
Experimental Analysis of Heuristic Solutions for the
Moving Target Traveling Salesman Problem Applied to

a Moving Targets Monitoring System

Rodrigo S. de Moraesa,b,∗, Edison P. de Freitasb

aDepartment of Computer and Information Science (IDA) - Linköping University - Sweden
bGraduate Program on Electrical Engineering - Federal University of Rio-Grande do Sul,
(UFRGS) - Av. Osvaldo Aranha, 103 - Bairro Bom Fim, 90035-190 - Porto Alegre - RS -

Brazil

Abstract

The Traveling Salesman Problem (TSP) is an important problem in computer
science which consists in finding a path linking a set of cities so that each of
then can be visited once, before the traveler comes back to the starting point.
This is highly relevant because several real world problems can be mapped
to it. A special case of TSP is the one in which the cities (the points to be
visited) are not static as the cities, but mobile, changing their positions as
the time passes. This variation is known as Moving Target TSP (MT-TSP).
Emerging systems for crowd monitoring and control based on unmanned aerial
vehicles (UAVs) can be mapped to this variation of the TSP problem, as a
number of persons (targets) in the crowd can be assigned to be monitored by
a given number of UAVs, which by their turn divide the targets among them.
These target persons have to be visited from time to time, in a similar way
to the cities in the traditional TSP. Aiming at finding a suitable solution for
this type of crowd monitoring application, and considering the fact that exact
solutions are too complex to perform in a reasonable time, this work explores and
compares different heuristic methods for the intended solution. The performed
experiments showed that the Genetic Algorithms present the best performance
in finding acceptable solutions for the problem in restricted time and processing
power situations, performing better compared to Ant Colony Optimization and
Simulated Annealing Algorithms.

Keywords: Ant Colony Optimization, Genetic Algorithms, Simulated
Annealing, Artificial Intelligence, Moving Target Traveling Salesman Problem,
Moving Targets
INSPEC:,

∗Corresponding author
Email addresses: rodrigo.moraes@liu.se,rodrigo.moraes@ufrgs.br (Rodrigo S. de

Moraes), edison.pignaton@ufrgs.br (Edison P. de Freitas)

Preprint submitted to EXPERT SYSTEMS WITH APPLICATIONS March 5, 2019

1. Introduction

The well-known Traveling Salesman Problem (TSP) consists in finding the
shortest path to visit a set of cities exactly once and return to the initial point
(first visited city). Its specializations and generalizations have been a common
and important topic of study for both mathematicians and computer scientists5

along the years, as many problems can be reduced to the TSP (Rajesh Matai &
Mittal, 2010). With its first mentions in literature dating back to the nineteenth
century, this routing problem has evolved with the technology around it. Nowa-
days TSP’s are found as sub-problems of several other more general applications
such as transportation infrastructure planning, logistics, PCI (Printed Circuit10

Board) projects, DNA sequencing, communication routing and even military
intervention planning (Rajesh Matai & Mittal, 2010). These are just a small
enumeration of the problems that are mapped to and need to deal with TSP in
their solutions.

A great number of different approaches for solving the TSP has been pro-15

posed during recent decades (Osaba et al., 2016; Saenphon et al., 2014; Xing
et al., 2008) . Most of these methods can be divided into heuristic and exact
methods. Exact methods search for the optimal solution and can only optimally
solve small problems since their approaches result in exponential computational
complexities for large problems. Heuristic methods, however, trade optimality20

for speed, being satisfied by local optimal solutions presenting good results in
solving large problems.

Recently, the usage of new technological assets such as Unmanned Aerial
Vehicles (UAVs) and autonomous agents such as robots or autonomous vehicles
(including autonomous UAVs) has exponentially increased since cheaper and25

more complete autonomous platforms have appeared on the market (Keller,
2015). This trend, allied to other technological developments in both software
and hardware fields has originated a great number of new applications, some of
which need to deal with TSP-like problems. Autonomous cars, for example, need
to calculate the best route to drive to their destination given traffic conditions,30

a common example of a TSP usage in this new scenario.
Among other usages, autonomous agents have become an important tool

to law enforcement forces, allowing them to track and follow targets or survey
areas or buildings quietly, safely and almost undetectably. Amidst these uses,
crowd control and monitoring applications for law enforcement present a set of35

interesting and complex characteristics that represents a special case of the TSP,
Moving Target Traveling Salesman Problem (MT-TSP) (Helvig et al., 2003) or
Time Dependant Traveling Salesman Problem (TD-TSP).

