
Verifying Resource Adequacy of Networked IMA
Systems at Concept Level

Rodrigo Saar de Moraes ? and Simin Nadjm-Tehrani

Dept. of Computer and Information Science
Linköping University - Sweden

{rodrigo.moraes,simin.nadjm-tehrani}@liu.se

Abstract. Complex cyber-physical systems can be difficult to analyze
for resource adequacy at the concept development stage since relevant
models are hard to create. During this period, details about the functions
to be executed or the platforms in the architecture are partially unknown.
This is especially true for Integrated Modular Avionics (IMA) Systems,
for which life-cycles span over several decades, with potential changes
to functionality in the future. To support the engineers evaluating con-
ceptual designs there is a need for tools that model resources of interest
in an abstract manner and allow analyses of changing architectures in a
modular and scalable way. This work presents a generic timed automata-
based model of a networked IMA system abstracting complex network-
ing and computational elements of an architecture, but representing the
communication needs of each application function using UPPAAL tem-
plates. The proposed model is flexible and can be modified/extended to
represent different types of network topologies and communication pat-
terns. More specifically, the different components of the IMA network,
Core Processing Modules, Network End-Systems, and Switches, are rep-
resented by different templates. The templates are then instantiated to
represent a conceptual design, and fed into a model checker to verify that
a given platform instance supports the desired system functions in terms
of network bandwidth and buffer size adequacy – in particular, whether
messages can reach their final destination on time. The work identifies
the limits of the tool used for this evaluation, but the conceptual model
can be carried over to other tools for further studies.

Keywords: Timed Automata, UPPAAL, IMA System, Conceptual Anal-
ysis, Network Resource Adequacy

1 Introduction

Modeling complex cyber-physical system (CPSs) [6] can be a challenging task,
particularly since, during the initial concept phase, architectures have to be de-
fined or reflected upon without specific knowledge or fine-grained models of the
functions to be executed or the software to be run on these platforms. Usually,

? corresponding author



2 R. S. de Moraes, S. Nadjm-Tehrani

details of the software, algorithms, and functions that are relevant to the de-
velopment of conceptual platforms are not known beforehand. These elements,
however, still have to be considered during the conceptualization of platform
models so that enough processing and network resources are allocated to the sys-
tem from the start. The challenges of modeling CPSs are even more pronounced
when those are Integrated Modular Avionics (IMA) Systems [11]. Typically, air-
craft implementing IMA-based systems have life-cycles that span across several
decades, making it very difficult to consider or plan for future functionality ex-
tensions, making it imperative to consider for such phenomena in the initial
concept of these architectures.

Given this motivation, the work described here presents a generic IMA-based
network model to be used during the conceptual definition of candidate IMA
platforms. The goal is to evaluate a candidate IMA architecture in terms of the
applications and functions that it must support, abstracting complex network
and computational system models. More specifically, the wish is to verify whether
the resources of a candidate platform are sufficient to support an Avionics Ap-
plication Model (AAM) that defines the resource requirements of the aircraft’s
platform. Also, the model permits the evaluation of alternative platform architec-
tures, helping with the assessment of different candidate platform architectures
that could potentially implement the AAM.

This work presents a model to evaluate the performance of IMA-oriented
computer networks, focusing on a flexible model that can be later extended to
represent different types of network architectures with different topologies and
characteristics. The initial model focuses only on the network part of the resource
adequacy problem. Other aspects such as processing capacity and schedulability
are also important for the problem, but are not considered here.

The paper is structured as follows. Section 2 provides a theoretical back-
ground to the problem. Section 3 describes the methodology and the reasoning
behind the development of the model, including the process to instantiate partic-
ular architectures. Section 4 describes the specification of high-level requirements
for the system, as well as how to query the model to obtain relevant results. The
results obtained by querying an experimental instance of an IMA architecture
are presented in Section 5. Finally, the conclusion is drawn in Section 6.

