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Multi-UAV Based Crowd Monitoring System

Rodrigo Saar de Moraes, and Edison Pignaton de Freitas

Abstract—This article presents the development of a multi-
UAV based crowd monitoring system, demonstrating a system
that uses UAVs to periodically monitor a group of moving walking
individuals. Using auction paradigms to distribute targets among
UAVs and genetic algorithms to calculate the best order to visit
the targets, the system has shown capabilities to efficiently per-
form the surveillance, visiting all the targets during a surveillance
period and minimizing the time between the visits made to each
target. Moreover, the system showed robustness keeping the good
performance under a variety of situations.

Index Terms—Multiple-UAV systems; Task Auctioning; Crowd
Monitoring; Intelligent Control System; UAV Monitoring;

I. INTRODUCTION

HE usage of Unmanned Aerial Vehicles (UAVs) in civil-

ian and military applications has increased exponentially
since cheaper and more complete unmanned aircraft platforms
have appeared on the market. This trend, allied to other
technological developments in both software and hardware
field has originated a great number of new applications and
new uses for this kind of technology. [1].

Besides that, micro UAVs have become an important tool
to law enforcement forces, allowing them to track and follow
targets or survey areas or buildings quietly, safely and almost
undetectably. These kinds of applications, however, depend to-
day heavily on human control and supervision, increasing costs
and complexity to perform missions and making them prone
to human mistakes that would not occur if an autonomous
control system was in place. Among these uses, crowd control
and monitoring applications for law enforcement present a
set of interesting and complex characteristics that turn the
development of an autonomous controller for such scenarios
a challenging task.

In general, crowd control and monitoring applications
present more targets, or groups of targets, to be monitored
in the crowd than resources to monitor them. While demon-
strations may be composed of hundreds of individuals, police
forces and resources are often bound to a much smaller
number, restricting the capacity of law enforcement agencies
to act in such situations. This fact exposes a need for capable
and intelligent monitoring solutions to assist the law enforce-
ment forces in large-scale monitoring scenarios, identifying
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a small number of potentially dangerous individuals in the
crowd, e.g. individuals using masks or carrying potentially
dangerous objects, and tracking them individually. Hence, in
these scenarios, UAVs can be important assets, representing
very useful tool to the law enforcement agencies. Due to their
high degree of mobility, UAVs can move fast and assertively
in order to follow and track targets, avoiding ground obstacles
and efficiently reaching their mission goals. Due to these same
characteristics, a single UAV can be used to monitor multiple
targets at once, alternating and moving fast between different
targets without losing sight of any of the subjects under its
responsibility.

Observing this scenario, this work investigates the usage of
rotatory-wing UAV platforms in this kind of crowd monitoring
and control operation and presents a system capable of using
multiple UAVs in this context. The system is able to distribute
target monitoring responsibilities among the UAVs and to
effectively monitor all the targets, minimizing the time each of
them remains hidden from the system. As previously stated,
the system has to be able to work in situations in which there
are more targets than UAV assets, making sure that even small
teams of UAVs are able to handle a moderate amount of targets
(up to 20 targets per UAV), if necessary. On the other hand, it
must still be able to provide a good degree of mobility for the
UAVs so that they can explore the crowd in cases in which
only a few targets are present or reorganize themselves as to
avoid losing track of an escaping target.

To solve this specific problem, an auction protocol was
implemented to assign targets to UAVs (agents). Once the
assignment phase has taken place, each UAV executes a
modified Genetic Algorithm (GA) [2] to decide the order in
which it will visit the targets to grant continuous monitoring.
Once the GA predicts a system failure or possible target
disappearance, the UAVs initiate a hot-handover procedure to
reallocate targets. The system then reorganizes as to not lose
sight of the targets.

While several prior works have attempted to solve simi-
lar cooperative observation and tracking problems, most of
them assumed fixed-wing UAV’s dynamics and therefore are
not directly comparable with the method proposed in this
work.Thus, it is possible to state that the contribution of
this paper is mainly three-fold: First, the presentation of a
suitable model to handle the problem of crowd monitoring
with a group of small rotatory-wing UAVs, characterizing
it as a special version of the Traveling Salesman Problem
(TSP), i.e. the Time Dependant TSP (TDTSP). Second, the
presentation of a scalable efficient solution for non-fixed wing
UAVs that distributes the targets among the UAVs and that is
able to keep track of the said targets under varying conditions
during the surveillance mission. And third, an extension to
the tradition genetic algorithm heuristic to tackle the visit-
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oriented TDTSP defined in this work. Moreover, the proposed
solution innovates in the handover algorithm that controls the
transference of the responsibility of a given target from one
UAV to another.

The remainder of this paper is organized as follows: Section
2 presents the problem definition and scope delimitation, while
Section 3 reviews related works that tackle problems close to
the one in the scope of this proposal as well as others that were
used as inspiration. Section 4 describes the proposed approach
to solve the problem. Section 5 presents the implementation
details of the proposed solution and the setup of the simulation
environment used to evaluate the proposal, while section 6
presents the obtained experimental results. Section 7 discusses
the actual adequacy of the proposed solution to the described
problem. Section 8, in turn, concludes the paper highlighting
its main contributions and suggesting possible directions for
future works to extend the proposal.

II. PROBLEM DEFINITION

As stated in the introduction, this work focuses on the
development of a distributed and autonomous control system
for UAVs used in crowd control and monitoring scenarios
to support law enforcement operations. In this context, this
work assumes crowd monitoring as an operation of threat or
target identification and position tracking. That assumption
means that the goal of the monitoring application is to track
and record the position of the potential threats. However, this
does not mean that the system continuously keeps recording
their every single move and act, but it keeps track of their
approximate location, and periodically returns to that location
to verify their behavior. In terms of the system’s behavior, the
UAVs must distribute targets among themselves and keep track
of these targets without losing them under any circumstance.
This also means that the UAVs responsible for more than one
target must be able to periodically visit each target to assure
it is still where it ought or was predicted to be. Moreover, it
has to verify if the target has not taken part in any threatening
action.

As this is a problem that can become prohibitively complex,
some assumptions are made about the dynamic behavior of the
targets to create a controlled scenario closest as possible to a
real-world situation in which this monitoring system could be
employed. It is supposed in the application scenario that targets
belonging a mob infiltrated in a demonstration displaced on
a map, will always have a constant movement behavior, not
always keeping the same speed of movement, but having a
controlled variability in their walking patterns. This means
that they will never go from full-stop to full-sprint in a matter
of seconds, for example.

The application scenario also assumes that the targets move
in a relatively straight line. They do not abruptly change
their direction of movement, acting, therefore, as if they were
moving with the crowd along the streets or avenues, which
can be divided into parts or segments, and each of these parts
can be considered a straight line. Figure 1 illustrates these
assumptions about the movement behavior.

