Acceptable Performance
	5.5 Discussion

	6 Study of the communication link
	6.1 Impact of the Transport Protocol
	6.2 Impact of the Video Compression Format
	6.3 Summary

	7 A deeper look at FRTT
	7.1 H1: A better CPU improves FRTT
	7.2 H2: FRTT is smartphone-independent

	8 Conclusion
	Acknowledgments
	References