2 Background

A recent survey performed by Wang and Niu [10] studies and discusses the char-
acteristics of Distributed Integrated Modular Avionics Systems (DIMA) as well
as the main technologies, scheduling algorithms, and methods used in the concept
and design of contemporary DIMA system. In their discussion, they address the
common problems and challenges encountered by engineers and designers dur-
ing the development of these systems and highlight three key technologies that
can help in the process: mixed critical task scheduling; real-time fault-tolerant
scheduling; and real-time communication network delay analysis. The first two
are concerned with how to schedule tasks to meet timeliness and dependability.



Verifying Resource Adequacy of Networked IMA Systems at Concept Level 3

The delay analysis of the real-time communication network, on the other hand,
is presented as a way to ensure the real-time performance of the distributed
system.

In order to ensure that all tasks, which run on different processors, can meet
the time constraints imposed by the application, the communication delay be-
tween two processing nodes must be strictly bounded. The problem, however,
is that computing the exact worst-case delay for such networks is most of the
time impossible since realistic IMA platforms are composed of dozens of com-
munication models and hundreds of message flows. Therefore, approaches such
as network calculus (NC) [3, 4] have been proposed. These approaches compute
an exact, but often pessimistic upper bound for the delay of each message flow
on the network. This pessimistic behavior usually leads to an over-dimensioning
of the network architecture, which can quickly become expensive.

The NC technique is based on the idea of over-approximating message flows
by arrival curves and under-approximating network elements by service curves.
The worst-case delays are obtained by applying convolution and deconvolution
operators on these curves. A recent work by Li et al. [8] uses NC to try to provide
timing performance guarantees for heterogeneous multicore systems. Their work
adds a virtual channel concept to each CPU core and provides a delay analysis for
a typical switched network structure. The same NC approach is used by Soni et
al. [9] who try to quantify the pessimism of the computed upper bounds of the NC
technique when applied to an Avionics Full-Duplex Switched Ethernet (AFDX)
network. In their report, the authors compare the delays calculated using network
calculus with exact worst-case delays calculated using model checking. Their
results show that the NC approach can introduce up to 12% percent overhead
on the delay estimation due to its pessimistic tendencies.

Recent work by Xu and Yang [12] couples the concepts of Grouping Strategy
and network calculus to take into account the serialization of the messages being
transmitted through the same physical link in AFDX networks. They analyze
the existing pessimism in network calculus and then propose a rate-constrained
grouping strategy to improve the analysis of system performance. Addressing
the phenomena of burst enlargement, they present a new strategy to cope with
the pessimistic behavior of network calculus. Their approach, however, tends to
obtain optimistic estimates for the end-to-end delay that can induce some risks
to the utilization of this method in some corner cases.

Robati et al. [1], on the other hand, move away from NC and extend the Ar-
chitecture Analysis and Design Language (AADL) modeling language to model
Time-Triggered Ethernet (TTEthernet) based distributed systems. Their ap-
proach proceeds to define model transformations to enable the verification of
the AADL models using Discrete Event System Specification (DEVS) based
simulations. They present successful results for the verification of small IMA
systems, but highlight that the automation of the refinement step of the model
transformation is challenging and still requires some significant manual input
from the user.



4 R. S. de Moraes, S. Nadjm-Tehrani

Finally, Zhang et al. [13] present a model for verification of the real-time
constraints of IMA systems. They propose a finite-state machine mechanism to
represent the behavior model of the application and the platform. The proposed
model is based on specific requirements from the ARINC653 and ARINC664
(AFDX) standards. Their approach aims to address the claim that, while sig-
nificant work has been made in terms of communication delay, RTOS service
performance, and scheduling algorithms, these factors do not affect the system
independently and the sum of their effects need to be taken into consideration
in early development phases. Their approach, however, is tested with a small
autopilot use case and is very likely to have scalability problems as the system
grows to represent the whole aircraft.

In this work we explore the conceptual modelling of communication require-
ments and their verification using model checking with timed automata.

3 Methodology

The current model is structured in the form of a Network of Timed Automata
(NTA) which can be instantiated according to the characteristics of the archi-
tecture and applications the user wants to investigate. This approach lets the
behavior of each different component of the network model to be represented as
a Timed Automaton (TA)[2] which communicates with other TAs via broadcast
channels and shared variables to generate Networks of Timed Automata that
can be fed into a Model Checker (MC) for simulation and analysis.

