
ORCH: Distributed Orchestration Framework using
Mobile Edge Devices

Klervie Toczé
Dept. of Computer and Information Science

Linköping University, Sweden
klervie.tocze@liu.se

Simin Nadjm-Tehrani
Dept. of Computer and Information Science

Linköping University, Sweden
simin.nadjm-tehrani@liu.se

Abstract—In the emerging edge computing architecture, sev-
eral types of devices have computational resources available. In
order to make efficient use of those resources, deciding on which
device a task should execute is of great importance.

Existing works on task placement in edge computing focus on
a resource supply side consisting of stationary devices only. In
this paper, we consider the addition of mobile edge devices. We
explore how mobile and stationary edge devices can augment
the original task placement problem with a second placement
problem: the placement of the mobile edge devices.

We propose the ORCH framework in order to solve the joint
problem in a distributed manner and evaluate it in the context of
a spatially-changing load. Our implementation of the combined
task and edge placement algorithms shows a normalized 83%
delay-sensitive task completion rate compared to a perfect edge
placement strategy.

Index Terms—Fog/edge computing, resource management,
edge mobility, task placement, edge placement

I. INTRODUCTION

The emergence of scenarios with Internet-of-everything in
smart cities, smart transportation, and smart manufacturing
creates use cases where short response times and control over
data in motion are cornerstones [1]. Edge or fog computing
is promoted as a paradigm to address the timeliness, energy
efficiency and security requirements in such contexts. Al-
though many labels for this emergent trend exist, including
those related to 5G networks, what they share is the notion of
bringing the computational resources closer to the user [2].

Deploying an edge infrastructure means placing numerous
edge devices over large areas. This is done for example
in vehicular networks by creating road side units, or by
co-locating edge devices with radio base stations for other
scenarios [3]. Each of those edge devices will have a certain
range where it can offer its services and multiple edge devices
can be grouped together to collaborate, e.g. in fog colonies [4].

Once resources are present at the edge, the next step is
to match the application requests with some of the avail-
able resources. This matching corresponds to solving a load
placement problem, i.e. where to place the task at hand for
computation. Recently, this problem has been studied in the
context of sensors and actuators by Skarlat et al. [4], or for
generic mobile end users by Wang et al. [5].

This work was supported by the Swedish national graduate school in
computer science (CUGS).

In most of the current works, the edge devices supplying the
resources considered are stationary [2]. This resource type has
many advantages but it may not be very flexible and easy to
deploy in case of sudden changes in the locality of the arriving
load. At the other end of the mobility spectrum, serving the
load surges with mobile edge devices is very flexible regarding
locality but it requires careful design of distributed algorithms
to give good coverage without wasting resources.

Serving unpredicted load surges in distributed locality over
time cannot be done by a fine spreading of stationary or
mobile edge devices due to cost, space, and other (urban)
restrictions. Therefore, a combination of mobile and stationary
edge devices is an option to explore as a middle ground.

Some edge applications will have a time-space varying
task generation with spikes, e.g. augmented or virtual reality,
which also have high real-time constraints [6]. Thus, the load
should be processed very close to the end device to avoid
too high communication overhead, high service latency, and
degradation of quality of service (QoS).

When enlarging the supply side with mobile edge devices,
a placement problem for the mobile edge devices is added to
the load placement problem. We refer to this as the Distributed
Dynamic Task and Edge Placement (D2TEP) problem.

In this paper, we present a distributed orchestration frame-
work that enables the edge devices to provide a high QoS
under temporally and spatially changing load. More precisely,
the contributions of our work are:

• A distributed edge orchestration framework called ORCH
tackling the D2TEP problem for the first time. The
framework is populated with a first attempt to provide
instances of deadline-aware algorithms and functions, but
it is a generic framework to be used for further studies.

• An extension of EdgeCloudSim [7] implementing the
ORCH framework and associated schemes.

• An evaluation of the implemented ORCH algorithms in
comparison with three alternative strategies, where QoS
measured as number of completed tasks before deadline,
and edge utilization are used as evaluation metrics.

In order to show that higher QoS in the presence of local load
surges is achievable with some mobile edge devices that can
move on-demand, we evaluate ORCH in comparison with: 1) a
systems with only stationary edge devices, 2) a system with a

pre-scheduled edge movements strategy, and 3) a system with
a perfect edge movement strategy.

The rest of the paper is organized as follows. Section II
describes the D2TEP problem and the different models and
assumptions. Next, Section III presents the ORCH framework
and associated functions and algorithms. Section IV introduces
the ORCH implementation. Section V presents experimental
results. Finally, we discuss related works in Section VI and
conclude the paper in Section VII.

II. PROBLEM DESCRIPTION

This section presents the D2TEP problem followed by the
motivational scenario and the different models adopted.

A. Distributed Dynamic Task and Mobile Edge Placement
Problem

The D2TEP problem is a two-fold problem: a task place-
ment subproblem and a mobile edge placement subproblem.

The task placement subproblem is the following: for each
task r incoming to the closest edge device e, e has to decide
on which edge device e′ the task r will be allocated so that
e′ has enough resources to compute r before its deadline.

The mobile edge placement subproblem is the following:
at every load change, a location for all the mobile edge devices
should be found such that the incoming load is served with as
high success ratio as possible.

The D2TEP problem is distributed since task placement can
be done by all the edge devices, and it is dynamic as the
mobile edge placement is dynamically updated depending on
the changes in the load volume and locality over time.

B. Motivational scenario

This work is placed in the context of a smart city where
edge infrastructure providers have to handle load coming from
mobile end devices. The edge infrastructure providers control
edge devices that are used to serve this load.