These assumptions are very likely to be true in real life
scenarios since people in a demonstration are not likely to
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Fig. 1. Common Path of Protesters in the Streets of Porto Alegre - Brazil

move too fast nor to sprint due to the agglomeration of people.
Demonstrations also tend to follow a well-defined path, with
well-defined directions, normally following streets or avenues
in a city, and not running around at will, reducing, therefore,
the movement direction variability. Thus, by considering these
assumptions, this work bases itself on a well-defined set of
rules concerning the targets that ensure it’s usability in real life
situations, defining a solvable problem instead of an intractable
one.

Another assumption made in this scenario is that the UAVs
are going to be used to monitor pacific crowds, with the
number of potential threats limited to a few individuals on
the crowd. This can also be the case considering, for instance,
lone wolf terrorist attacks. This system is not intended to
operate in extreme situations where hundreds of threatening
individuals are jointly operating, riots or violent manifestations
are examples. The system can be used in such cases, but the
success in monitoring great numbers of targets will not be
guaranteed since it depends heavily on each target location and
speed. The solution conceived in the next section is focused to
work on situations where normally distributed targets on the
crowd do not surpass 5 times the number of UAVs.

Finally, the UAVs are also constrained themselves. This
study considers only rotatory-wings UAVs, which are the most
suitable for operations in which there is a need for high
maneuverability, sharp turns and back and forth movements,
such as the scenario presented in Figure 1, where the UAVs
would be flying in an urban environment, between buildings
located over streets which are just a few meters wide.

The work in this paper is mainly focused on the functional
behavior of the UAVs, leaving aside problems like movement
control and image processing, which can be very complex on
their fields, but that are out of the scope of this paper and then
not addressed here. In the context of this work, it is supposed
that UAVs are capable of recognizing the targets once they are
on sight of the camera or image acquisition device mounted on
them. Thus, image acquisition and processing are transparent
to the handled problem. It is also assumed that the low-level
control of the actuators is outside of the scope of this work.

Furthermore, in order to isolate the different parts of the
system, the discussion on this paper addresses only the mon-
itoring phase of the operation. It is assumed that, when the
simulation starts, the system already has a list of the targets
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and their current locations, acting as if a previous exploration
had already been performed to find who are the targets and
where they are. This situation simulates a real-life case in
which an operator, i.e. a foot agent or a command center with
access to cameras, has already identified the positions of the
targets and just wants the UAVs to observe them. The outcome
of running the exploration before or while the observation
takes place can be subject to an extension of this work and
was not addressed in this paper.

III. RELATED WORK

Target monitoring with UAV or robotic-based systems is a
widely studied research topic in robotics and automation litera-
ture. Most algorithms and solutions presented, however, focus
themselves in spatial clustering [3] and ground monitoring,
allocating each UAV to a specific portion of the monitored
terrain and giving it the exclusivity responsibility for the
targets present on that area, creating mobility restrictions that
may not be desirable depending on the application. Varia-
tions of this approach allocate a group of targets to a given
UAYV, which ends up having the same mobility restrictions.
Coordinating mobile robots to monitor moving targets also
depends greatly on the communication resources available to
the robots. While some robots, such as large UAVs or UGVs,
may support complex and power demanding communication
hardware, light commercial-off-the-shelf (COTS) UAVs, such
as quad-copters, present an affordable solution for smart-
surveillance applications, but cannot support power hungry
hardware, limiting the communication range and capabilities
of such assets. In addition to that, there is also the aspect of
whether the coordination should be centralized, decentralized
or distributed, inserting or not points of failure on the system
and making it, or not, capable of taking self-healing actions.

Many of these different approaches are analyzed in [4],
which organizes, categorizes and compares 20 years of studies
in the usage of mobile robots for observing multiple moving
targets. This work lists and addresses five factors, which are
common in this area, and characterizes this kind of problem,
providing a classification method to evaluate the different
approaches. The authors further group the existing approaches
based on four major control techniques: Cooperative Tracking
(CT) [5], [3], [6], which has the objective to persistently
track moving targets; Cooperative Multi-robot Observation
of Multiple Moving Targets (CMOMMT) [7], which aims
to increase the collective time of observation for all targets;
Cooperative Search, Acquisition, and Track (CSAT), which
alternates between search and track states, both searching
and tracking moving targets; and Multi-robot Pursuit Evasion
(MPE) [8], whose objective is to capture evasive targets.

Following the classification proposed by [4] Cooperative
Tracking (CT) approaches are those focused on reducing the
time duration between two observations to the same target,
updating the information the system has on the location of
the targets on a more frequent basis. CT is very similar to
the approach presented here on this current paper. This work,
however, does not only implements CT, but also a distributed
algorithm to do so, which does not require a master, or central,

node to work. This fact reduces the chances of miss-functions
due to single points of failure and communication problems,
the same strategy used in [9], [10], [8], [11]. In addition,
a comparison regarding the type of targets considered can
also be made. According to the classification presented in [4],
targets here are considered non-cooperative, as in [9], which
means that they do not broadcast their positions, as in [12],
but also does not necessarily mean they are hostile, or evasive,
as [8], which is the case in the problem handled here.

An example of a proposal exploring a type of CT approach
is presented in [5], in which a centralized algorithm is used
to maximize the visibility of ground targets in urban envi-
ronments. The algorithm proposed by the authors groups the
targets to maximize each UAV’s coverage area in order to
reduce overlap. Then it assigns each UAV to a circular optimal
path that maximizes the visibility given the shapes and the
locations of obstacles on the ground. Their scenario considers
that the number of moving targets to be tracked is much larger
than the number of aircraft. However, they consider that the
aircraft fly much higher than a common multi-rotor small UAV,
being more suitable to be deployed on large fixed wing aircraft
than on cheap COTS UAVs.

The same kind of approach is used in [3]. In this work, a
clustering algorithm is used to define an area of surveillance
for each UAV, making them responsible only for the targets
existing on the area they were assigned for. The authors,
however, use in their work an interesting data fusion algorithm
to estimate each target’s position, giving a different insight
into movement prediction problems and techniques. Another
similar technique is used in [6], in which an offline algorithm
calculates a terrain division and allocates each UAV to a given
set of targets present on one of these divisions. Then, the UAVs
assume an orbital movement behavior around these places.
This kind of solution works against the main constraints of
the problem defined in this paper, the need to have a group
of mobile and unconstrained agents capable of moving around
according to the possible changes in the operation scenario.

Besides Cooperative Tracking, another technique described
in [4] is the Cooperative Multi-robot Observation of Mul-
tiple Moving Targets (CMOMMT), which has the goal to
dynamically position robots to maximize the collective time
during which targets are observed. CMOMMT differs from
CT once, instead of trying to keep track of the positions of
the targets through successive visits, i.e. occasionally leaving
the target and later returning back, it tries to maximize the
time a target effectively stays into the field of view of the
UAV. The problem addressed by CMOMMT is to maximize
not only the number of targets under observation but also the
duration of observation for each target, which is a much more
complex problem. A variation of such algorithm is presented
in [13], where the authors implement a ’help” mode, in which
a robot losing a target from its FOV, broadcasts a help request
to the other robots. The robots available then respond to these
help requests by approaching the robot that is in need of help,
maximizing the use of resources, and granting that no target
is lost.