The MT-TSP is a generalization of the Traveling Salesman Problem (TSP)
in which the cost to travel from each city to the next depends on the time40

spent since the tour has started, or the position of these cities on the tour. An
even more special case, and the one that appears constantly in law enforcement
applications is the one in which not only the cost to travel between cities changes
with the time, but the cities, or targets, in this case, move with a given speed
as time passes. An example of such a scenario would be the interception of45

2

multiple evading targets on a crowd. Imagining that an electrical autonomous
law-enforcement UAV has to intercept each evading target to identify it and
do that as to minimize battery consumption, it is easy to recognize that this
is a hard task as it is to find the best route to accomplish this multi-target
interception mission. This special case of both TSP and TD-TSP is especially50

challenging because the position of each city (in this case a target) must be
recalculated each time a new target is reached on a tour considered as a potential
solution for the problem. Moreover, it must be done to all the tours considered
as potential solutions, considerably increasing the computational cost to find
such solutions.55

Considering the presented scenario, this work investigates different heuris-
tic and artificial intelligence methods’ performances on solving the MT-TSP.
Moreover, a second contribution presented here is the development of a move-
ment prediction module to be associated with the investigated heuristics, to
compose a complete solution. The work reported here is part of a research on60

law-enforcement usage of autonomous vehicles for crowd control scenarios, and
thus focuses its efforts on solving the MT-TSP for a small number of targets
that move considerably slower than the traveler or interceptor.

The work is organized as follows: Section 2 presents a deeper discussion
on Time Dependant and Moving Target Traveling Salesman Problems and the65

related works that served as inspiration for this research; Section 3 presents
an overview of the meta-heuristic models implemented to solve the MT-TSP;
Section 4 explains how the solution and the algorithms were implemented to
solve the MT-TSP problem; in Section 5, the results of this proposed solution
is presented, the different methods are compared and evaluated; Section 5 pro-70

vides a detailed discussion on the results presented in the previous section and
their possible application; Section 7, in turn, closes the paper presenting the
conclusions and future work directions.

2. Moving-Target TSP

The Moving Target Traveling Salesman Problem (MT-TSP) is a generaliza-75

tion of the traditional Traveling Salesman Problem in which the targets can
move with a given speed, including zero which represents the traditional or sta-
tionary case. The MT-TSP can be described as a problem in which, given a
set S = {s1, ..., sn} of n targets, each moving at a given speed vi and a pursuer
starting at the origin, and having maximum speed v � vi∀i ∈ {1, .., n}, find80

a tour which intercepts all targets (Helvig et al., 1998, 2003). The approxima-
tion complexity of MT-TSP was studied by Hammar & Nilsson (1999), where
it was shown that it cannot be approximated better than by a factor of two by
a polynomial time algorithm unless P = NP , even if there are only two moving
points in the instance.85

Figure 1 shows a graphical representation of an example of this problem. On
the static case of the TSP the traveler, who is initially in city 1, calculates in
instant t0 the best path to solve the static problem (Figure 1a). The problem
with MTTSP is, however, that in instant t1, after the traveler leaves departing

3

1

2

35

4

(a) Intant t0

1

2

35

4

1

2 3

5

4

(b) Intant t1

Figure 1: An example of the Moving Target Traveling Salesman Problem

city (node 1), all nodes have moved and changed their positions. This fact90

requires a new tour to enable the traveler to intercept the nodes after these
movements, where they have moved to (Figure 1b). As the nodes keep moving,
each time the traveler leaves one node to next, this process must be repeated
until it returns to node 1, which is in a new position (completely different from
the departing one) at the end of the tour.95

In order to solve this particularly complex problem, multiple heuristic-based
approaches have been proposed in the literature. For instance, Choubey (2013)
present a Genetic Algorithm approach to solve a set of TD-TSP problems. The
results showed that the Genetic Algorithm implemented by the authors is more
effective than solving the problem using a similarly modified greedy method,100

proving the advantages of the heuristic method to solve this kind of problem.
Abeledo et al. (2013) proposes a polyhedral basis Branch-Cut-and-Price

(BCP) Algorithm that suggests polyhedral theory can play an important role
in improving algorithms for the MT-TSP and TD-TSP. Performing studies on
the TD-TSP polytopes their method proposes polyhedral cuts that can be used105

to modify the BCP approach allowing the solution of 22 TSP instances with up
to 107 vertices.

A repetitive heuristic solution of the traveling salesman problem is used by
Englot et al. (2013) to solve a TSP in which a large number of moving targets
must be intercepted by a single agent as quickly as possible. The author’s work110

compares the Lin-Kernighan heuristic (LKH) to a greedy heuristic over different
problem parameterizations showing that the benefits of a non-greedy solution
depend on the speed of the targets relative to the agent. The work proves that
LKH is superior to greedy heuristics when the targets are moving at low speeds,
and that its relative performance to greedy algorithms improves as sensor noise115

worsens.

4

3. Heuristic Methods to solve TSP

3.1. Genetic Algorithm Methods

Genetic Algorithms (GAs) (Holland, 1992) are a kind of evolutionary algo-
rithms that try to simulate the concepts of natural Darwinian evolution to solve120

complex optimization problems. The concept behind these methods is to evolve
an initial population of candidate solutions until one of the solutions on this
pool or population is considered good enough to solve the desired problem.