The load consists of tasks with various requirements coming
from end devices with mobility over various locations in the
city space. The load depends on what the end user is currently
doing and where she is located. Tasks are described in more
detail in Section II-F but the challenge in this scenario is
that some tasks have very strict real-time requirements. Not
satisfying those requirements amounts to unacceptable QoS.
This means that those tasks have to be serviced in the vicinity
of the end devices issuing them in order to keep the round trip
latency as low as possible to accommodate the short deadlines.

C. System Model

In this work, we use a three-layer system model based on the
coordinator device architecture proposed in an earlier survey
[2]. Our model is presented in Figure 1. There are three types
of devices involved in this model, one type per layer:
• Cloud device (stationary, dark blue cloud)
• Edge device (mobile or stationary, yellow rectangles)
• End device (mobile or stationary, orange triangles)

A dashed outline in Figure 1 indicates a mobile device.

Fig. 1: System model considered for the ORCH framework.

In addition, we introduce the notion of edge orchestration
area to represent the spatial distribution of end devices con-
necting to the system and to reflect the way the generated load
will reach the edge devices in that space. The cloud services
are common for the edge orchestration areas but each end
or edge device only belongs to one edge orchestration area.
This work focuses on one edge orchestration area, but it can
trivially be scaled up to several areas. It may also be extended
to overlapping areas with some notion of handover, but we
begin with the simplest instance.

Each edge orchestration area is composed of M end devices
and a set of E edge devices E = {e1, ..., eE}. A subset
of E denoted as Emob contains the mobile edge devices. At
any point in time, one edge device e ∈ E acts as the edge
device responsible for the area orchestration in each area. This
edge device is referred to as area orchestrator in the ORCH
framework. It is depicted as a rectangle with a conductor icon
in Figure 1 and will be denoted o in the rest of the paper. The
cloud device for the edge orchestration area is denoted c.

Within an edge orchestration area, each edge device e
considers a subset of E as edge devices that can be used for
offloading a part of the load coming to e. Those edge devices
are called neighboring devices.

D. Area model

This model considers that edge devices are only able to
serve requests when located at specific positions called serving
positions, and not while moving between those. For example,
the edge device could be a drone that has two modes: either its
resources (e.g. energy and computation) are used for serving
edge requests at a serving position, or its resources are used
for navigating between two of those serving positions.

Moreover, in the context of a smart city, the exact location of
an end device is not required as long as it is in the connectivity
range of some edge device. Therefore the geographical area is
represented by S segments, where S = {s1, ..., sS} and where
the physical area included within segment si corresponds to
the connectivity range of an edge device e located at the
serving position ρi within si. The set of adjacent segments
to segment i is denoted as Ai.

Figure 2 shows an example of how a real neighborhood at
Vallastaden in Linköping could be divided according to this
model. The serving positions are denoted as orange circles and
the segments are delimited in black. In a real environment,

Fig. 2: Example of division of a neighborhood into segments.

the shape of segments will depend on the hardware used for
communication and how the physical environment looks like.
Details on how this is done are out of the scope of this paper,
where we assume that the segments are already defined.

Each edge device e is associated with the segments that it
can serve. Those segments are denoted as the set Se ⊆ S .
A mobile edge device can only serve the segment that it
is currently located in (hence for e ∈ Emob, |Se| = 1),
whereas stationary edge devices can serve several segments. It
is assumed that 1) all end and mobile edge devices know their
current segment, and 2) an end device m located in segment
sm has a mechanism to establish communication with the
closest edge device. The closest edge device is defined as a
mobile edge device located within the same segment, and if
none, a stationary edge device serving this segment.

E. Resource Models

The first resource type in this model is computational
resources. Those are considered at the edge and cloud level.
Cloud level resources are assumed unlimited but edge re-
sources are limited, for example, to a fixed number of Millions
of Instructions Per Second (MIPS). The duration of the com-
putation at a device thus depends on the size of the task to
execute and the resources available at the device.

The second resource type is communication resources
shared among all the devices. In this work, we assume
unconstrained bandwidth in the system, meaning that commu-
nication time is equal to the transmission time between two
devices. The model can later be extended by adding bandwidth
constraints and queuing time.

The transmission time or delay dL for a task to move
between devices depends on the type of the link L and is
defined as follows for the different links considered. Equation
1 shows the delay for a link L that connects an end device m
in segment s to an edge device e.

dL =


dshort if sm ∈ Se and |Se| = 1

dmedium if sm ∈ Se and |Se| > 1

∞ otherwise
(1)

The infinite delay models the case where an end device is
outside of the coverage areas for the edge devices.

The delay between two edge devices is assumed to be
similar to what it takes for sending a task from an end device
to a stationary edge device, i.e. dmedium.

Finally, the delay for a link between an edge device e and
the cloud device c is as follows:

dL =

{
dmedium + dlong if |Se| = 1

dlong otherwise
(2)

In an orchestration area, dshort, dmedium, and dlong are
configurable parameters.

Edge devices can communicate to exchange relevant infor-
mation (corresponding to signaling). This is assumed to have
a negligible impact on the task communication times.

F. Load Model

The load model includes a task model and an application
model. For the task model, this work considers that each task
r is independent and is characterized by (a) a computation
requirement Rr in Millions of Instructions (MI) and (b) a
deadline Dr in milliseconds. The characterization of tasks
can be extended to include other resource requirements. The
generation of tasks is modeled as a Poisson process.

In this model, the tasks fall into three categories, depending
on their deadline requirements. Those categories are derived
from the traffic classes presented by Bianzino et al. [8]:
• delay-sensitive (DS) tasks
• delay-constrained (DC) tasks
• delay-tolerant (DT) tasks
Tasks falling into the DS category need to be executed on

an edge device located in the same segment as the end device
in order to avoid communication link delays. In our study, this
means it needs to execute on a mobile edge device or on a
stationary edge device dedicated to this segment. An example
of applications that could produce DS tasks are augmented or
virtual reality applications.