Target tracking is also addressed in [14] where the authors
proposed a dynamic UAV path-planning algorithm for tracking
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a ground target. Their algorithm is a combination of a point-
mass approximation and other techniques, such as vector fields
and obstacle avoidance strategies. These techniques give the
proposed method the ability to find the shortest path for a UAV
tracking a target that may be moving in an environment that
may include obstacles and/or wind.

Approaching specifically crowd control and pedestrian mon-
itoring, [15] brings an important study in pedestrian groups
behavior and image processing to evaluate potentially threat-
ening behaviors. The work of these authors can be considered
an important complement to the solution presented here in
this present paper since there is no focus on image processing
here. An additional module would be needed to be run on each
UAV to identify targets and make sure they are found by the
UAV cameras. This aspect is out of the scope of this work
thus considered transparent here.

While still on the same topic, [16] distances itself from
the UAV or aerial monitoring problem and discusses defini-
tions and challenges to address TDTSP situations, presenting
mathematical and complexity analysis, along with possible
algorithms to solve such problems. [17] continues discussing
this type of problem presenting a special case of the TDTSP
in which not only the cost to move between cities change over
time but the cities’ (comparable to the targets in the present
work) locations also change. In their work, the authors also
present suitable techniques to solve this problem, as well as
an intense discussion and analysis of this type of problem.

Closer to the work here presented, [18] provides an analysis
of both greedy and LKH heuristics [19] to solve TSP problems
focused on the pursuit of moving targets. This work has a very
similar goal to the one here presented and many of the consid-
erations presented in their work were also used to conceive the
solution reported in this current paper. Their solution, however,
is much less flexible than the one presented here, not allowing
the mobility and temporal constraints required by pedestrian
tracking problems.

Even tough Cooperative Tracking techniques share a com-
mon goal with the proposal here presented, which is reducing
the interval between two observations of a same given target,
they considerably differ from the work here proposed. For
once, most of these algorithms and solutions focus themselves
in spatial clustering or target grouping, allocating each UAV
to a specific portion of terrain or group of targets and, mostly,
forcing them into orbital or circular flight paths. This kind of
approach may be a good fit to larger fixed-wing UAVs, which
are designed to be used on higher altitudes, with reduced ma-
neuverability, and covering large portions of ground through
the use of complex and heavy image acquisition equipment.
However, it might not be the best approach once a small,
cheap and lightweight UAV that flies closer to the targets,
covering smaller portions of the ground, but possibly in urban
environments, is considered.

Since most approaches presented in literature work better
with fixed wings UAVs, grouping and clustering targets, not
taking full advantage of the maneuverability offered by small
UAVs, this work proposes a novel coordination technique that
explores the characteristics of small COTS UAVs to monitor
multiple moving targets from a closer range. Besides that,

this work presents a cooperative communication behavior,
re-handling and auctioning targets to other UAVs when a
sight loss is imminent, a different approach for Cooperative
Tracing techniques, that usually handle target attributions as
fixed throughout mission time. Consequently, the dynamic
approach here proposed improves the overall performance of
the system.

IV. PROPOSED SOLUTION

The conceived solution is composed of three main modules
or algorithms. First, the solution implements an auction algo-
rithm to distribute threats, or targets, among the UAVs taking
into account the current status of both UAVs and targets. A
Genetic Optimization Solver accounts for the second module
and it is responsible for defining which of the targets in
the UAV’s current queue it will visit next. Moreover, it also
organizes the next visits to not lose sight of any of the targets
the UAV is responsible for. The last module implements a
target handover technique, similar to the the “help” technique
proposed in [13] , granting that if a UAV finds out it will
not be able to cover all its targets, it informs and negotiates
with another UAV to take the responsibility over one or
more targets, handing it(them) over and reducing its current
target queue. These algorithms are presented in the following
sections, discussing their inner workings and how they interact
to build a complete solution.

A. Solution Overview

As stated above, the integrated solution uses three main
modules, one providing an auction mechanism, another im-
plementing a genetic solver and the last responsible for the
target handover method. These three modules interact with
each other to make sure all the mission requirements will be
met, i.e. the modules interact and exchange information in
order to make sure all targets will be monitored and will not
be lost. Together these different algorithms work toward the
same goal: ensuring that a given target is visited by some UAV
every n seconds. The variable n here stands for the maximum
time interval allowed between two visits to the same target
without giving it time to disappear from the field of view of
the system as a whole. The solution works to ensure that there
will always be a UAV capable of monitoring or checking on
a given target before the visit time window of that specific
target expires.

To achieve this desired result, the first step of the proposed
solution is the distribution of targets among the UAVs. Every
target known by the system must be, at first, assigned to the
UAV that fits better to monitor it at that given time. This
allocation is made through an auction algorithm specifically
tuned to the desired result of this system. Each auction section
allocates a target to a UAV taking into account the state of
both UAVs and targets, in terms of their location and speed,
and the number of targets already assigned to each UAV. The
Auction mechanism is asynchronous to the rest of the system.
It is activated only when either a new target is discovered or
informed to the system, or when a handover operation has to
take place.
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Independently from the auction sessions, a genetic solver
runs internally on the UAVs that have at least one target
assigned to them. The purpose of the genetic solver is to
calculate and find the best order to visit the targets a UAV has
assigned to itself. This is executed to make sure they will not
be lost. To do this, each UAV simulates some possible different
orders to visit the different targets. Then, it analyses each of
these different orders and chooses the best tour (order), to
visit the targets. It is important to notice that this algorithm is
conceived to, and it tries to, minimize the UAV’s displacement
between targets in two successive visits. This minimization
makes possible multiple visits to a faster UAV while only
one to a slower UAYV, if necessary (e.g. in systems in which
there are a combination of UAVs with different capabilities
and that can move with different maximum speeds). If the
genetic solver finds a case in which it predicts that the best
route or solution it finds will not ensure that the maximum
time between visits to a target will be respected, it triggers
the handover mechanism.

The handover mechanism removes a target from a UAV
current queue and reallocates the responsibility for this target
to another UAV. By doing this, it is ensured that a UAV having
problems to visit all its targets will be relieved from at least
one target. Then, it recalculates its route, trying to visit all
remaining targets within their visit time constraints. Basically,
when the handover is triggered by the genetic solver, the UAV
tries to sell one of its targets, the one located in a more distant
position from the other targets it has to visit. Once an auction
is triggered by one UAYV, another one, that fits better to the
auctioned target, will buy it. Once a UAV succeeds in selling a
target, it will try to re-execute its genetic solver, recalculating
its new route for the remaining target. If a feasible solution
is not found, this handover process may be repeated until a
solution is found, or until the UAV that triggered the handover
keeps just one target under its responsibility.

A flowchart of the algorithm comprising the whole solution
can be seen in Figure 2 for a better understanding of these
mechanisms and how they interact.

B. Auction Mechanism

As mentioned above, an auction mechanism is proposed to
be used as a task allocator, allowing an efficient distribution of
target monitoring responsibilities among the UAVs. The idea
behind the algorithm is based on the behavior of buyers and
sellers of an auction market, meaning that goods or resources
will be put to auction and sold to the buyer who makes the best
offer for them. In the presented context, the targets represent
the goods being sold and each UAV represents a buyer that
bids, or not, for a target it considers it is able to monitor
efficiently.