The idea behind Genetic Algorithms is the application of a Survival of the
Fittest principle on a population of individuals representing potential solutions125

to the problem being solved. By using this principle it is granted that only
the fittest individuals are able to survive and mate. Such behavior leads the
candidate solutions to evolve and become better, ultimately leading them to-
wards the optimal solution to the problem, achieving very good results without
performing an extensive brute force search in the solution space. As in real130

life, each individual on the algorithm has a unique genetic code that rules the
characteristics of the specific candidate solution represented by each individual.
Through a series of operations such as selection, crossover and mutation, the
genetic code of the population is evolved for a certain number of generations,
or iterations, until the algorithm decides to stop and selects the best solution135

from the pool of solutions it has created.
This process of selecting and evolving a solution starts by selecting a rep-

resentation of the problem as to make sure that each candidate solution has
its own representation. An initial population of candidate solutions is then
created, usually at random even though heuristics can be used for that. Each140

candidate of the population is analyzed, it’s fitness, or how well the candidate
solves the problem, calculated and the generation sorted according to fitness
values. The Survival of the Fitness principle is then applied, meaning that most
fit solutions have more chance of breeding generating offspring to be part the
next generation. According to this principle, two parents among the candidates145

are then chosen, it’s genetic material combined into a new genetic code, and an
offspring created. Next, mutation occurs. Some of these offspring are randomly
selected to suffer mutations on its genetic code, creating new unique patterns
on the population genetic pool. This process is repeated until a new generation
is completely created. After that, the algorithm applies the Survival of the Fit-150

ness principle again on this new generation and all the crossover and mutation
process repeats itself. The whole algorithm is iterated over and over until either
a stop condition is found or the maximum number of generations exceeded. By
the end of the whole process, the best solution to the problem is chosen amongst
the pool of individuals created during the execution of the algorithm.155

One of the most important characteristic of this kind of algorithm is its
ability to avoid presenting poor local optima candidate solutions as definitive
solutions until the algorithm is finished. It is very important that worst fit
individuals still have a chance to mate, and not be discarded, being able to
create useful genetic material that may contribute to the generation of better160

solutions than local optimal ones.

5

For comprehension purposes, a graphical representation of the steps and
workflow of a genetic algorithm solution can be seen in Figure 2

Generate
Initial

Population
START

Evaluate
Population
Fitness

max
generations

Apply
Selection

Apply
Crossover

Apply
Mutation

New Gen-
eration

END

Select Best
Individual

yes

no

Figure 2: GA Fluxogram

3.1.1. Genetic Algorithms application in TSPs

Besides its simple concept, ”pure” genetic algorithms were not designed to165

solve combinatorial problems. The main intent behind the development of this
type of algorithm in the ’60s and ’70s was the optimization of numerical func-
tions (Holland, 1992). Consequently, the original algorithm had to be modi-
fied to represent and handle combinatorial optimization problems like the TSP
(Potvin, 1996).170

The first problem in using GAs for any kind of optimization problem is
choosing the correct representation method (Potvin, 1996) for the desired prob-
lem solution search space, ensuring that only valid and unique representations of
each solution exist, and that a chosen representation method does not influence
crossover, selection or mutation operations as to generate unsuitable results.175

The second and third principal problems are related to the crossovers (Potvin,
1996; Üçoluk, 2002; Mendiratta & Goyal, 2014; Goldberg & Lingle, 1985) and
mutation (Abdoun et al., 2012) phases of the algorithm. As previously illus-
trated on the text and in Figure 2, crossover, and mutations operators are the
methods responsible for creating new solutions for the search space, ensuring180

that new and possibly better solutions are examined each time a new generation
is processed. Their choice plays, therefore, an important role on the convergence
of the algorithm and on the quality or optimality of the solutions that can be
found.

6

The fourth problem deals with the selection problem (Shukla et al., 2015;185

Mohd Razali & Geraghty, 2011) meaning what strategy is used to choose in-
dividuals from a previous population to be parents and generate the offspring
that will compose the next generation.

3.2. Simulated Annealing

Simulated Annealing (SA) is a heuristic optimization method based on the190

idea that the process of finding (near) optimal solutions for optimization prob-
lems is similar to the physical annealing process used to obtain low energy states
on metals. The main concept behind a Simulated Annealing optimization algo-
rithm is that the optimization search starts on a high energy state, accepting
different candidate solutions whether they are near optimal, optimal or not good195

ones. As the process runs, however, the search algorithm starts to cool down,
reducing its willingness to accept bad candidate solutions and focusing on the
good ones.

Proposed by Kirkpatrick et al. (1983), Simulated Annealing is, thus, a
stochastic method used to avoid local, non-global optimal results to be consid-200

ered as optimal ones. This is done by accepting, based on a heuristic probability
function, worst solutions that would otherwise be ignored and that may lead to
optimal solutions once the local minimum point is transposed. However, during
the process the chance of accepting these deteriorations is decreased, meaning
that after a certain point the algorithm accepts that it has transposed local205

minimum and is getting closer to the global minimum, accepting only solutions
that are better than the current on from this point on.

As for the process, the algorithm starts by generating a random or quasi-
random candidate solution and performing local searches to optimize this initial
solution iteratively. On initialization, after generating the first candidate solu-210

tion, the algorithm links it to an initial temperature of T0, which represents
the degree of refinement of such solution, or its internal energy state. On each
iteration, a given number n of local searches are performed on the candidate
solution and accepted or not based on the acceptance probability for the current
iteration, after that the current temperature Ti of the optimization process on215

iteration i is decreased. In case one of the local searches find a solution which is
better than the current candidate, this improvement is automatically accepted
and the improved solution becomes the current candidate. Otherwise, if the
local search finds a solution x that is worse than the current candidate this
solution is tested against a probability Px of being accepted according to its220

evaluation f(x) and the current temperature Ti as shown in Equation 1.