Tasks falling into the DC category need to be executed
on some edge device, but not necessarily an edge device
in this segment. Examples of edge applications that could
generate DC tasks are edge analytics applications such as face
recognition in video-based surveillance.

Tasks falling into the DT category can be executed on an
edge or cloud device. An example of applications producing
DT tasks are delay-tolerant gaming applications.

For the application model, the above task categories are used
to model two application types used by end devices: urgent
applications and regular ones. Urgent applications are modeled
by a generated task mix with a large proportion of DS and
DC tasks, and few DT tasks, whereas regular applications are
modeled by a task mix with a larger portion of DC tasks, few
DT and no DS tasks. Moreover, urgent applications have a
lower mean for the Poisson process generating the tasks.

End device mobility and applications launched by users
naturally change the locality of the load over time. In this
work, we refer to a sudden surge in DS traffic at a given
segment as a load change.

G. End Device Mobility Model

To model the mobility of end devices, we adapt the
Weighted Waypoint model presented by Hsu et al. [9] to the

area model presented in Section II-D. Indeed, end devices are
only able to move to neighboring segments so their movements
between segments cannot be considered fully random as in the
widely used Random Waypoint model.

Each segment has its own stay duration distribution which
represents how long the end devices will stay in that segment,
depending on the characteristics of the segment. For example,
a mobile end device will probably stay less time in a segment
with only apartment buildings than in a segment with shops.
On entering a segment, an end device gets a value for stay
duration from the segment’s distribution. This work considers
three types of segments: residential, commercial, and outside
segments but the list can be modified or extended in different
scenarios. The stay duration in each segment is characterized
as an exponential distribution with two different rates: a
small one λs for residential segments and a large one λl for
commercial and outside segments.

In this model, end devices can only move to adjacent
segments and the transition probability Pij from segment i to
an adjacent segment j ∈ Ai is the same towards each adjacent
segment, meaning it is calculated as the inverse of |Ai|. For
end devices, the transition between two neighboring segments
is instantaneous as the time for the end device to move close
to the segment border is modeled as part of the stay duration.

H. Edge Device Mobility Model

The mobility model for edge devices is a two-state model.
Mobile edge devices can be stable, when they are located
at a serving position ρ and accept tasks. They can also be
moving between a service position ρ and a service position
ρ′, not necessarily a neighboring one. In this state, they are
unavailable for the system, and are therefore not considered
when determining the closest edge device or performing
mobile edge placement since they do not accept new tasks
while changing segments.

The current model does not support migration of tasks,
meaning that once a task coming from an end device m
has been placed on an edge device e for execution, all the
execution will be performed at e. When the result is available,
if e and m are not located in the same segment anymore
because one of them moved, the task is considered as failed.
Extending the model would need to borrow the concept of
store-and-forward from delay-tolerant networking.

III. ORCH FRAMEWORK

The orchestration framework ORCH, shown in Figure 3, is
proposed to address the D2TEP problem. We begin with an
overview and then describe each component in more detail.

A. Overview

The ORCH framework comprises two different orchestra-
tions: the edge orchestration and the area orchestration.

Each edge device performs the edge orchestration, which
addresses the task placement subproblem of D2TEP and is
depicted in Figure 3 with blue boxes. The task character-
izer identifies characteristics of the incoming tasks, and the

Fig. 3: Overview of the ORCH framework.

capacity estimator estimates the available capacity of the
neighboring edge devices. Both are used by the task placer,
which decides on which edge device the task is going to be
executed. Based on the received tasks, each edge device also
stores load information to be used by the area orchestrator. The
edge orchestration takes place each time a task is submitted
to an edge device (or a configurable batch of tasks is to be
considered at once).

One edge device per orchestration area is designated as
area orchestrator at relevant decision points. In addition to
the edge orchestration, this edge device also performs the area
orchestration (depicted in Figure 3 by green boxes) in order to
address the mobile edge placement subproblem of the D2TEP.
The area orchestration components are run asynchronously
when load changes require it. The area orchestrator role can
change according to various schemes, e.g. using a rotation
among the edge devices, with higher priority given to the
stationary ones (or the ones with more available resources).
This rotation scheme will not be discussed further in the
current paper but can be similar to existing schemes [8].
The two components of the area orchestrator are the load
change detector, which observes the area load and detects load
changes upon which the mobile edge placer decides where the
mobile edge devices should be moved to. After the mobile
edge placement is performed, the edge devices move to their
new locations (when needed).

In this work, a strict deadline-aware approach is used
to address the D2TEP problem. This means that the task
requirements described in Section II-F are strictly enforced
and deadline misses lead to task abortion. For example, short
deadlines for DS tasks means that an edge device will be
dedicated to serving in the segment where a surge is detected.
If the deadline requirements cannot be accommodated, because
there is no available resource to fulfill the needs, the task is
deemed failed.

The ORCH framework is designed and implemented in a
modular way so that the detailed algorithms and functions
used in each component can be modified easily (see Section
IV). It is thus possible to address the D2TEP problem using
refinements or variations to the schemes proposed below.

B. Edge Orchestration

The edge orchestration proposal is presented in Algorithm
1. It has two main parts: the first one (lines 1-6) corresponds
to the task characterizer and task placer components. A count

of DS tasks received per segment is maintained. Other infor-
mation, such as task placement success ratio, could be stored
if needed by the area orchestrator. The second part (lines 7-10)
corresponds to the capacity estimator component.