The usage of NTAs allows for a flexible and modular system that can be
easily modified to accommodate new components and behaviors or be extended
through the modification of the existing TAs or the addition of some new ones.
This approach limits the modifications to the TA that implements the component
to be changed or extended, not requiring the whole system or the interactions
between the other components to be modified. NTAs also allow for flexibility
in terms of the instantiation of different candidate architectures, since the TAs
behaviors are independent of each other, only exchanging information through
the communication channels or shared variables, different architectures can be
easily implemented by instantiating different TAs, with different behaviors, for
the different components of the system as long as the interface between the com-
ponents is maintained. One can, for example, instantiate an TA representing a
given network scheduling algorithm, i.e. round-robin, to analyse a candidate ar-
chitecture and, when desired, de-instantiate this TA and switch it for another TA
representing another, i.e. priority-based, scheduling algorithm, without having
to re-model the whole system and the interaction between the components.

The current work uses the UPPAAL toolbox [7] as a resource for the design,
simulation, and verification of the NTA model. The tool provides support for the
representation of real-time systems as networks of timed automata, extending the
automata representation with integer variables and structured data types, and
providing channel synchronization mechanisms to support the communication
between the automata.



Verifying Resource Adequacy of Networked IMA Systems at Concept Level 5

The instantiation of an NTA model requires two different types of descriptive
documents: a Global Declaration File, in which the specifics of the system, in
this case of the avionic applications and of the IMA architecture, are described
and declared; and a Component Instantiation File that lists which components
of a library or set of TA templates will be instantiated and how these templates
relate to the information provided on the System Declaration Document. With
the information provided by these two documents, the toolbox is able to compile
an NTA instance of the IMA architecture that was described. This model is
then fed into a Model Checker which will verify if the model satisfies certain
desired properties, or, in this case, whether the instantiated architecture meets
the resource adequacy and timeliness requirements defined for the IMA system.
Finally, the SMC provides the user with results of the verification, providing
both the final status of the verification for each of the requested requirements,
as well as a trace that represents the state of the system upon non-compliance.
More details on each of these documents and the TA templates will be given in
the subsequent subsections of the document.

3.1 Overall Network Architecture

Figure 1 illustrates an IMA network system as modeled in this work. The diagram
represents a system composed of m processes, labeled T1 to Tm, allocated to n
Core Processing Modules (CPM), labeled CPM1 to CPMn. The CPMs, in turn,
are associated to n Network End-Systems (ES), labeled ES1 to ESn, that are
connected to each other through a network, represented by the dotted box on
the lower part of the diagram. The arrows in Figure 1 represent the flow of
information, or in this case exchange of messages, between the components.

Fig. 1. Diagram of a Generic network

Each Network End-System is composed of two different components, a Send-
ing End-System, responsible for forwarding the messages it receives from pro-
cesses onwards into the network, and a Receiving End-System, responsible for



6 R. S. de Moraes, S. Nadjm-Tehrani

delivering the messages it receives from the network to the processes. It is im-
portant to highlight that each of these two components is associated, in the NTA
model, to a different TA template. On the other hand, the ES itself, which en-
compassess both components, is not mapped to a TA, being merely a conceptual
entity in our model.

Similarly, each process is mapped to a TA model that represents its behavior.
CPMs are also just conceptual entities within the model and are not mapped to
TAs. This representation choice is due to the fact that modeling the behavior
of the CPMs themselves is not really relevant to the analysis of the network
adequacy in this work since for the current analysis only the rate in which
processes generate messages matter.

Finally, the Network Model represents the network architecture used to con-
nect different CPMs. This component is, again, merely a conceptual entity com-
posed of multiple and different TA instances depending on the type of network
or architecture being analyzed.

Figure 2 illustrates how a switched network, where n CPMs are connected
through an n-port-switch, can be instantiated. In this example, the switch is
represented by two types of TA templates: Sending Interface TAs, which are
responsible for forwarding messages to the receiving end-systems; and Switch
Core TAs, responsible for the routing and switching of the messages received from
the sending end-systems, assigning each message to the corresponding Sending
Interface.