The implemented mechanism works through a first price
sealed-bid auction based on a simplified auction protocol. A
first price sealed-bid auction (FPSBA) is one in which the
highest bidder wins the auction and pays the price it submitted
for the resource. In this type of auction, all bidders submit
secret (sealed) bids, meaning that no bidder knows what other
bidders offered until the bids are revealed.
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In an auction-based approach, the decision of who wins
or not the auction is made based on the value of the
bids. These bids must be well calculated and formed as
to ensure that, as wished, only the fittest bidder will win.
Bids are calculated following a set of rules that define how
each parameter of interest to the auction will influence
the bid. To solve the problem of distributing the moving
targets among UAVs, a mathematical rule was created
based on both UAVs’ and targets’ current state, as already
mentioned above. (1) shows how this rule was implemented.

1
Bid(u,t) = K, - 1
id(u, 1) (Ut(Dut + Ka) M Dti)”w)) M

Basically, as is shown in (1), each bid of a UAV u for a
target ¢ is inversely proportional to the number n,, of targets
u has queued for monitoring. This ensures that UAVs that
already have targets leave new targets to other UAVs, not
overloading themselves. The value of a bid is also inversely
proportional to the velocity v, of the target ¢, so UAVs bid
less for fast targets that will potentially be a problem to be
monitored. The other parameters in this rule are the distances
between the UAV and the target (D,;) and the distance (Dy;)
between the target being auctioned and the other n,,, targets
already assigned to the UAV. These two parameters ensure
that a UAV will bid higher for targets that are close to each
other and close to the UAV itself. The rationale for this way
of functioning is distributing targets spatially close to each
other to the same UAV. As a consequence, not only a UAV
will have to move less to monitor it’s assigned targets, but
also free UAVs will tend to win the rights over targets that
are not close to any other target. Therefore, the goal of this
implementation is, mainly, forcing UAVs to choose to monitor
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groups of targets that are near to each other, bidding less for
isolated targets.

To balance the system and ensure the best possible outcome,
different combinations and relations among the factors that
influence the bid, i.e. vy, nyq, and the spatial grouping of
the target, have been tried before coming to the proposed
cost function. This function in (1) has presented itself as
the best solution in part because of its simplicity, not re-
quiring multiple weights or parameters that could be hard
to tune and could easily influence the system robustness.
Moreover, multiplying the terms attribute them the same level
of importance. Likewise, in order to adjust the effects of the
variables on the bid the constants K,=1m? /s and K ;=25 were
empirically chosen accordingly, through experimental analysis,
to guarantee that the these desired effects are achieved. While
K, is a dimensionless factor responsible for adjusting the
effects of D;; on the overall result, /i, is a constant used
to balance both n,4 and v; effects and adjust the dimensions
as to make Bid(u,t) a dimensionless value.

Each of the auction sections in this work is composed
basically of four main phases. In the first phase, called
Announcement, an auctioneer agent advertises all possible
bidders about the starting of a new auction session. During the
second phase, Bid Awaiting, the auctioneer waits for bids for
a certain amount of time before proceeding to the next phase.
On the third phase, bids are analyzed, a winner is chosen and
the bidders are informed of the result. In the last phase, the
contract is expedited to the winner, giving it the right to use
the auctioned resources. The phases where communication is
necessary the system implements a 3-time retry mechanism.
This mechanism ensures that errors or non-responses on a
section due to communication issues are less prone to occur.

C. Time Dependent Genetic Solver

Since a UAV on the monitoring system may be responsible
for several targets, it must be able to decide in which order
it will visit these targets. The visits must be organized in a
way to make sure that no target can move enough to be lost
between two consecutive visits. This means that, by having
visited a target A and proceeded to visit others targets, a UAV
must return to visit A again before this target is able to move
out of this UAV’s field of view. The problem presented by this
challenge is similar to a Travelling Salesman Problem (TSP)
[20], In the TSP, an agent, called the traveler, must be able
to decide the best route (meaning order of visits) to visit all
the points of interest, usually referred to as cities in a map.
The optimization problem found in this work is, actually, a
special case of TSP called Time-Dependent TSP. In this type
of TSP, the nodes representing the cities move, or change their
location over time, exactly what happens with the targets in
the problem tackled here.

Exact solutions for TSP problems are hard and very resource
consuming to find. In order to obtain the optimal solution to
a TSP, it would be needed to analyze all possible different
routes and choose the best one. However exact, this kind of
brute force approach is not suitable for real-world applications,
presenting a computational complexity cost of O(n!). They

quickly become too time-consuming to run on commercial ma-
chines or embedded processors, even for small TSP problems.
Because of these high costs to find the optimal solution, many
different Al, Optimization and Heuristic methods are found
in the literature to find acceptable local optimal solutions to
specific cases of the problem.

Among the optimization methods used for solving TSP
problems, Genetic Algorithms have been shown to be pretty
efficient once they are able to find good local solutions to
optimization problems [2], [21]. Genetic Algorithms (GAs)
use the concepts of natural Darwinian evolution to solve com-
plex optimization problems. The concept behind this approach
is to evolve an initial population of candidate solutions to a
problem until one of these solutions in this pool or population
is considered good enough by the algorithm. [22]

Besides a good solution to solve TSP Problems, genetic
algorithms are also proved to be effective solutions to control,
coordinate, or generate paths to UAVs or mobile robots, as
in [23] and [24]. Another example of such usage is [25],
where a Genetic-Based Path Planning algorithm addresses the
problem of designing the path a vehicle is supposed to follow
to maximize the collected information from desired regions
while avoiding flying over forbidden regions.

As stated on the beginning of this subsection, the main
goal to be achieved by the genetic optimization algorithm is
the organization of the visits in a way to make sure that no
target can move enough to be lost between two consecutive
visits. The optimization problem here is the minimization of
the average maximum displacement between visits to the same
target, considering all targets under the responsibility of a
given UAV. Mathematically, this objective function can be
expressed as follows:

min(average(fa, fs, fc, [, ...)) 2

,where fx (fa, fB, fc, fp,...) is the maximum distance
target X (A,B,C,D...) moves between any two visits to it’s
position. In other words fx can be calculated as:

fX :maw(dl,dg,d;;,...) (3)

,where d; is the distance that target X moves between the
first to visits considered, do the distance X moved between
the second and third visits, and so on.