Px = exp

(
−f(i)− f(x)

Ti

)
(1)

The f(i) on the term f(i)− f(x) on Equation 1 stands for the evaluation of
the current candidate, meaning that the probability of a worse solution x being
accepted depends on how worse than the current solution it is.

The convergence of this type of algorithms to find near-optimal solutions225

for optimization problems has widely been proved in literature, some works, as

7

Dekkers & Aarts (1991), provide an extensive mathematical analysis of simu-
lated annealing convergence. Such a convergent behavior is closely related to
the decreasing exponential formulation of the probability Px which decreases
the chance of a poor solution being accepted exponentially as the temperature230

decreases, granting that at the end, the algorithm is just accepting the best so-
lutions it finds. The initial temperature parameter is similarly important for the
convergence once, if too low, can lead the algorithm to never accept a solution,
and, on the other hand, if too high, leads the algorithm towards accepting lots
of solutions, delaying convergence.235

A graphical representation of the workings of a Simulated Annealing solution
as described above can be seen in Figure 3

Generate Initial
Solution with Tt = T0

START

Generate
Neighbor
Solution

Evaluate
Solution

Entropy Et

Et < Et−1
Calculate Acceptance

Pi = exp(−(Et −Et−1)/Tt)

Accept
Solution

rand < Pi

Increment
Tries

max tries

Tt − dt Tt ≤ 0

END

yes

no

yes

no

no

yes

yes

no

Figure 3: SA Fluxogram

8

3.2.1. Simulated Annealing application in TSPs

Similarly to genetic algorithms, simulated annealing (SA) approaches were
first intended to solve generalized combinatorial problems, needing adaptations240

to correctly handle TSPs. The adaptations Simulated Annealing, require are,
however, much simpler than the ones required by a Genetic Algorithm.

The process to use Simulated Annealing to solve the TSP problem does
not differ much from the general case, the representation of the solution and
the local search algorithm, however, must be correctly selected. As for the245

representation, a simple list of cities organized on the order they will be visited
on the candidate solution tour is a simple, usual, and straight forward method
representation method. The local search algorithm, however, presents a more
complicated choice. Many local search algorithm may be used on a Simulated
Annealing paradigm, between them, k-opt (2-opt and 3-opt) are among the250

most common, simple, and effective, not degrading the overall performance.
Other local searches have, nonetheless, been reported in the literature, including
even genetic algorithms (Xu, Mingji et al., 2017) being used as SA local search
methods in more sophisticated approaches.

3.3. Ant Colony Optimization255

Ant Colony Optimization (ACO) (Dorigo et al., 2006; Dorigo & Di Caro,
1999) is another biologically inspired approach to solve optimization problems.
The paradigm behind this kind of solution is inspired by the communication
between social insects, ants in this case, that cooperate with each other to reach
their objective in nature. Because of their high cooperative societies, ants have260

inspired a great number of algorithms, most of them based on their communi-
cation mechanisms, based on the deposition of pheromones in the environment.
In nature, ants communicate through the deposition of chemical markers on
the ground (pheromones), the idea used by ACO, distributing virtual ants to
perform searches on a set of candidate solutions and to indicate, through virtual265

pheromones, the way to find better solutions.
Following the natural inspiration, ACO is an iterative optimization algorithm

in which a number of virtual ants build a set of candidate solutions to the
problem, and communicate the quality of these solutions through the deposition
of virtual pheromones. Interpreting the trails of pheromones, virtual ants of the270

next iteration have guidelines on how to build better candidate solutions and
iteratively refine the search space until an optimal or quasi-optimal solution is
found.

As a simple and very useful algorithm, ACO has been used in many fields
and adapted to solve many different applications. Some of the most common275

variations of such algorithms are the Ant System (AS) (Dorigo et al., 1996) and
the Max-Min AS (Stützle & Hoos, 2000), both widely used for optimization
purposes.

Figure 4 presents a graphical representation of the algorithm described above.

9

Create Ants START

Ants Generate New
Set of Solutions

Ants Interpret
Pheromone Trails

Evaluate Solu-
tion for each Ant

Update
Pheromone Trails

max tries END

no

yes

Figure 4: ACO Fluxogram

3.3.1. Ant Colony Optimization application in TSPs280

As in the other methods, ACO also needed some modifications to handle
the TSP. Besides GAs, ACO algorithms are amongst the most studied for TSP
usage, therefore many applications and variations have been created to better
approach the problem. The approach behind the usage of ACO in TSP is
distributing the ants in the cities and let them walk around trying to complete285

a tour as if they were on the nature walking from their nest to food sources,
and back. At the end of this exploration process, the ants deposit pheromones
on the trails they took between the cities to perform their tours. The intensity
of the pheromone an ant will deposit is directly related to the length of the tour
they performed, the shorter the tour, the strongest the pheromone. On the next290

exploration round, the ants will attribute to the trails, or edges between cities,
a probability of being followed that is directly proportional to the amount of
pheromone on that edge. This system ensures that every edge has a chance
to be followed, thus avoiding local minimal once, but creating a trend towards
better solutions on every iteration. This common behavior to the solutions is295

graphically represented in the diagram of Figure 5.
Besides this common approach, the different algorithms (Stützle & Hoos,