Fig. 2. General Diagram of a Switched Network

In this model, following the interfaces provided by UPPAAL, the commu-
nication between the different Timed Automata representing the components
of the network is made using shared variables. These shared variables model



Verifying Resource Adequacy of Networked IMA Systems at Concept Level 7

buffers and represent the internal storage structures that exist in most of the
real physical components. This approach allows each automaton that represents
a network model to forward messages to the next node in the network by writing
the message directly on the other node’s input buffer, modeling the delivery of
a message in the receiving node. More on this behavior is discussed when the
automata for the components of the system are presented in section 3.3.

3.2 System Global Declarations

The System Global Declaration serves the purpose of describing the resource-
related part of the IMA platform and AAM being analyzed. Here, the specific
aspects of the system, such as the characterization of the end-to-end communi-
cation, the number, and the timing characteristics of the processes and of the
underlying network are set. Moreover, it is also where the declaration and ini-
tialization of the communication channels, shared variables, system constants,
and common functions take place.

Listing 1.1 shows an excerpt of our configuration file, showing the specific
part of the file where the general variables used to describe a specific IMA archi-
tecture are located, as well as a description of their meaning.The characteristics
described by these variable are specific to each architecture, detailing specific
aspects of said architecture such as the number of processes, end-systems, and
messages, as well as platform aspects such as the size of the network buffers and
the bandwidth of the network.

const int N_ES =2; // The number of end systems.
const int N_PROC = 6; // The number of processes.
const int N_MESS = 11; // The number of different
types of messages in the system.
const int SIZE_M = 16000; // The maximum size of the
messages in bytes.
const int BUFFER_SIZE = 16; // The maximum size of
network buffers in kbytes.
const int NETWORK_BD = 100; // network bandwidth in mbps/s

Listing 1.1. General System Description Variables

Listing 1.2 exemplifies the declaration of a simple process. A process is de-
scribed by a Process data structure that carries information about the worst
case execution time of the process, the period in which it should be run, the
end-system it is associated with, and the number and list of messages the pro-
cess is supposed to read and write from the network. Each Process structure also
caries a specific process ID, which will be fed to a generic process TA template
during instantiation and allows the template instantiated for each process to
access the shared data about the process they relate to.

In this case, we can see the instantiation of a process P1, characterized by
id number TID t = 1, associated with end-system ESID t = 0, that takes
maximum 7ms to run and runs each 16ms. We also see that process P1 makes



8 R. S. de Moraes, S. Nadjm-Tehrani

3 writes to network, being writes of message types 1, 2 and 3, and performs the
reads of two message types, 4 and 5, from the network.

//A data structure representing a process and its
charachteristics

typedef struct
{ TID_t id; //process id

time_t wcet; //process WCET
time_t period; //period of the process
ESID_t associatedES; //an identifier of the
End-System the process is associated with
NetworkWrites netWrites; //a NetworkWrites object that
lists the messages this process sends
NetworkReads netReads; //a NetworkReads object that
lists the messages this process receives

}Process;

// Definition of a Process P1
const Process P1 = {1,7000,16000,0,
{3,{1,2,3}}, {2,{4,5,NO_MESSAGE,NO_MESSAGE}}};

Listing 1.2. Process Data structure and Definition of a Process

We now go on to exemplify how the messages exchanged between processes
are defined in the context of the model. Listing 1.3 demonstrates how messages
are defined in terms of a message type id, information about the sender and
receiver processes, and the size of the message. Towards the end of the listing,
there is an example of how a 3608 bytes long message with type id MID t = 1,
that goes from process 3 to process 2, can be instantiated.

//A message element structure
typedef struct {

TID_t sender; //the id of the sender process
TID_t receiver; //the id of the receiver process
MID_t id; //the id of the message type
int [0,SIZE_M] size; //the size of the message in bytes

}Message;

//Definition of a message M1
const Message M1 = {3,2,1,3608};

Listing 1.3. Message Data structure and Definition of a Message

3.3 Timed Automata Templates

Timed Automata Templates in UPPAAL Each automaton template that
composes the final system is instantiated from a parameterized template. The
parameters for each template are replaced by arguments at the moment template
instantiations are declared. After instantiating the components, these have to be
composed into a system, which is made through a system definition.