Algorithm 1: Edge orchestration

// Runs at each edge device e
parameter: Tc // Cap. est. period
state : C =<< n, c >> // List of cap.

est. c for each neighboring n
L =<< s,#DS >> // List of # DS
tasks for each segment s

1 upon receiving task r from segment s do
// Task characterizer

2 tag← Characterize(r);
3 if tag = DS then
4 Increment #DS for s

// Task placer
5 device ←PlaceTask(r, tag, e);
6 sendForExecution(r, device)

7 every Tc do // Capacity estimator
8 N ← GetNeighboringEdgeDevices(e);
9 foreach n ∈ N do

10 Update c for n with GetAvailRes(n);

1) Task Characterizer: This will associate a deadline cate-
gory to the tasks as a means of preparing them before being
considered for placement. For the DS category, this is done
by considering whether Dr < 2 ∗ dmedium, in which case r is
tagged as DS. A similar reasoning with dlong is used to tag a
task as DC. The remaining tasks are tagged as DT.

2) Capacity Estimator: Computational resources are ag-
gregated in a pool and measured as units of available VM.
The capacity estimator will periodically (with period Tc) fetch
the percentage of the computational resource pool currently
not in use from all the neighboring edge devices (lines 7-
10, Algorithm 1). The current periodic fetching can be easily
modified to have it event-triggered instead.

3) Task Placer: A deadline-aware closest-first task place-
ment strategy presented in Function 2 is used. The general
idea of the function is to place the tasks spatially as close
as possible to the requesting end device in order to avoid
unnecessary communication overhead. Hence, the function
will try placing the task 1) on the receiving edge device, which
is the closest edge device and the entry point for any end
device request, 2) on a neighboring edge device if the closest
device (in space) does not have enough resources according to
the capacity estimator and 3) on the cloud otherwise. In this
paper, the considered neighboring devices are an edge device
able to serve the whole area if the receiving device is an edge
device serving only one segment, but this could be extended,
for example to allow for more placement attempts.

The only exception is when the task is of category DT and
the receiving/neighboring edge device is a mobile edge device
(line 3/line 9). As mobile edge resources are scarce and are

Function 2: Deadline-aware closest-first task placement

parameter: τa// Avail. capacity threshold
input : r, tag, e // Task, tag, rec. edge
output : device // Placement for r

1 Function PlaceTask(r, tag, e)
// Try to place r on receiving e

2 if GetAvailCapacity(e) ≥ τa then
3 if Not(tag = DT and e is mobile) then
4 Place r on e;

5 else
// Try to place r on neighbor edge

6 N ← GetNeighboringEdgeDevices(e);
7 foreach n ∈ N do
8 if GetAvailCapacity(n) ≥ τa then
9 if Not(tag = DT and n is mobile) then

10 Place r on n;

11 if No placement found at the edge and tag = DT
then Place r on the cloud;

12 else Failure to place r;

the only ones capable of handling DS tasks, they should be
preferably used for those task types. DT tasks are therefore
only placed on stationary edge devices or cloud devices.

Once a placement decision has been taken, the task is
transmitted to the executing device, which may or may not be
the same as the receiving device. When getting an execution
request, the edge device puts it directly on its execution list.

C. Area Orchestration

The area orchestration proposal is provided in Algorithm
3. The load change detector runs periodically (with detection
period Td) but this could be modified to have event-triggered
change detection. Each area orchestrator also keeps track of
the current high load segments as a set H of ordered segments
and of the current placement of the mobile edge devices as a
list P of < e, s > for each e ∈ Emob.

Algorithm 3: Area orchestration

parameter: Td // Detection period
state : H // High load segments

P // Mobile edge placement
// Runs at each area orchestrator o

1 every Td do
// Load change detector

2 <isChanging,H>←LdChangeDetected(o,H);
3 if isChanging then

// Mobile edge placer
4 newPlace ← PlaceMobileEdge(o, H, P);
5 Instruct devices to move when needed;
6 Update P with newPlace;

1) Load Change Detector: The load change detector is
described in Procedure 4 and has four parts: a load aggregation

part, a prediction part, a high load identification part, and a
change detection part.

The load aggregation part (lines 4-6) fetches the load
information stored as part of the edge orchestration at every
edge device during the previous detection period to determine
the load per segment in the whole area.

Procedure 4: Load change detection including prediction

parameter: τh// High load threshold
input : o // Area orchestrator

curH // Current high load segs.
output : isChanging // Detection result

hlSegs // New high load segs.
state : areaL =<< s,#DS >> // # DS

tasks per segment s in the area
1 Procedure LdChangeDetected(o, curH)
2 S ← GetSegmentsInArea(o);
3 E ← GetEdgeDevicesInArea(o);

// Aggregate the DS load per segment
4 foreach e in E do
5 foreach s in S do
6 Increment #DS for s in areaL by

GetLoadInfo(e, s);

7 foreach s in S do
// Predict DS load

8 pred ← FUSD_Prediction(s, #DS for s
from areaL);
// Identify high load segments

9 if pred ≥ τh then
10 Insert s to hlSegs so that segments are

ordered with highest load first ;

// Detect load change
11 if hlSegs 6= curH then
12 isChanging ← true;

For the prediction part (line 8), an adaptation of the Fast
Up and Slow Down (FUSD) algorithm proposed by Xiao et
al. [10] is used. Instead of predicting the percentage of CPU
utilization, the FUSD algorithm is used to predict the estimated
number of DS tasks in each segment in the next detection
period. The predictor keeps load and prediction information for
a certain number of previous periods, called the window W .
In order for the prediction to capture the increase and decrease
of the resource need in a satisfactory way, one parameter is
used when the load is increasing (↑ α) and another when the
load is decreasing (↓ α).

For identification (lines 9-10), a similar approach to the hot
spot classification by Xiao et al. is used. Segments with high
predicted load are identified using a threshold τh and sorted
with highest load first. Finally, a load change is detected (lines
11-12) if the set of ordered high load segments has changed
since the previous detection period.

It is part of future work to use adaptive ways of performing
the load change detection, e.g. with machine learning.

2) Mobile Edge Placer: The second area orchestration
component focuses on serving as many DS tasks as possible.
It considers the ordered set of segments with high DS load that
was computed in the load change detector. The general idea
is to associate the segment with highest load with the mobile
edge device currently located in the segment with the lowest
DS load, until no more mobile edge devices are available. This
is performed in three steps presented in Function 5.