2000; Tuba et al., 2013; Cheng & Mao, 2007) differ on how they attribute
pheromones to the edges, on how they evaluate new solutions, and on how
they create these solutions. Many algorithms also perform a mid-algorithm op-300

timization, performing local search iterations on candidate solutions after an
ACO iteration is concluded, optimizing the ants’ paths, thus the pheromone
trails, before a new generation of ants is let loose on the cities (Su et al., 20011).

10

Create Ants START

Distribute Ants on Cities

Ants Choose Next City

all visited

Evaluate Solution for each Ant

Update Trails Based
on Tour Lengths

max tries END

no

yes

no

yes

Figure 5: ACO for TSP Fluxogram

4. The Proposed Solution

Given a set S = {s1, ..., Sn} of targets, each si moving at constant velocity305

~vi from an initial position pi, and given a pursuer starting at the origin and
having maximum speed v > |~vi|, this work tackles the problem of finding the
shortest tour starting (and ending) at the origin (first target), that intercepts all
targets. Mathematically, the cost function to be optimized is defined as follows:

minimize
Dt

Dt =

n∑
i

n∑
j

cijdij

s.t. ∀i 6= j

(2)

310

where cij =

{
1; if salesman travels from target i to target, j

0; otherwise
(3)

and dij is the distance between targets, i and j.
To solve the studied problem a hybrid method composed of a numerical in-

tegrator and movement predictor was implemented on the evaluation stage of

11

each of the heuristic methods presented in Section 3. This numerical approach315

allows the solutions and heuristic methods to correctly evaluate the length of
tours by traveling them and calculating, after arriving at a new target or in-
terception point, the next point it should go to in order to intercept the next
target. This is done by making sure that all targets are intercepted and the
tour is completed. The idea behind this algorithm is represented in Figure 6, in320

which an interceptor, or traveler, represented by the black circle on the figure,
starts on time t0 by predicting the movement of two targets T1 and T2, and
their estimated positions in time t1, in which it expects to intercept target T1,
and after predicting the position of T2 in time t2, moment in which it predicts
to intercept T2.325

T1

T2

T1

T2

T2

t0 t1 t2

Figure 6: Behavior of an Interceptor Node predicting the movement pattern and
intercepting two Targets T1 and T2

The internal workings, implementations, and design decisions of each heuris-
tic approach, as well as the details on the movement prediction module, are
presented in the following sections.

4.1. Numeric Movement Prediction Module

The movement prediction module works by taking as input a list of waypoints330

representing an initial position S0 and the initial positions of the targets in time
t0 = 0 according to the tour order of the candidate solution under evaluation.
Following from t0 and S0 the method applies numeric integration loop to find
the interception position sj of the next target. The process is repeated by each
target on the waypoint list, being the parameters tj and Sj updated at the end335

of each step, always calculating the interception point of the next target on
the current tour time, and departing from the current tour position. In each
of these iterative steps, the current length of the candidate solution is updated
according to the distance between sj and sj−1, resulting, by the end, on the total
tour length for the candidate solution. A diagram illustrating this approach is340

presented in Figure 7
The whole module is based on the idea that, for a given interceptor moving

with speed ~vi, and a target moving from point ~st with speed ~vt, the interception
point will be the one in which the interceptor, after moving for a period τ , finds

12

itself on the same point as the target. Mathematically, considering the position345

of the target as the origin, this situation can be written as:

~viτ = ~vtτ + ~st (4)

applying a scalar product operator to both sides of the equation in order to
eliminate the vectorial properties of the terms, Equation (4) can be rewritten
as:

(~viτ) · (~viτ) = (~vtτ + ~st) · (~vtτ + ~st) (5)

which is the same as:350

|~vi|2τ2 = |~vt|2τ2 + |~st|2 + 2(~st · ~vt)τ (6)

or, reorganizing the terms:

0 = (|~vt|2 − |~vi|2)τ2 + |~st|2 + 2(~st · ~vt)τ (7)

Solving equation 7 for τ and using this value in equation 4, the point of
intersection between the interceptor and the target can be easily found. The
algorithm presented on this work makes use of a simplified numerical evaluation
loop to find the roots of Equation 7, a quicker solution than using square-root355

calculation methods, which are very resource consuming. Listing 1 shows the
pseudo-code of the algorithm implemented in this module:

Listing 1: Numerical Interception Method

1 inputs : cur rent t ime , t a r g e t s t a r t p o s , i n t e r c e p t o r p o s
2 i n t e r c e p t o r v e l , t a r g e t v e l360