Verifying Resource Adequacy of Networked IMA Systems at Concept Level 9

Conceptual Components as Timed Automata Templates In order to
instantiate and define a system similar to the ones depicted in Figures 1 and 2 a
series of templates modeling the behavior of the components of the systems have
been created. The remainder of this subsection is devoted to the presentation of
these templates. The syntax of the diagrams used on the representation of the
templates follows that of UPPAAL.

– Process Model: The Process Model is an abstraction of the application
processes’ communication needs in this work, acting as both a sink and a
source of messages depending on the location 1 the automaton finds itself
in. It has 3 different locations: the Idle location, representing the situation
in which the process is not realizing network-related activities, neither re-
ceiving nor sending messages, being idle from the perspective of the network
interface; the RetrievingMessages location, that is reached immediately after
the process leaves Idle, is where the automaton verifies which messages were
delivered to that process since the last time it ran; and the Sending location,
which models the state where the process has received all the messages it
needed to run and done its computations, after which it creates and sends
its own messages to the network before going back to Idle. In case a process
verifies it did not receive the messages it was expecting in the ValidatingIn-
put location, the process automaton communicates this error to the rest of
the system through a special error communication channel and goes back to
Idle, not going forward into the Sending location. Figure 3 depicts what this
template looks like.

Fig. 3. The Process Model Template

– Sending End-System Model: The Sending End-System Automaton is
responsible for forwarding the messages generated by one or more processes
into the network part of the system. The automaton is composed by an
Idle location, in which it waits until a request is received from a process; a
Buffering location, in which the end-system fetches and buffers the messages
from the processes upon a request being received; and a Sending location, in

1 UPPAAL term for the state in Automata



10 R. S. de Moraes, S. Nadjm-Tehrani

which the automaton stays while it is sending messages to other nodes in the
network. In case the end system has several messages waiting to be sent, it
will bundle the messages together as to use the whole bandwidth available on
the network by looping through the Buffering and Sending locations while
is has messages to send. The current implementation of the Sending End-
System models a FIFO message scheduling algorithm to arbitrate between
the messages of several processes. Given the structure of this template, other
scheduling approaches can be implemented if needed by changing the way
messages are buffered and sent inside the states of the automaton, which are
code that runs on the background and are not reflected on the structure of
the model. This approach allows for the extension of the template to support
multiple scheduling policies without significant modifications to the structure
of the automaton. Figure 4 depicts the Sending End System Automaton.

Fig. 4. The Sending End System Template

– Receiving End-System Model: The Receiving End-System is perhaps the
simplest automaton in the model. Its main role is to deliver the messages
that have been written to its internal buffer to the processes. This part is
performed by periodically looping through the Idle and Delivering locations
that compose this process. A graphical representation of the Receiving End-
System is shown in Figure 5.

Fig. 5. The Receiving End System Template



Verifying Resource Adequacy of Networked IMA Systems at Concept Level 11

– Switch Sending Interfaces: The Switch Sending Interfaces model is very
similar in behavior to the Sending End-System model, the difference being
that the first interface fetches messages from its internal buffer, which is
fed by the Router Core, whereas the latter fetches its messages from the
processes. Due to the similarity of this automaton with the Sending End-
System automaton, a graphical representation of this automaton will be
omitted.

– Switch Core: This automaton models the behavior of a network switch for-
warding engine, forwarding the messages received in its Input Buffer from the
Sending End-Systems to the correct Sending Interface associated with the
Receiving End-System each message is destined to. This automaton works
by periodically leaving the Idle location to the Fetching location, where
it fetches the next message in its input buffer. Having fetched the mes-
sage the automaton proceeds to the Routing location, in which it finds out
which Sending Interface to deliver the message to. A cycle of the automa-
ton execution ends on the Delivering location, delivering the message to
the correct Sending Interface, and returning to the Idle location by one of
two edges, depending on whether the Sending Interface buffer is full and
the MESS DROP ERROR error message has to be signaled or not. This
behavior can be seen in the automaton representation of Figure 6.