Function 5: Deadline-aware mobile edge placement

input : o // Area orchestrator
curH // Current high load segs.
curP // Curr. mob. edge placement

output: newP // New mobile edge placement

1 Function PlaceMobileEdge(o, curH , curP)
2 availME ← GetSortedAvailMobileEdge(o);

// Keep existing placements as much
as possible

3 foreach s in the first |availME| high load segments
do

4 if s is already associated to e in curP then
5 Add < e, s > to newP ;
6 Remove e from availME and s from curH;

// Associate remaining edge devices
with remaining high load segments

7 foreach s ∈ curH do
8 if there is a remaining mobile edge device then
9 Add < Head(availME), s > to newP ;

10 Remove Head(availME) from availME;

First (line 2), the available mobile edge devices, i.e. those
not in the moving state, ordered by lowest DS load at the
current segment are fetched. The number of currently available
mobile edge devices (denoted as |availME|) will constrain
how many high load segments the ORCH can serve.

Then (lines 3-6), the mobile edge placer determines if some
of the first |availME| high load segments (those with highest
load) are already associated with an edge device in the current
placement. Those associations are kept to avoid unnecessary
unavailable periods due to mobile edge movements.

Finally (lines 7-10), the remaining mobile edge devices, if
any, are associated with the remaining high load segments.

IV. ORCH IMPLEMENTATION

In order to evaluate the ORCH framework, we use and
extend EdgeCloudSim [7], an edge environment simulation
tool built upon CloudSim [11]. The tool was adapted to
the models used in this work by implementing the mobility
of edge devices, the area model with segments, and the
ORCH framework structure with corresponding algorithms
and functions, among other minor adaptations.

The Java code for ORCH is available online1. The extension
includes 6 new abstract classes (one for the ORCH orchestrator

1https://gitlab.liu.se/ida-rtslab/public-code/2019 orch

Fig. 4: Schematic view of the considered neighborhood.

and five for the ORCH framework components) that allow for
modularity, and the corresponding 6 classes corresponding to
the implementation of the proposal. Moreover, 3 additional
classes were implemented corresponding to the models for
the load generation, the end device mobility, and the edge
device mobility. Two additional setup files were created (for
the area model and the application model) as new variations of
the original EdgeCloudSim simulator. The different parameters
used in the experiments are added to the parameter file for easy
modifications when conducting experiments.

Building a distributed mobile edge extension to Edge-
CloudSim was facilitated by its modular design. However,
implementing and integrating the new models and the new
scenarios was a challenge that required a deep understanding
of both EdgeCloudSim and CloudSim, due to complex inter-
actions. Moreover, implementating the ORCH framework in
a modular way to ease testing new variants of the compo-
nents or experimenting with alternative models added to the
implementation complexity.

According to our experiments, scaling up and down the
size of the experiment area and of the edge infrastructure is
relatively straightforward and does not have a strong impact
on the simulator running time, but the total number of tasks
generated by the end devices does. The maximum number of
tasks submitted in the experiments in Section V was 155458
and the running time for this run was 1 min 50 sec. On average,
the simulator running time is less than 1 min 30 sec when
simulating 20 min of experiment.

V. EVALUATION

In this section, we show the performance of the ORCH
framework with the proposed algorithms and functions in
terms of QoS and edge utilization in presence of different
loads. We compare this to three baseline strategies.

A. Performance metrics

The task and edge placement outcome is evaluated using a
metric that reflects success or failure of a task completing in
time denoted as completed tasks below. More specifically:
• success ratio per task category
• number of completed tasks per device type
Looking at the outcome per task category is important given

that a high QoS requires that the success ratio for DS tasks
should be as high as possible.

The outcome per device type shows on which device type
the completed tasks were executed. The number of tasks
completed on edge devices should be high (especially on
mobile ones) and the number of tasks completed in the cloud
should be low. This is natural as it was the very motivation
for using edge devices and mobile ones in particular, to create
added QoS compared to a classic cloud.

B. Baseline strategies

1) For task placement: We compare the ORCH task place-
ment strategy with a First Fit strategy. In this strategy, the
task is placed on the receiving edge device if resources suffice,
otherwise on the neighbouring edge device if enough resources
and otherwise on the cloud. First Fit strategies are commonly
used in recent research as a baseline for task placement
strategies [4], [12], [13].

2) For edge mobility: We compare the ORCH edge mo-
bility strategy with three baselines: 1) a strategy where all
edge devices are stationary, called Stationary, 2) a perfect
edge mobility strategy, called Perfect, and 3) a simpler edge
mobility strategy, called Scheduled.

For all four strategies the total amount of resources (i.e.
CPU available) is the same. The resources are equally dis-
tributed among stationary edge devices serving the whole
area (called area-wide) and edge devices serving one segment
each (called segment-wide). For the Stationary strategy, the
segment-wide edge devices are stationary, whereas they are
mobile for the Scheduled, Perfect and ORCH strategies.

The Stationary strategy corresponds to the current research
in edge/fog resource management, where the mobility of edge
devices is not considered. In the Perfect strategy, it is assumed
that some mobile edge device exactly follows the movements
of an end device running urgent applications, as long as there
are mobile edge devices available.

In the Scheduled strategy, the mobile edge devices move
from one segment to another in a pre-defined pattern (e.g. as
an edge device in a scheduled bus might do, with bus stops
acting as serving positions). In the following experiments, they
move clockwise around the orchestration area, starting from a
random segment. Büchel and Corman [14] showed that the
best fitting distribution for stop duration at bus stops and
traveling time between bus stops is a lognormal distribution,
based on empirical data. Therefore, the duration of stable and
moving states (both in seconds) for Scheduled is randomly
selected from two lognormal distributions.