To solve this problem, a GA algorithm was specifically
implemented to deal with it. Figure 3 shows a flowchart
presenting the basic steps of this algorithm. Basically, each
time a UAV runs the genetic solver, an initial population of 25
possible solutions to that specific UAV problem, considering
its assigned targets, is randomly created. Each solution is rep-
resented by an array of targets expressing that specific solution
genome. The arrangement of the targets in these genomes
represents the visitation order of that specific solution. For
instance, a solution represented by the genome ACD will
guide the UAV to visit first the target A, then the target C
and finally target D. Figure 4 shows a sample of a genome
and the graphic representation of the solution it represents.
The numbers close to the arrows provide information about
the order each node of the graph is visited.
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As seen in Figure 4, each genome is twice as long as the
number of targets the UAV running the GA has assigned to
itself. This means that if a UAV has n targets in its monitoring
queue, the genome of the possible solution to that UAV
specific TDTSP problem will have size 2n. The double length
of the genomes was implemented so that faster targets, that can
move a lot in short intervals, can be visited more frequently
than slower ones, which are almost standing still and do not
move much over time. This approach lets the system address
the different pooling rates required by these two different types
of targets, granting that a fast target will not be lost during the
interval between visits and that a slow target is visited enough
so that it is not lost either. The consequence of this approach is
that each target may be visited twice on the same solution, or
visiting tour, however, it is also possible that some targets are
visited multiple times while others are only visited once. This
design choice will also lead to a longer revisit time between
some of the targets than simply choosing the shortest path,
trading the interval between visits for fewer target misses.

Generate
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Fig. 3. Genetic Algorithm Flowchart
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Once the first 25 solutions are created, they are analyzed
according to the fitness function presented in (2) and (3). In
the example presented in Figure 4, target A is visited three
times on the tour. Supposing that between these visits A moved
d; meters between the last visit and the first visit in this
tour, do meters between the first and the second visit, and
ds meters between the second and third visit, the maximum
value f4 = max(dy,ds,ds) will be chosen as the fitness of
A in this solution. The fitness Fj,; of that particular solution
is then calculated as Fi,, = average(fa, B, fc, fp). Having
all those 25 solutions been analyzed, the three best solutions
are chosen to minimize the value of F,,;, then the iteration is
complete.

For each of the next iterations the 2 best solutions from
the previous generation are copied until there are again 25
solutions on the new iteration solution pool, creating 12 copies
of the best solution, 12 of the second best and 1 totally new
random solution. These 25 solutions now on the pool suffer,

New Gen-

Fig. 4. Visit Diagram Representing a Possible GA Solution with Genome
ACDBADAB

then, a mutation process. With a mutation chance rate of 20%,
some of the targets on each genome are changed creating
new solutions based on the copied ones. This mechanism
makes sure that the newly generated solutions float around
the best ones found on the previous iteration, presenting
only small changes, but keeping their core almost unchanged.
To implement this mutation mechanism, a Reverse Sequence
Mutation [26] operator, was used. In this method, a random
sequence of targets is taken from a tour, copied and then
inversely placed in the sequence again. Besides simple, the
RSM mutation operator has shown promising results in terms
of convergence compared to other methods [26].

After mutating, the solutions are re-analyzed, a new iteration
started, the best solutions copied and the mutation process
repeated. The algorithm runs for a total of 5 iterations,
analyzing roughly a total of 125 solutions for the problem.
It is important to notice that the newly generated solutions
are analyzed for completeness both at random creation and
mutation phases of the algorithm. If a solution is found that
does not contain all the targets the UAV has queued, this
solution is discarded and a new one generated. This process
guarantees that at the start of each iteration all 25 candidate
solutions on the pool will visit each target at least once.

Concerning the parameters of the genetic algorithm, obser-
vations during the algorithms validation phase have shown
that for the problem in hand, more than 5 iterations, or 25
individuals per generation, are not efficient parameters in
terms of computational cost, consuming more time to run and
resulting on very small fitness improvements compared to the
implemented solution.

D. Handover Algorithm

The Handover algorithm is simply a target assignment
transference mechanism. The implemented solution is acti-
vated once a UAV finds out, by analyzing the solution output
provided by the genetic solver, that it will not be able to visit
all targets on the next tour without losing one or more of them.
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Once this fault is detected and the mechanism activated, the
UAV chooses the target that is farthest from all the others.
This is done by calculating the mean distance between each
target to all the others. Then, the UAV starts the auction for
this target, granting that some other UAV will bid and assign
itself to handle this target.

The auction mechanism used here is the same auction mech-
anism used in the first allocation phase. The only difference
is that now, the UAV auctioning the target is not allowed to
bid for it since it would make no sense for this UAV to try
buying something it already owns. As shown in Figure 2, it
is important to notice that the handover algorithm may be run
more than once, removing as many targets as necessary from a
UAV responsibility and stopping only when a viable solution
is found by the GA or when the UAV has only one target
assigned to it.

In order to avoid a difficult target to be passed around
infinitely, i.e. when a UAV hands over a target to another
UAV, which by its turn immediately after also decides to hand
over the same target, and this continues indefinitely back and
forth, once a UAV takes the responsibility for a given target,
it has to keep this for at least ten seconds. The UAV may
consider skipping visits to this target, i.e. the UAV may not
handle it during this time interval, but it is not authorized
to pass it over before this timeout. This behavior is usually
enough to change the system status, affecting bids and tours,
thus avoiding this possible infinite handover situation, just by
the natural movement of the UAVs and the targets.

As stated above, the conditions for activating this mecha-
nism are related to the solution output provided by the GA
solver, which is supposed to be the optimal, or quasi-optimal,
solution for the set of the targets it was run over. The trigger
is associated to a threshold on the solution fitness number,
if the fitness of the GA solution is higher than this threshold
level, meaning the average maximum distance targets move on
that turn is greater than the threshold distance, the handover
method is called. The threshold value of 20 meters was chosen
according to the field of view of a RaspBerry PI Sony camera
mounted on a UAV flying at an altitude of 45m.

V. SOLUTION IMPLEMENTATION AND SIMULATION
ENVIRONMENT SETUP

In order to correctly evaluate the proposed solution and
analyze its behavior as realistically as possible, a simulated
environment capable of modeling the behavior of both UAVs
and targets was needed. Such a simulator needed to be able
to mimic the real-time constraints of this type of system,
considering targets’ and UAVs’ characteristics and ensuring
that the processing platform would be able to handle all the
concurrent tasks involved in the simulations. To achieve this
goal, a custom ad hoc simulator was developed. Since the
environment and scenarios proposed in this work involve more
than just the UAV movement, simple commercial simulators
were not fitted to be used in the evaluation, thus the need for
a custom ad hoc solution.

In the proposed evaluation scenarios, when working with
high-speed vehicles and moving targets, for example, it is

important to assure that no outside variables influence in
the simulation results. At high speeds and strict temporal
constraints, even the slightest delay in processing some in-
formation or making some decision can heavily influence
the activity outcome, sometimes crossing the line between
success and failure. When monitoring threatening individuals
on a crowd, for example, the system must be able to process
a mission and target related information as soon as they
come, treating them as a priority, risking to loose targets
otherwise.With these constraints in mind, a Linux-based en-
vironment, featuring a controlled Java Virtual Machine that
avoids non-deterministic preemptions to the main code, was
set up to run the simulations and to ensure that no outside
variables would influence them or their results.