3
4
5 d i s t ←∞
6 dt ←∞
7 ds ←∞365

8 nex t t a r g e t po s ← t a r g e t s t a r t p o s + t a r g e t v e l ∗ cur r en t t ime
9 while d i s t > 0

10 ds = Distance (i n t e r c ep to r po s , n ex t t a r g e t po s)
11 dt ← ds/ i n t e r c e p t o r v e l
12 p r ev t a r g e t po s ← nex t t a r g e t po s370

13 nex t t a r g e t po s ← t a r g e t s t a r t p o s + t a r g e t v e l ∗ (cu r r en t t ime + dt)
14 d i s t= Distance (p r ev ta rge t po s , n ex t t a r g e t po s)
15 return nex t t a r g e t po s

4.2. The Solution Using Ant Colony Optimization375

The implemented ACO method is based on the Min-Max Ant System (MMAS)
approach (Stützle & Hoos, 2000). This method has the advantages of converging
faster towards an optimal solution, especially when used in TCP problems, con-
figuring a better choice than other ACO approaches for the problem tackled in

13

Start in Position S=S0 with
Length L=0 and Time t=0

Has Next?

Get Next Target Ti in Tour

Calculate Intersection
Point Pi with Ti on time t

Calculate Time dti and
Distance si to rach Pi

Update
Time: t += dti
Length: L += si
Position: S=Pi

END

yes

no

Figure 7: Evaluation Fluxogram

this work. The idea behind the algorithm is that at the end of each generation380

of the MMAS, only the best ant marks the environment with pheromones, a
remarkable difference from other algorithms in which all ants mark their trails.
Besides that difference, on this approach, the amount of pheromones deposited
on each edge between targets is bound on the upper side by a max value, and
on the lower side by a min value. The intensity M of the pheromone an ant385

deposits on edge e in time t is, thus, calculated in terms of its tour length L
and the upper max and lower min bounds as described on Equation 8:

Me(t) =

[
Me(t− 1)(1− α)) +

1

L

]max

min

(8)

where α represents a temporal decaying constant and the operator [x]
max
min

means that Me(t) will be bound assuming the min or max values in case it goes
beyond these thresholds.390

Following the idea presented in the diagram of Figure 5, each ant is dis-
tributed on a given target, or city, and chooses their next city based on the
pheromone level of the edges leading to the cities it has not visited yet, accord-

14

ing to the following probability function:

P j
i (t) =

Mij(t)
1
dij∑n

0 Min(t) 1
din

(9)

meaning that the probability of an ant choosing to go to city j from city395

i among n cities that where not yet visited, is directly proportional to the
pheromone level Mij on the edge that links i to j, and inversely proportional
to the distance dij between these cities.

Observing the mathematical behaviour defined by equations 8 and 9, it is
easy to see that the values of max and min can have a significant influence on400

the exploratory and exploitatory behaviors of the Ant-Colony Algorithm. Since
the pheromone level on any trail between two cities, or targets, is limited by
the value of max, no trail will be extremely attractive for the ants, a behav-
ior that could easily undermine the exploration of new solutions in the search
space, since ants would always follow the path with the highest pheromone level.405

Similarly, the value of min limits the pheromone levels on trails and helps to
avoid situations in which a given trail, or path, between cities is not attractive
for ants, which would prevent them from exploring new routes.

A similar case can also be made for the effect of max and min in the ex-
ploitation behavior, meaning the investigation of solutions or routes that are in410

the vicinities of routes already preferred by the ants. The value of max, again,
limits the pheromone levels as to not make a given trail extremely more attrac-
tive to the ants than others, while the value of min limits lets every trail to be
at least a little attractive for the ants.

The relation between max and min is, however, the factor that defines if415

a given instance of the MMAS is going to work more towards the exploration
or the exploitation side. If max is significantly bigger than min, ants will be
more attracted to stay in the current best routes, or at least on the ones with
stronger pheromone levels. In this case, if ants take detours, which will be
rare, they will quickly be attracted again towards the current best path due to420

the high concentration of pheromones on that path, configuring an exploitatory
behavior. If, on the other hand, the relation between max and min is small, ants
will have more liberty to choose different paths since no path will be significantly
more attractive than the others, staying away from the current best path for
longer periods, configuring a more exploratory behavior. Listing 2 presents a425

pseudo-code of the implemented Ant-Colony algorithm:

Listing 2: Ant-Colony Algorithm

1 inputs : p opu l a t i on s i z e , max genert ions , max , min ,
2 α , max c i t i e s
3430
4
5 pheromone map ← new map(max c i t i e s)
6 for each t r a i l in pheromone map
7 t r a i l l e v e l ← max
8 gen ← 0435

15

9 while gen < max generat ions
10 populat ion ← new AntPopulation (p opu l a t i o n s i z e)
11 be s t t ou r ← empty
12 for each ant in populat ion
13 v i s i t e d ← empty440

14 while Length (v i s i t e d) < max c i t i e s
15 c i t y ← ChooseNextCity (pheromone map)
16 i f c i t y in v i s i t e d
17 do nothing
18 else445