C. Experimental setup

A neighborhood composed of one outside segment and one
edge orchestration area with eighteen segments is considered.
The edge resources consist of one area-wide device and two
segment-wide devices.The experimental setup can be changed
to increase the scale of the edge infrastructure (at the cost of
increased simulation time) but the chosen scale is similar to
state-of-the-art service placement research [4], [13].

The neighborhood is illustrated in Figure 4. The edge
orchestration area is composed of segments being represented

TABLE I: Simulation parameters.

Area Parameter Value
Generic Simulated time 1200000 ms (20 min)

end devices (M) 25
Computation Edge device 500 MIPS

Cloud device 12000 MIPS
CPU share per task 20%

Communication dshort 1 ms
delays dmedium 25 ms

dlong 100 ms
Tasks Computation req. (Rr) 10000 MI

DS task deadline (Dr) 30 ms
DC task deadline (Dr) 150 ms
DT task deadline (Dr) 300 ms

Urgent applications Task mix (DS/DC/DT) 40%/50%/10%
Poisson mean 50 ms

Regular applications Task mix (DS/DC/DT) 0%/70%/30%
Poisson mean 500 ms

Segments Rate λs 36000 ms
Rate λl 300000 ms

Edge mobility Scheduled: stable state
duration distribution

Lognormal(µ = 2.5,
σ2 = 0.49)

Scheduled: moving
state duration distr.

Lognormal(µ = 3.3,
σ2 = 0.04)

ORCH: moving state
duration distribution

Gamma(k = 7.5,
θ = 4)

Capacity estimator Period Tc 1000 ms
Task placer Threshold τa 5
Load change Period Td 1000 ms
detector Window size W 8

FUSD percentile 90th
↑ α -0,2
↓ α 0,7
Threshold τh 5

as blue shapes. Half of the segments are residential segments
(light dashed shapes) and the rest of the segments are com-
mercial segments (dark colored shapes). The serving positions
are denoted with dark blue circles, and the outside segment is
represented in light yellow.

For each run of all four strategies, the movement of each
end device is randomly generated and some end devices are
randomly selected for running urgent applications. All end
devices create tasks following the load model of Section II-F if
they are located in a residential or commercial segment. This
creates different surge locations and duration for every run.

Table I summarizes all the parameters and corresponding
values considered in the simulation. The simulation uses
milliseconds as a unit of time, contrary to previous work
using seconds [4], [7]. This reflects the edge context better. In
particular, communication delays in 5G are in the order of a
few ms [15], which is reflected in dshort. Changing the values
related to the edge context may impact the results. However,
the aim of this study was not to optimize the round trip time
in a specific scenario, but rather to show that a higher success
ratio is achieved when using the ORCH mobile edge concept.

D. Load

When evaluating the system, we consider two load sce-
narios. In the first one, the number of end devices running
urgent applications is the same as the number of available
segment-wide edge devices (i.e. 2). Hence the load is balanced
with regards to resources but the load surge varies in space
over time. In the second scenario the number of end devices

(a) on success ratios for DS tasks (b) on failures due to deadline miss

Fig. 5: Impact of task placement strategy (balanced load).

TABLE II: Avg (with st. dev.) and min/max # of successful
DS tasks for the balanced load (B) and overload (O) scenarios.

Strategy Average σ Min Max
B O B O B O B O

Stationary 2097 4681 2418 4189 0 0 8831 15366
Scheduled 751 2362 381 600 99 1345 1747 3851
ORCH 10103 19854 3356 4639 2934 9416 16195 28305
Perfect 11881 21816 3336 5967 4097 12580 17099 31660

running urgent applications (set to 6) exceeds the number of
available segment-wide edge devices, hence creating a system
level overload.

E. Impact of the task placement strategy

To isolate the impact of the task placement strategy, we
fix the edge placement strategy to Perfect for the following
experiment. We perform 50 runs per task placement strategy.

Figure 5a shows the average success ratios for DS tasks. It
is similar for both task placement strategies (ORCH and First
Fit) and close to 100% as the Perfect edge mobility strategy
ensures that the mobile edge devices are following the devices
running urgent applications. Therefore, it appears that ORCH
task placement does not add to QoS for DS tasks. However,
when looking at the average percentage of failed tasks that are
due to a deadline miss (shown on Figure 5b), it is 57% for
the First Fit and 0% for ORCH. This means that the ORCH
strategy is able to avoid wasting resources by executing tasks
on devices when those tasks are deemed to miss their deadline.
This is possible because the task placer in ORCH knows the
type of the tasks thanks to the task characterizer and can avoid
placements that will for sure lead to a deadline miss.

The results for the overload scenario show similar behaviors
and are omitted due to space limitations.

F. Impact of the edge placement strategy

We perform 50 runs per edge placement strategy, using the
ORCH task placement strategy in all edge devices.

1) Balanced load scenario: Figure 6a shows the success
ratios of DS tasks for the balanced load study with all the
baselines. Key indicators for this study are shown in Table II.

Regarding the DS tasks, ORCH outperforms Scheduled and
Stationary with a 13 times, respectively 4 times higher average
success ratio for DS tasks (83.3% vs 6.3%, respectively
17.8%). ORCH also comes as close as 83% to the Perfect
performance which succeeds for 99.9% of the DS tasks.

Regarding the DC and DT tasks, the results (not shown due
to space limitation) are similar for the four strategies, with a

(a) Balanced load (b) Overload

Fig. 6: Success ratios for DS tasks.

Fig. 7: Division of completed tasks among mobile/stationary
edge devices (balanced load scenario).

success ratio very close or equal to 100%. This is expected as
all strategies handle those tasks in a similar way.