Fig. 6. The Switch Core Template

4 Requirement Specification

We begin by describing the requirements of interest in our case study.

4.1 Requirement Definition

To evaluate a candidate platform within a conceptual architecture, we need to
ascertain whether any avionics-related application(process) can ever be starved
by the network, meaning that it will not receive the data it needs to run, and also
whether any message will be lost due to lack of resources or inadequate sizing of
the network. That leads to the specification of two main high-level requirements
for the system in terms of resource adequacy and network performance:



12 R. S. de Moraes, S. Nadjm-Tehrani

1. No process should ever reach a state in which it needs a data and
has not yet received the data it needs - meaning that whenever a given
process needs data from a message this data should be available. The failure
to meet this requirement means that, for some reason, that specific IMA
platform configuration is not able to respect the communication deadlines
imposed by the AAM.

2. No network node should ever reach a state in which messages are
dropped - this requirement means, in other words, that there should not
exist a network node, be it a switch, or an end-system, that continuously
receives more data than it can forward or deliver where upon it completely
fills its internal buffer. A node for which the buffer is full is very likely to get
overloaded in an operational mode.

It is important to note that, while a failure to meet requirement 2 will prob-
ably lead to a failure of requirement 1 as well, the opposite is not true. If a given
message is dropped somewhere on the network, failing to meet requirement 2, it
will never arrive at its final destination, causing a failure to meet requirement
1. This is, however, just a resource adequacy problem. A message not arriving
in time at its final destination, on the other hand, can be caused for multiple
factors, being a much broader problem related not only to resource adequacy
but also to characteristics such as the number of messages being exchanged, the
number of switches between two end-systems, and the topology of the network.
These requirements are, thus, complementary in some sense, allowing whoever
is using the model to get a better insight on where a problem with some plat-
form/architecture might be coming from.

4.2 Verifying Requirements in UPPAAL

In UPPAAL, models can be verified by creating auxiliary observer templates
that monitor whenever a requirement is violated (i.e a bad state is reached.)
Hence, two observers were created to inspect the status of the platform model
during the requirement verification process. Basically, these observers are simple
timed automata that listen to the communication channels for error signals sent
by processes or network nodes, and change their state, to an error state. Figure
7 shows what an observer listening for processes that signaled a non-compliance
to the first requirement looks like. The second observer, which listens to the
network nodes waiting for signals that indicate that a full-buffer-state has been
reached, was omitted because it looks very similar to the first observer.

Fig. 7. Process Observer Automata



Verifying Resource Adequacy of Networked IMA Systems at Concept Level 13

4.3 Expressing Requirements in UPPAAL

The UPPAAL model-checker tool [7] uses a simplified version of a Timed Compu-
tational Tree Logic (TCTL) [5] to express requirements over the timed automata
models. Like in traditional TCTL, the UPPAAL requirements language supports
both path formulae and state formulae. State formulae reason about individual
states, whereas path formulae reason over paths or traces in the search space of
the model. Since the goal of the IMA network model is to verify whether a given
platform is able to serve as a basis for a given AAM with adequate resources,
we have a special interest on expressing the requirements of the network model
in terms of path formulae in terms of (non) reachability of undesired states (ex-
pressed in formal terms as the safety of the model). In short we aim to verify
that no undesired or error state can ever be reached.

In the UPPAAL requirements language, given the TCTL logic and a formula
ϕ, the path formula A�ϕ express that ϕ should be true in all reachable states
of the model. This type of requirement, usually expresses the so called safety
properties, that in UPPAAL are formulated positively, e.g., something desirable
is invariantly true. The two defined requirements are, then, written as:

A � not ProcessObserver.INS DATA ERROR
A � not NodeObserver.MESS DROP ERROR

5 Model Assessment

This section presents the analysis of an abstract networking platform architec-
ture and an application characterised by a mapping to the platform. We then
formally verify the the requirements mentioned in Section 4 and discuss the find-
ings of the formal verification. We use an illustrative use case that consists of 6
processes, allocated to 3 different CPMs that communicate with each other by
means of a switched network. These 6 processes exchange a total of 11 message
types.