Besides considering the real-time constraints of the appli-
cation, the system was also supposed to deal with the high
level of concurrency presented by the simulated scenarios.
At the same moment during a simulation, both UAVs and
targets are supposed to be moving. UAVs are supposed to
be exchanging information over a communication network
and they are also supposed to run their own control loops
and internal algorithms. To achieve such concurrency, each
UAV instance was modeled as a completely separated thread,
acting, thus, independently from all other threads, sharing with
them just the simulation environment parameters. Besides the
UAV instances, three other modules were also implemented
as threads to maintain concurrency: A UAV movement en-
gine, responsible for managing UAVs movement behavior; A
target movement engine, responsible for managing target’s
movements; and a Simulation Control Module, responsible
for controlling the simulation parameters and simulate the
communication network, besides supporting all other modules.
For better understanding, the four types of threads and the
general multithreaded architecture are diagrammed on Figure
5. It is important to notice that since the system is supposed
to mimic real-time constraints and concurrency, the simulation
must be run on a computational platform capable of running all
threads simultaneously, running any two of them sequentially
would break the concurrency principle, breaking the very
concurrency conception.

Simulation Data

Simulation 1 UAV 1 Target
Control Movement || Movement UAV
Control Control Process
Instance

Fig. 5. Threaded Simulation Environment

The simulator and the experiments were also parametrized
accordingly to mimic the behavior of the 3DR Iris+ quadcopter
[27], a mini-UAV manufactured by 3D Robotics. The Iris+
950 kV motors are capable of accelerating the 1282g UAV
to around 20m/s, the flight autonomy stands between 16
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and 22 minutes, depending on the payload. Considering this
information, and the assumptions made in Section II of this
work, the initial test environment was parametrized for S UAVs
and 25 targets as presented in Table I. Target speeds were
based on common movement speeds of individuals walking
on a crowd.

TABLE I
SIMULATION PARAMETERS
Simulation Time 900s
Simulation Area 500x500m
Number of UAVs 5
Number of Targets 25

random from 0 to 2m/s
random
random from 40m/s
to £0.5m/s changing each 20s
20m/s

Target Initial Speed
Target Initial Heading
Target Speed Variation

UAV Speed

VI. SIMULATION RESULTS AND ANALYSIS
A. Correct Behavior Tests

To properly evaluate the developed solution, a set of initial
tests were designed to test if the system has a correct behavior
according to what was expected, using the parameters pre-
sented in Table I. With this goal in mind, a set of 6 simulated
scenarios was created. In the first four scenarios, the objective
was to test the solution comparing 4 different cases with part
of the solution modules active or deactivated. The first scenario
is a simple run of the algorithm with no handover operation
turned on and also no prediction on the targets’ movement,
meaning that at each visit the UAV searches a target on
it’s last known position, where it was last seen. The second
simulation scenario has the handover mechanism still off, but
the movement prediction is enabled. Now the UAVs search for
targets based on their actual movement patterns, decreasing
the chance of losing a target. The third and fourth scenarios
follow the same pattern of scenarios one and two, one with
no movement prediction, and the other predicting the targets’
movement, but this time both using the handover mechanism.
In all these four first scenarios, the targets maintain a constant
speed during the whole simulation, not changing their speed
under any circumstance. Table II summarizes these simulation
setup scenarios.

TABLE II
SIMULATION SETUP

Scenario Handover | Movement Prediction
Scenario 1 disabled disabled
Scenario 2 disabled enabled
Scenario 3 enabled disabled
Scenario 4 enabled enabled

The two last scenarios are variations of the third and fourth
scenarios featuring small controlled variations on the targets
movement patterns. In scenarios 5 and 6, targets change their
speed in £0.5m/s every 20 seconds, simulating the subtle
speed changes that are likely to occur in real life situations
of people walking. These two last scenarios are summarized

in Table IIT along with scenarios 3 and 4 with whom they are
comparable.

TABLE III
SIMULATION SETUP
Scenario Handover | Movement Speed
Prediction
Scenario 3 enabled disabled constant
Scenario 4 enabled enabled constant
Scenario 5 enabled disabled variable
Scenario 6 enabled enabled variable

All these scenarios were primarily evaluated in terms of two
principal parameters, the mean number of visits to a target and
the mean time between visits. The first statistic shows how
many times a target was visited during the simulation, or how
many times a UAV found that target during the simulation. It is
important to notice that once a UAV may have been allocated
exclusively for the same target for a long time, a low visit
count is not necessarily a bad result. The second statistic is
important to know how frequent these visits were, or how
well distributed they were. A target with a low visit count, but
a higher time between visits, for example, may have gotten
less coverage than one with a lower interval between visits,
meaning that the last had a UAV allocated to it for some time
while the other one did not.

For each scenario, 100 simulations runs were performed and
the presented results express an average from these runs. Table
IV shows these results. Comparing the obtained results from
scenarios one and two, it can be verified that the movement
prediction mechanism activated on scenario 2 works efficiently
to improve target coverage, augmenting the visit count in 29%
and reducing the time between visits in almost 6 seconds.
Such improvements mean that targets are visited more times
and more frequently. Both improvements are important for
the monitoring mission. These enhancements were already
expected since the movement prediction mechanism leads the
UAVs to intercept targets based on their movement patterns,
avoiding the misses that would occur if the UAVs went looking
for targets on their last known position.

TABLE IV
ALGORITHM EVALUATION SIMULATION RESULTS

Scenario Average Average Time
Visit Count | Between Visits (s)
Scenario 1 26.0 33.7
Scenario 2 33.6 27.8
Scenario 3 31.5 29.1
Scenario 4 35.9 25.4
Scenario 5 23.9 36.7
Scenario 6 24.4 34.2

Analyzing scenarios 3 and 4, that have the handover mech-
anism activated, it is possible to observe significant gains
in coverage compared to the results with scenarios 1 and
2. Comparing scenarios 1 and 3, both with no movement
prediction, an improvement of 20% can be seen in visit
count statistics when the handover is activated. The handover
activation also causes a reduction of 4.5 seconds in the
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time between visits, confirming the expected improvement on
coverage due to the redistribution of the targets between the
UAVs. Similarly, comparing scenarios 2 and 4, both featuring
movement prediction techniques, an improvement of 6% on
visit count and less 2.4s on the time between visits confirm
the handover positive effects on the target coverage.

Also, comparing scenarios 3 and 4 between them, the last
one featuring movement prediction, the same expected positive
effect caused by this mechanism can be verified. Targets in
scenario 4 receive 4.4 more visits per simulation and are
visited 3.7s more frequently than in scenario 3, reinforcing
the idea that fewer targets are missed when the prediction
mechanism is on.

Looking into the results from scenarios 5 and 6 it can be
seen that, as expected, these simulations feature both fewer
visits to the targets and greater times between visits when
compared to 3 and 4. This result was expected because on
these simulations a lot of misses occur due to the changes in
the target speeds that are unknown to the UAVs and their
movement prediction and genetic algorithms, making them
look for targets on the wrong locations, or calculate a bad
visit order. Scenario 5, for example, performs 7.5 fewer visits
to targets than scenario 3, while scenario 6 performs 11.5
fewer visits than scenario 4, showing that even subtle changes
in the movement pattern of the targets may result on serious
degradation on the performance of the solution.