Figure 7 shows the second metric of evaluation: average
number of tasks completed on each edge device type in the
balanced scenario. The number of tasks completed in the cloud
is negligible for all four strategies (the resources of edge
devices are enough to handle the load) and is therefore not
shown. The strategies can be divided into two groups. First,
Stationary and Scheduled have a minority (15%, respectively
6%) of tasks completed in the segment-wide devices. On the
opposite, Perfect and ORCH exhibit a balanced division with
43%, respectively 47% of tasks completed in the segment-wide
devices. A balanced division is good because the segment-wide
devices have a higher utilization (less waste of resource) and
the area-wide ones have more free resources for handling a
higher load without having to resort to cloud resources.

2) Overload scenario: Figure 6b shows the success ratios
of DS tasks for the different edge placement strategies with
key indicators summarized in Table II.

In this highly overloaded scenario where there are poten-
tially three times more demand than supply, the success ratio
for DS tasks is now on average 12.6% for the Stationary
strategy, 6.3% for the Scheduled strategy, 54.1% for the
ORCH strategy, and 58.4% for the Perfect strategy. The results
indicate that while Scheduled and Stationary continue to be
incapable to manage the load, ORCH handles 92% of the
Perfect service rate in this overly loaded scenario. Moreover,
ORCH handles 8 times more DS tasks than Scheduled on
average and always at least 144% more tasks than the highest
Scheduled performance. The average success ratios for DC
and DT tasks are similar to the previous ones, with a slight
decrease for the DC tasks (at most 2%, not shown here).

With regard to the division of completed tasks among device

types, the results for the overload scenario were comparable to
those for the balanced load one and are therefore not presented.

G. Discussion and possible extensions

Regarding task placement, a next step is to include task
migration as part of the task placer role, so that the edge
device can modify the current task placement dynamically
when receiving a new task, in case this would improve the
QoS or the edge utilization.

Regarding edge placement, DS tasks are mostly rejected
when there is no available segment-wide edge device. This
either happens because the segment-wide edge devices are
moving between serving positions (Scheduled/ORCH), or they
are not at the surge location, either because of their pre-defined
schedule/fixed location (Scheduled/Stationary) or because the
load change has not yet been detected (ORCH). The reported
results where ORCH outperforms Scheduled and Stationary
show the importance of having mobile segment-wide devices
as well as intelligent placing strategies, so that they are
available as much as possible and where they are needed.

Moreover, the results vary (see the standard deviation in
Table II) depending on how the load for the actual run looks
like, i.e. whether end devices generating DS traffic are in the
same segment or are spread all over the orchestration area,
and whether those end devices stay in the orchestration area
during the whole experiment or are subject to churn. Further
improvement of the results is therefore possible through adop-
tion of adaptive algorithms.

VI. RELATED WORKS

Rana et al. [16] found that increased latency has a stronger
impact on application execution time when placing services
on both edge and cloud than on only cloud, hence supporting
the importance of moving edge devices very close to the end
devices, as studied in this work.

Solving task placement problems in edge computing was
one of the most active areas in a recent survey [2]. In the
majority of the works covered by that survey, a central entity
gets all the task placement requests. In this type of scenario,
the task placement problem can be formulated as an optimiza-
tion problem where several tasks have to be dispatched among
several edge devices and is solved using various optimization
techniques [4], [5], [17], [18]. Some works proposed heuristics
instead of optimization [12], [13], but the task placement is
still performed in a centralized manner. Foggy [19] is one
example framework for centralized orchestration. In our work,
the task placement is fully distributed, i.e. each edge device
is responsible for placing the tasks it receives.

Distributed task placement problems are typically tackled
by a pool of edge devices when the needed resources not
present at the current edge device. Guiguis et al. [20] present
a distributed way of maintaining the resource information,
but contrary to our work where we place one task at a time,
they optimize the placement of a set of tasks. Mascitti et al.
[21] find the best composition of services between different

devices, whereas in our work, a task will be executed by only
one device.

Singh et al. [22] and Fizza et al. [23] also propose task
placement algorithms using tags to categorize the different
tasks. However, contrary to our work, the tags are related to
security/privacy characteristics and not deadlines.

The deadline-aware approach that we used, where DT
tasks are prevented to run on mobile edge devices to keep
the resources available for DS or DC tasks is conceptually
similar to the delay-priority policy of Bittencourt et al. [24].
In addition to being used in another context, our approach
considers tasks arriving one at a time and thus they cannot be
prioritized upon reception.

Regarding the edge placement subproblem, to the best of
our knowledge, it has only been tackled for placing stationary
edge device (e.g. in [3]), but not for mobile ones.

VII. CONCLUSION

Using a mix of mobile and stationary edge devices provides
the ability to serve all edge task categories in presence of
local sudden surges in load in a flexible manner, i.e. without
having to change the infrastructure in place. This is especially
interesting when the delay-sensitive traffic is present.

Our analysis of the ORCH orchestration shows promises.
We see that its components, while relatively straightforward
when taken separately, have the power to achieve high quality
of service and edge utilization when combined. The actual
implementation of the framework in a modular manner with
free code distribution provides the potential for studying more
elaborate models by the research community in the future.
Our current work includes implementing an augmented reality
application that utilizes an edge node, in order to validate the
timeliness requirements assumed for simulations.

Among directions for future works, we consider the in-
clusion of adaptive algorithms, as well as characterizing the
overheads of signaling and of various strategies by elaborating
cost models. An obvious trade-off emerging from such models
would be against the consumed energy. In addition, while
simulations are relevant as a means of understanding scenarios
with many actors and serving components, a further proof-
of-concept in a physical testbed would be an idea for future
extension of the work.

REFERENCES

[1] A. Bartolı́, F. Hernández, L. Val, J. Gorchs, X. Masip-Bruin, E. Marı́n-
Tordera, J. Garcia, A. Juan, and A. Jukan, “Benefits of a coordinated
fog-to-cloud resources management strategy on a smart city scenario,”
in Euro-Par 2017: Parallel Processing Workshops, 2018, pp. 283–291.