19 v i s i t e d ← c i t y
20 tour ← MakeTour (v i s i t e d)
21 r ou t e l eng th ← Length (tour)
22 i f t ou r l eng th ≤ Length (b e s t r ou t e)
23 be s t t ou r ← tour450

24 pheromone map ← UpdateMap(bes t tour ,max , min ,α)
25 gen ← gen +1
26 end

4.3. The Solution Using Simulated Annealing Optimization455

The Simulated Annealing algorithm implemented for this TSP problem is
quite straightforward. At the beginning a candidate tour is randomly generated,
and, as the simulation goes, a local search algorithm is used to generate a new
solution. This new solution may or may not be accepted according to the criteria
previously presented in both Figure 3 and Equation 1.460

The local search method chosen for this implementation was a simple 2-
opt method, a method that takes two edges between targets and swaps their
extremities, keeping the tour closed, but still generating a neighbor candidate
solution similar to the initial one. The main idea behind a 2-opt, or any k-opt
local search algorithm, is to take a route that crosses over itself and reorder465

it so that the crossing disappears, potentiality improving the solution.Listing 3
presents a pseudo-code of the implemented algorithm:

Listing 3: Simulated Annealing Method

1 inputs : max re t r i e s , delta temp , temp thresho ld
2 max temp470

3
4 temperature ← i n i t t emp
5 s o l u t i o n ← new random so l u t i o n
6 r e t r y ← 0
7 while temperature > temp thresho ld475

8 while r e t r y < max re t r i e s
9 candidate ← 2 Opt (s o l u t i o n)

10 i f Fi tne s s (candidate) ≤ Fi tne s s (s o l u t i o n)
11 s o l u t i o n ← candidate
12 else480

13 entropy ← −(F i tne s s (candidate)−Fi tne s s (s o l u t i o n))

16

14 chance ← Exp(entropy / temperature)
15 i f Random() ≤ chance
16 s o l u t i o n ← candidate
17 r e t r y ← r e t r y + 1485

18 temperature ← temperature − delta temp
19 r e t r y ← 0
20 end

4.4. The Solution Using Genetic Algorithm Optimization490

The Genetic Algorithm implemented to solve the TSP problem on this work
is based on a Path Representation (Potvin, 1996) of the tours. For each gener-
ation, a certain number of solutions are chosen according to a crossover rate cr,
to act as parents for the new solutions that will compose the next generation.
The crossover rate controls the the number of solutions that will be created as a495

crossover between the parents, defining also the amount of totally new solutions
that will be generated at random to be part of the population of the next gen-
eration. The selection of the parents is made by a Rank Based Roulette Wheel
Selection (Mohd Razali & Geraghty, 2011), while the crossover is done by a
PMX Crossover Operator (Goldberg & Lingle, 1985). Finally, the new individ-500

uals, or new candidate solutions, on the population are mutated, using an RSM
Mutation Operator (Abdoun et al., 2012). The mutation occurs according to a
given mutation rate mr that defines the rate of occurrence of mutations, mean-
ing how many solutions from the candidate population will suffer a mutation.
Listing 4 presents a pseudo-code of the implemented algorithm:505

Listing 4: Genetic Algorithm Method

1 inputs : p opu l a t i on s i z e , max generat ions ,
2 c r o s s ov e r r a t e , mutat ion rate
3
4 gen ← 0510

5 populat ion ← new random populat ion (p opu l a t i o n s i z e)
6 Evaluate (populat ion)
7 while gen 6= max generat ions
8 pop ← new empty populat ion
9 for i in range (0 , p opu l a t i o n s i z e)515

10 i f Random() ≤ c r o s s o v e r r a t e
11 parents ← RBRW Selection (populat ion)
12 ch i l d r en ← PMX Crossover (parents)
13 pop ← ch i l d r en
14 else520

15 pop ← new random ind i v i dua l
16 for each i n d i v i dua l i in pop
17 i f Random() ≤ mutat ion rate
18 RSM Mutation (i nd i v i dua l i)
19 populat ion ← pop525

20 Evaluate (populat ion)
21 gen ← gen + 1

17

22 select best s o l u t i o n in populat ion
23 end
530

The chosen Path Representation (Potvin, 1996) is considered to be the most
classical and natural representation for solutions on Genetic Algorithms, it
works by representing tours as a list of the cities ordered as they appear on
the tour. The crossover operators based on this representation typically gener-
ate offspring that inherit the relative order of the cities. This representation,535

however, has to be checked for uniqueness, since each tour can be represented
in 2n distinct ways because any city can be placed at position 1.