In order to illustrate the distribution of target to the UAVs,
Figure 6 shows an example of how the UAVs (represented by
the big dots circumscribed by a circle representing their FOV)
spatially organize themselves and calculate the best routes to
visit the targets (represented by the small dots in the figure).
This a screenshot from a simulation of scenario four, and
represents part of the scenario in which the system can be used.
In this figure, it is possible to observe that with the movement
prediction turned on during that simulation, the paths of the
UAVs are pretty distant from a target’s current position and to
the point of a future position of that target.

Fig. 6. Target Visit Paths in a Simulation Run from Scenario 4

B. Scalability Analysis

In order to evaluate how the number of targets per UAV
reflects on the solution performance, scenarios 7 to 13 were
designed changing the number of targets from 20 to 100,
or, in other words, 4 to 20 targets per UAV. The setup of
these scenarios regarding the number of targets and which
algorithms are enabled is shown in Table V.

TABLE V
VARIABLE TARGET COUNT SIMULATION SETUP

Scenario Number of | Handover | Movement Target

Targets Prediction Speed
Scenario 7 20 enabled enabled constant
Scenario 8 25 enabled enabled constant
Scenario 9 30 enabled enabled constant
Scenario 10 35 enabled enabled constant
Scenario 11 40 enabled enabled constant
Scenario 12 60 enabled enabled constant
Scenario 13 100 enabled enabled constant

Table VI shows the results obtained from these scenarios. It
can be seen from these results that, as expected, the scenarios
with fewer targets presented an increased performance on both
the number of visits and the average time between visits. These
results also showed a trend in how well the system performs
when a high number of targets is confined to a small area.
Observing the results from scenarios 10 and 11, it can be seen
that no performance reduction was observed between these
two cases. In fact, the performance drop from scenario 10
to scenario 11 was observed to be of only 0,0016%. Further
inspection comparing these simulations showed that this result
was observed due to the relation between the number of targets
and the simulation space. According to the observed results,
confining more than 35 targets in 250,000m? of simulation
area led the targets to be packed close together, meaning that,
in average, tours that visit 7 or 8 targets per UAV are not very
different, causing the average time between visits to be the
same.

Moreover, in packed crowds, the simple movement of a
UAV searching for a target may cause it to run into another
target, visiting it by hazard. This fact ends by increasing the
observation parameter of the system as a whole, reducing the
average time between visits and increasing the visit count.
This behavior can be well observed analyzing the results of
scenarios 12 and 13, in which even a great number of targets
per UAYV, i.e. 20, was not able to degrade the system results
below a certain level. These results, however, will not be
true to a case in which targets are not limited to such a
restricted area. In larger environments, where targets are not
so restrained and are free to move at will, these hazards visits
would not occur (or rarely occur), meaning that such high
target counts might indeed degrade the system until it is not
capable to observe multiple targets anymore. However, this is
a different type of scenario, compared to the one aimed to be
tackled in this work.

In addition to these results, scenarios 14, 15, 17 and 18 were
designed to verify how the system deals with the arrival of new
targets. Basically, as shown in Table VII, these scenarios start
with 20 target and new targets, 5 or 10 of them, are inserted
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TABLE VI
VARIABLE TARGET COUNT SIMULATION RESULTS

Scenario Number Average Average Time

Scenario of Targets | Visit Count | Between Visits (s)
Scenario 7 20 36.05 24.97
Scenario 8 25 33.75 26.67
Scenario 9 30 30.60 29.41
Scenario 10 35 29.15 30.88
Scenario 11 40 29.15 30.88
Scenario 12 60 30.00 29.99
Scenario 13 100 30.03 29.95

either 1 by 1, evenly spaced during 5 minutes of simulation
(300s), or all packed together at 150s. In all these scenarios
target speeds are considered constant, and both movement
prediction and handover algorithm are enabled, ensuring that
the best performance is always achieved. Scenarios 16 and
19, which do not spawn new targets, but start already with
the final target count, were also introduced as a baseline for
comparisons.

Analyzing the results presented in Table VIII, it can be
observed that scenarios that spawn targets during execution
present, in average, better performance than those that already
start with all the targets. Such behavior can be easily ex-
plained since those scenarios that start with 20 and spawn
new targets, i.e. 5, have fewer targets to deal with on the
beginning, presenting a good initial performance that slowly
degrades as new targets are inserted. This behavior is even
more remarkable when the cases with 1 by 1 and packed
insertion are compared. Pack insertion presents high visits
counts during simulation, and consequently an overall reduced
time between visits, it can be assessed from the results that
this interval is significantly increased after new targets are
spawned. The 1 by 1 insertion, on the other hand, presents a
graceful degradation in performance after targets are inserted.
This is expected behavior since the targets are incrementally
added, instead of abruptly inserted. These results show that the
system is able to deal with new targets as their appearance,
trying always to minimize the effects of these situations on
the overall performance.

C. Experiments Considering Ordinary Urban Walking Sce-
nario

Once the system was primarily designed to be used on urban
environments, scenario 20 was developed to verify how the
system handles a group of targets walking on a large urban
avenue. The scenario is parametrized to simulate a 1500m
x 50m city avenue, with 25 pedestrian targets moving along
it. The targets were programmed to adopt simple ordinary
human mobility behaviors [28], [29], moving longitudinally
along the avenue with different speeds and movement patterns.
Table IX provides details on how the simulation scenario was
set-up, highlighting both UAVs’ and targets’ characteristics,
showing which techniques and mechanisms of the algorithm
are enabled.

For this scenario, 50 different simulation runs were exe-
cuted. In all these runs, as can be seen in Table X, a 100%
target observation coverage was verified, meaning that every

time a UAV went after a target, it was able to generate a tour
to find it, and actually find it where it was expected, not losing
a single scheduled observation. It can also be seen, looking at
these results, that the system has achieved a high visit count,
visiting each target more than 70 times in 15 minutes, with
an average interval of 11.76 seconds between visits. These
results corroborate the idea that this system is highly able
to efficiently perform in urban law enforcement tasks, i.e.
demonstration or street party monitoring, completely fulfilling
its primary goal. Moreover, notice that the results reported in
this section are even better than those previously reported in
the sections above. These better results are understandable due
to the spatial distribution of the targets in this last scenario, that
force them to stay closer, compared to those areas considered
before.