[2] K. Toczé and S. Nadjm-Tehrani, “A taxonomy for management and opti-
mization of multiple resources in edge computing,” Wireless Communi-
cations and Mobile Computing, vol. 2018, pp. 7 476 201:1–7 476 201:23,
2018.

[3] Y. Li and S. Wang, “An energy-aware edge server placement algorithm
in mobile edge computing,” in IEEE International Conference on Edge
Computing (EDGE), 2018, pp. 66–73.

[4] O. Skarlat, M. Nardelli, S. Schulte, M. Borkowski, and P. Leitner, “Op-
timized IoT service placement in the fog,” Service Oriented Computing
and Applications, vol. 11, no. 4, pp. 427–443, 2017.

[5] S. Wang, R. Urgaonkar, T. He, K. Chan, M. Zafer, and K. K. Leung,
“Dynamic service placement for mobile micro-clouds with predicted
future costs,” IEEE Transactions on Parallel and Distributed Systems,
vol. 28, no. 4, pp. 1002–1016, 2017.

[6] Z. Tan, Y. Li, Q. Li, Z. Zhang, Z. Li, and S. Lu, “Supporting mobile VR
in LTE networks: How close are we?” Proc. ACM Meas. Anal. Comput.
Syst., vol. 2, no. 1, pp. 8:1–8:31, 2018.

[7] C. Sonmez, A. Ozgovde, and C. Ersoy, “EdgeCloudSim: An environ-
ment for performance evaluation of edge computing systems,” in Second
International Conference on Fog and Mobile Edge Computing (FMEC),
2017, pp. 39–44.

[8] A. P. Bianzino, M. Asplund, E. J. Vergara, and S. Nadjm-Tehrani,
“Cooperative proxies: Optimally trading energy and quality of service
in mobile devices,” Computer Networks, vol. 75, pp. 297–312, 2014.

[9] W.-J. Hsu, K. Merchant, H.-W. Shu, C.-H. Hsu, and A. Helmy,
“Weighted waypoint mobility model and its impact on ad hoc networks,”
SIGMOBILE Mob. Comput. Commun. Rev., vol. 9, no. 1, pp. 59–63,
2005.

[10] Z. Xiao, W. Song, and Q. Chen, “Dynamic resource allocation using
virtual machines for cloud computing environment,” IEEE Transactions
on Parallel and Distributed Systems, vol. 24, no. 6, pp. 1107–1117,
2013.

[11] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. De Rose, and
R. Buyya, “CloudSim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algo-
rithms,” Softw. Pract. Exper., vol. 41, no. 1, pp. 23–50, 2011.

[12] V. Souza, X. Masip-Bruin, E. Marı́n-Tordera, S. Sànchez-López, J. Gar-
cia, G. Ren, A. Jukan, and A. J. Ferrer, “Towards a proper service place-
ment in combined fog-to-cloud (F2C) architectures,” Future Generation
Computer Systems, vol. 87, pp. 1 – 15, 2018.

[13] Y. Xia, X. Etchevers, L. Letondeur, A. Lebre, T. Coupaye, and F. De-
sprez, “Combining heuristics to optimize and scale the placement of iot
applications in the fog,” in IEEE/ACM 11th International Conference
on Utility and Cloud Computing (UCC), 2018, pp. 153–163.

[14] B. Büchel and F. Corman, “Modelling probability distributions of public
transport travel time components,” in 18th Swiss Transport Research
Conference (STRC), 2018.

[15] S. Shankland. (2018, Dec) How 5G aims to end
network latency. [Online]. Available: https://www.cnet.com/news/
how-5g-aims-to-end-network-latency-response-time/

[16] O. Rana, M. Shaikh, M. Ali, A. Anjum, and L. Bittencourt, “Vertical
workflows: Service orchestration across cloud & edge resources,” in
IEEE 6th International Conference on Future Internet of Things and
Cloud (FiCloud), 2018, pp. 355–362.

[17] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, “Quality
of experience (QoE)-aware placement of applications in fog computing
environments,” Journal of Parallel and Distributed Computing, 2018.

[18] T. Ouyang, Z. Zhou, and X. Chen, “Follow Me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 10, pp. 2333–
2345, 2018.

[19] D. Santoro, D. Zozin, D. Pizzolli, F. D. Pellegrini, and S. Cretti, “Foggy:
A platform for workload orchestration in a fog computing environment,”
in IEEE International Conference on Cloud Computing Technology and
Science (CloudCom), 2017, pp. 231–234.

[20] M. Guiguis, Q. Gu, T. Penner, L. Tammineni, T. Langford, A. Rivera-
Longoria, A. Johnson, and B. V. Slyke, “Assignment and collaborative
execution of tasks on transient clouds,” Annals of Telecommunications,
vol. 73, no. 3, pp. 251–261, 2018.

[21] D. Mascitti, M. Conti, A. Passarella, L. Ricci, and S. K. Das, “Service
provisioning in mobile environments through opportunistic computing,”
IEEE Transactions on Mobile Computing, vol. 17, no. 12, pp. 2898–
2911, 2018.

[22] A. Singh, N. Auluck, O. Rana, A. Jones, and S. Nepal, “RT-SANE:
Real time security aware scheduling on the network edge,” in 10th
International Conference on Utility and Cloud Computing (UCC), 2017,
pp. 131–140.

[23] K. Fizza, N. Auluck, O. Rana, and L. Bittencourt, “PASHE: Privacy
aware scheduling in a heterogeneous fog environment,” in IEEE 6th
International Conference on Future Internet of Things and Cloud
(FiCloud), 2018, pp. 333–340.

[24] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar,
“Mobility-aware application scheduling in fog computing,” IEEE Cloud
Computing, vol. 4, no. 2, pp. 26–35, 2017.