While a graphical representation of the architecture is depicted in Figure
8, the message graph of Figure 9 shows the direction of each of the messages
exchanged by the processes, depicting the sender and receiver of each message.
Figure 9 also outlines the message dependencies between processes, a fundamen-
tal piece of information for the verification of Requirement 1. Listing 1.4, in turn,
details the declaration of each process and message, characterizing information
such as the period of the processes, the end-system each process is associated
with, as well as the size of each one of the 11 message types with each other.

The results of the verification of two different platform instantiations for re-
quirement 1 are shown in Table 1. The first instance considers that the network
links of the candidate platform have a bandwidth of 1 Gbps; the second, rep-
resents the case in which the network bandwidth is just 1 Mbps. Table 2, on
the other hand, shows the results of a verification of requirement 2, presenting
4 different instances of the platform with different buffer sizes for the network
models.



14 R. S. de Moraes, S. Nadjm-Tehrani

Fig. 8. Test Case Architecture

Fig. 9. Test Case Message Graph

Analyzing the results obtained from the verification of requirement 1, it is
easy to see that, whereas the instance featuring a fast network (1Gbps band-
width) was able to respect the communication deadlines imposed by the AAM,
the instance featuring a slower network (1Mbps bandwidth) did not meet this
requirement. The result of this verification was already expected since this in-
stance was created to illustrate, given the size of the messages, the bandwidth of
the network, and the periodicity of the processes, how a bad choice of network
bandwidth could lead to a breach of requirement 1.



Verifying Resource Adequacy of Networked IMA Systems at Concept Level 15

Query: Req 1: Correct timing for data delivery

Instance Verification Time (s) Verification Result

1Gbps Network 1868.05 SUCCESS
1Mbps Network 34.62 FAILURE

Table 1. Requirement 1 Verification Results

Query: Req 2: No messages dropped

Instance Verification Time (s) Verification Result

8Kb Buffer Size 3.29 FAILURE
16Kb Buffer Size 3.36 FAILURE
32Kb Buffer Size 16.04 FAILURE
64Kb Buffer Size 1857.55 SUCCESS

Table 2. Requirement 2 Verification Results

Turning to the results in Table 2, the verification of requirement 2 leads to
the conclusion that the components of the network should have buffers that are
somewhere between 32kb and 64kb in size. This behavior can be explained by
the periodicity of the processes. When the buffers are smaller than 32kb the
periodicity of the processes can lead to bursts of messages that small buffers
cannot deal with.

The results also show that the verification approach performs quite well in
cases in which the requirements are not met, being able to inform the user about
resource inadequacy or network problems within seconds. When the system does
not present any problem, however, the verification of the model takes consider-
ably longer. This behaviour was already expected since proving that one of the
requirements is not met is an easier task than proving that they are met. To
prove that the requirements defined on section 4 are met, the model-checker has
to verify the whole state-space of the system to guarantee that no error state is
ever reached. On the other hand, proving that the requirements are not met is
as simple as finding one branch of the state-space of the system in which one of
the error states is reached.

More importantly, the results from this case study show that the proposed
approach suffers from a severe scalability problem. Experiments made with more
processes and messages, such as 9 nodes and 16 messages, have shown a tendency
of the model to quickly get into a state-explosion problem, using up too many
computational resources and eventually leading the model-checker to terminate
the verification with inconclusive results. Since a common IMA system can be
composed of hundreds of processes, tenths of CPMs and end systems, and thou-
sands of message classes, such behavior raises some concerns about the suitability
of the system to be used in such cases.

// ----- processes
const Process processList[N_PROC]:={



16 R. S. de Moraes, S. Nadjm-Tehrani

{tid[0],7000,16000,esid[0], {3,{1,2,3}}, {0,{0,0,0,0}}},
{tid[1],6000,32000,esid[0], {2,{4,5,0}}, {4,{1,11,6,7}}},
{tid[2],3000,64000,esid[1], {0,{0,0,0}}, {4,{3,4,5,9}}},
{tid[3],5000,16000,esid[2], {3,{6,7,8}}, {0,{0,0,0,0}}},
{tid[4],8000,32000,esid[1], {1,{9,0,0}}, {3,{8,10,2,0}}},
{tid[5],3000,16000,esid[2], {2,{10,11,0}}, {0,{0,0,0,0}}}};