VII. DISCUSSION OF THE RESULTS

In order to validate the solution adequacy, the results
obtained on the previous section can be compared against
the theoretical expected target movement behavior. Since this
work focuses on monitoring targets that keep moving in known
paths or straight paths (what usually happens in urban environ-
ments once they are limited to the streets) and targets that do
not change their speed too often, under plausible conditions,
some time constraints or requirements for the system can be
defined as baselines for comparison. For a target that does
not change its direction of movement, the maximum distance
a target can deviate from the expected observation position
between two observations is primarily defined in terms of how
fast and by how much targets can change their speed. There
are two possible scenarios for this case, both considering that
the UAV has a circular field of view of 20m of radius:

a) Considering the worst situation, in which a still target starts
to walk as soon as a UAV starts observing it, and that an
average pedestrian walks, in a normal crowded situation, at
1.25m/s[28], it would take the pedestrian 16 seconds in the
worst case to move far enough so that the UAV would not
be able to find the target again in the next visit. The same
value is valid for a target that is first walking at 1.25m/s
and suddenly stops.

b) Considering a target that is already moving, it is a realistic
assumption that a pedestrian usually will tend to keep
its pace fluctuating around his current speed instead of
suddenly stopping or going into a sprint. Considering a
maximum deviation of 4+0.5m/s each 20s, it would take
the pedestrian 30 seconds in the worst case to move far
enough so that the UAV would not be able to find the
target again in the next visit.

Analyzing the results from the previous section, most tests
in which both the handover mechanism and the movement
prediction algorithm are enabled have achieved average inter-
visit times smaller than the 30 seconds calculated in case b,
meaning that, in all situations, both considering open fields
and limited urban-like environments (scenario 20), the system
would be able, on average, to observe moving targets without
losing them. For the open-field scenarios, however, the system
cannot deal with targets that present a “sudden start-stop”
behavior.
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TABLE VII
SPAWNING TARGETS SIMULATION SETUP
Scenario Number of Number of Spawning | Handover | Movement Target
Initial Targets | Spawning Targets | Technique Prediction Speed
Scenario 14 20 5 Ibyl enabled enabled constant
Scenario 15 20 5 pack enabled enabled constant
Scenario 16 25 - none enabled enabled constant
Scenario 17 20 10 1 by 1 enabled enabled constant
Scenario 18 20 10 pack enabled enabled constant
Scenario 19 30 - none enabled enabled constant
TABLE VIII
SPAWNING TARGETS SIMULATION RESULTS
Number of Targets 25 30
Target Spawn Technique None | 1 by 1 | Pack | None | 1 by 1 | pack
Average Visit Count 11.2 10.4 11.4 10.2 9.6 10.6
Average Time Between Visits (Overall)(s) 26.7 26.4 24.6 29.4 27.3 25.38
Average Time Between Visits (After Spawn) (s) - 26.3 28.9 - 29.1 29.8

TABLE IX
SCENARIO 20 SIMULATION SETUP PARAMETERS

Scenario 20

Simulation Area 1500m x 50m
Number of UAVs 5
Number of Targets 25
Target Initial Speed random from 0.5m/s to 2.0m/s
Target Moving Pattern Human Mobility Behavior

UAV Speed 20m/s
Handover Enabled
Movement Prediciton Enabled

TABLE X
SCENARIO 20 SIMULATION RESULTS

Average Visit Count 76.50
Average Time Between Visits (s) 11.76
Target Observation Coverage 100%

Scenario 20, in turn, presents an inter-visit time of 11.76s,
well below the 16s and 30s calculated on cases a and b
respectively, highlighting the adequacy of the system to be
used in urban environments. The results from this scenario
show that the system is not only able to observe targets that
do not change their speed abruptly (case b), but also able to
observe targets that present a more erratic behavior, stopping
and starting to walk again along the way (case a above).

Besides that, by calculating the intersection of the maximum
motion range of the target and the UAVs field of view, it can
be shown that, for scenario 20, the proposed algorithm can
support speed variation steps of up to +1.5 m/s, combined
with changes in direction of up to £68 degrees. This means
that even targets that behave somewhat erratically, starting
and stopping suddenly, and abruptly changing their movement
direction between observations can still be monitored as long
as they keep walking in the same general pattern.

In addition to the aforementioned results, scenarios 1 and
2 back up the extension to the genetic algorithm claimed
as one of the contributions of this work, showing that the
modified genetic algorithm is able to handle the TDTSP much
better than a genetic approach to the common TSP. Once
the movement prediction mechanism is activated, the average

number of visits per target is increased by 29% and the average
inter-visit time reduced by 17%. In this situation, scenario
1, not featuring the movement prediction mechanism, uses a
solution to the common TSP approach, in which the targets
do not move, to calculate its visiting path. Scenario 2, on the
other hand, enables the movement prediction extension to the
genetic solver, allowing it to solve the TDTSP considering the
movement of the targets. This result reflects the fact that naive
solutions to the general TSP only try to search and observe
targets on their last known locations, being able to accurately
observe only stationary targets, or those moving to slow to
leave the field of vision of a UAV between two visits.
Finally, the scalability results complement and support the
choice for a distributed approach in detriment of a centralized
one. A distributed system increases the robustness of the solu-
tion once, in many cases, obstacles such as building and trees
can momentarily interfere with the communication between
the UAVs themselves and/or the UAVs and a ground control
station, rendering a centralized algorithm unusable for some
time. On a distributed scenario, on the other hand, UAVs can
always communicate to their nearest neighbors to cooperate
and coordinate the mission and the target distribution, even if
some UAV, or a subgroup of them, are not able to communicate
with the rest of the fleet. Furthermore, a centralized approach
implies that a given node of the system, be it a ground control
station or a specific UAV, is responsible for the coordination
of the whole mission. This means that if this coordinator node
is for some reason compromised or is unable to communicate,
the whole mission can be compromised or even taken down.
The results gathered from scenarios 14 to 19 enrich the
discussion about decentralization showing that, even in cases
in which some node is lost, other nodes may be able to take
the responsibility on the targets of the missing node without
a significant degradation on the overall mission performance.

VIII. CONCLUSIONS AND FURTHER WORK

This paper presents a proposal that enables UAVs to peri-
odically monitor a group of moving targets that simulate the
movement of walking individuals in crowded environments.
The goal on developing this work was investigating how well
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a group of UAVs can continuously monitor a large group of
individuals (targets) in a crowd, alternatingly visiting each of
them at a time while trying to not lose sight of any of these
targets. A system equipped with a group of UAVs running
this proposal can be used for law-enforcement applications,
assisting authorities to monitor crowds in order to identify
and follow suspicious individuals that can have attitudes that
could be classified as vandalism or linked to terrorist attack
attempts.

Simulations performed to test the developed approach have
shown that it is indeed able to perform such monitoring
task, visiting all the targets during the simulations, while still
minimizing the time between visits made to these targets. The
genetic algorithm has shown a great potential to solve this kind
of moving target monitoring and TDTSP problems, and the
implemented handover mechanism was able to handle target
redistribution assertively.

Proposed future works on this project comprehend the
analysis and study of the genetic algorithm and its parameters,
such as the number of generations, genome and population
size, fitness function and fitness analysis to try to enhance the
system performance. These enhancements could be focused on
augmenting the number of visits to the targets and reducing
the time between these visits. Another important addition
to the work would be the adaptation of the auction and
handover mechanism. This adaptation would be mainly about
tweaking the bid rules, to reduce the number of handovers
performed during the system execution and the best allocation
of the targets. Additionally, better simulation scenarios can
be analyzed, such as those in which targets follow different
patterns of restrict movement model, studying a larger variety
of movement patterns of crowds taking part in demonstrations
or riots.
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