// ----- messages
const Message mList[N_MESS]:={
{0,1,1,3608}, {0,4,2,1449}, {0,2,3,8519}, {1,2,4,1519},
{1,2,5,145}, {3,1,6,10585}, {3,1,7,550}, {3,4,8,4956},
{4,2,9,3257}, {5,4,10,5674}, {5,1,11,391}};

Listing 1.4. Processes and Messages Declaration

6 Conclusions

This work has detailed the process and methods applied to the development and
test of an integrated modular avionics platform performance evaluation model.
The developed model was supposed to be a tool to help the professionals involved
in the early conceptual phases of IMA architecture definition to evaluate and
assess different architectures or platforms for their IMA system.

Through the verification of a candidate architecture, the model is shown to
be capable of analyzing and verifying the network requirements of candidate
architecture platforms. Such functionality, however, comes with a great cost in
computational power and time even for small systems, showing an accentuated
scalability problem with the current version of the model, something that can
severely influence the usability of the solution. This leads us to the conclusion
that, while the conceptual modelling approach developed in this work seems
promising, the UPPAAL encoding of it does not seem to scale.

In conclusion, further work is needed to analyse real-life-sized IMA architec-
tures of this nature. Moreover, extensions such as the addition of new message
scheduling algorithms, creation of templates for different switches or network
modules, and the support for different network standards and topologies could
help to enrich the model and improve the value of the developed solution.

Acknowledgements

This work was supported by the Sweden’s Innovation Agency - Vinnova, as part
of the national projects on aeronautics, NFFP7, project CLASSICS (NFFP7-
04890).

References

1. A modeling and verification approach to the design of distributed ima architectures
using ttethernet. Procedia Computer Science 83, 229–236 (2016)



Verifying Resource Adequacy of Networked IMA Systems at Concept Level 17

2. Alur, R., Dill, D.: Automata for modeling real-time systems. In: International
Colloquium on Automata, Languages, and Programming. pp. 322–335. Springer
(1990)

3. Cruz, R.L.: A calculus for network delay. i. network elements in isolation. IEEE
Transactions on Information Theory 37(1), 114–131 (1991)

4. Cruz, R.L.: A calculus for network delay. ii. network analysis. IEEE Transactions
on Information Theory 37(1), 132–141 (1991)

5. Goldblatt, R.: Logics of time and computation, vol. 7. Center for the Study of
Language and Information Stanford (1992)

6. Khaitan, S.K., McCalley, J.D.: Design techniques and applications of cyberphysical
systems: A survey. IEEE Systems Journal 9(2), 350–365 (2014)

7. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a nutshell. International Journal
on Software Tools for Technology Transfer (STTT) pp. 134–152 (1997)

8. Li, M., Zhu, G., Savaria, Y.: Delay bound analysis for heterogeneous multicore
systems using network calculus. In: IEEE Conference on Industrial Electronics
and Applications (ICIEA). pp. 1825–1830 (2018)

9. Soni, A., Li, X., Scharbarg, J., Fraboul, C.: Work in progress paper: pessimism
analysis of network calculus approach on AFDX networks. In: IEEE International
Symposium on Industrial Embedded Systems (SIES). pp. 1–4 (2017)

10. Wang, H., Niu, W.: A review on key technologies of the distributed integrated
modular avionics system. International Journal of Wireless Information Networks
25(3), 358–369 (2018)

11. Watkins, C.B.: Integrated modular avionics: managing the allocation of shared
intersystem resources. In: IEEE/AIAA Digital Avionics Systems Conference. pp.
1–12 (2006)

12. Xu, Q., Yang, X.: Performance analysis on transmission estimation for avionics
real-time system using optimized network calculus. International Journal of Aero-
nautical and Space Sciences 20(2), 506–517 (2019)

13. Zhang, K., Wu, J., Liu, C., Ali, S.S., Ren, J.: Behavior modeling on arinc653 to
support the temporal verification of conformed application design. IEEE Access 7,
23852–23863 (2019)