A Rank-Based Roulette Wheel Selection (Mohd Razali & Geraghty, 2011),
in turn, is a strategy in which the probability of an individual in the roulette
wheel is based on its fitness rank relative to the entire population. The rank-540

based selection method first sorts individuals according to their fitness and then
calculates selection probabilities according to their ranks rather than fitness
values. This method is considered one of the best methods for selection in
GA, because it is able to maintain a constant and adjustable pressure in the
evolutionary search, controlling convergence. The downside of this method is,545

however, that it requires a sorting algorithm to be put in place, which can
become time-consuming as the number of cities increases. As the algorithm
developed on this work is intended to be used in real-life-like problems with a
limited number of cities, the used of a Rank Based solution is justified once the
sorting will not be too time-consuming.550

In the Reverse Sequence Mutation (Abdoun et al., 2012) operator, a random
sequence S is taken from a tour and the genes in this sequence are copied and
then inversely placed on the sequence again. Besides simple, the RSM mutation
operator has shown promising results in terms of convergence when compared
to other methods (Abdoun et al., 2012).555

In turn, the PMX crossover (Goldberg & Lingle, 1985) is a crossover oper-
ator method created to perform one point crossovers on Path Representations.
Taking two parents p1 and p2, PMX constructs offspring by changing the po-
sitions of the cities on p1 one by one, with the cities on p2 that occupy these
same positions. However, in order to keep the solution valid, the cities in these560

positions are not just overwritten, they are swapped. This way, to set position
i to city c, the city in position i and the city c swap positions, granting that all
cities are on the tour and that no city is repeated.

5. Experimental Evaluation565

5.1. Methodology

A set of experiments has been specifically designed to evaluate the perfor-
mance of each optimization method to solve the problem. Once in real life
situations the interception algorithm will mostly be used to intercept a lim-
ited number of targets, and not several hundreds of them, each method was570

tested against sets of 8, 12, 16, 20, 32, 64 and 100 randomly placed targets,

18

with speeds ranging from 0 m/s to 2 m/s in 0.5m/s steps (a reasonable range
for human walking speed). The speed of the interceptor, or traveler, was set to
20m/s throughout all the simulations (a reasonable speed for a small surveillance
UAV). Table 1 summarizes this general parametrization.575

Table 1: Tour Length Performance Testing Parameters

Number of Targets 8,12,16,32,64,100
Interceptor Speed 20 m/s
Target Speeds 0 m/s, 0.5m/s 1m/s, 1.5 m/s, 2 m/s
Target Distribution Area Square 600m x 600m

In order to guarantee the best possible and homogeneous results for posterior
statistical analysis, each one of the designed experiments was run 100 times. Of
these 100 executions, the first two on each set were discarded since a significant
execution time deviation was observed in these runs. Further analysis showed
that these anomalies were due to hardware and resource issues related to variable580

initializations and caching of target data. The same target distribution was used
for all the executions of a same experiment for all three different algorithms,
providing a uniform dataset that can be used to compare the algorithms against
each other.

In the interest of analyzing different aspects of the algorithm, such as their585

behavior, how they compare to each other and how parameterization affects
their performance, two different types of experiments were performed. The first
category of experimentation aims to analyze how the different metaheuristic
approaches compare, evaluating aspects such as tour length, execution time
and solution convergence. The second category, on the other hand, is focused590

on studying the effects of parametrization on the behavior of the metaheuris-
tics, inspecting how different choices in both the exploration and exploitation
parameters of the algorithms can influence their performance.

Comparative Performance Experiment: The objective of this category
of experiments is to provide a comparative assessment of the different heuristics,595

evaluating them against each other in terms of tour length performance, solution
convergence, and execution time. To perform this comparison, each algorithm
was exposed to 30 experiments, each one covering a different pairing of target
speed and target count. In addition, in order to provide a common ground
for comparison, each of the algorithms was set to limit its search space to a600

total maximum of 10,000 solutions. Limiting the exploration space allows for a
direct quantitative comparison of the convergence behavior of the algorithms,
highlighting the tipping points in which performance degradation occurs for
each of them. The results of these experiments are prensented on subesection
5.2.1605

Parameterization Performance Experiment: The parameterization ex-
periments were designed to study the effects of parameterization on the behavior

19

of the metaheuristics. All the experiments in this category were run with 32
targets, which was chosen because it is neither too small nor too large as to
hide the effects of the parameterization from the results. A smaller number of610

targets would have been a poor choice, since the search space is too small and
the solution would converge too quickly, masking the results. A bigger number
of targets would make the algorithms converge too slow, also preventing the
results to be seen.

5.2. Experimental Results615

5.2.1. Comparative Performance Evaluation

The first results of the comparative experiments are shown in Table 2, which
presents the statistical analysis of the tour length performance of the algorithms
gathered from 98 executions of each of the 30 experiments run for each meta-
heuristic. The results from this table is supported by the box-plot graphic in620

Figure 8, which presents a visualization of these trends for the 8,16, 32 and 64
target cases across 3 different speed values (0m/s,1 m/s and 2m/s). Similarly,
statistics for the execution time of each of the experiments are presented in
Table 3 and are supported by the graphic in Figure 9, which brings the visu-
alization of these trends for the 8,16, 32 and 64 target cases across 3 different625

speed values (0m/s,1 m/s and 2m/s).
In addition to the graphics presented in Figures 8 and 9, Figure 10 presents

a visualization of the results for the scenarios with 32 targets and 3 different
speed values (0m/s,1 m/s and 2m/s). This figure was included since with 32
targets the trends of both tour length and temporal performances can be easily630

visualized, serving as a visual baseline for the comparisons. The figure also
serves as a control for the experiments discussed in subsection 5.2.2, which were
also run with 32 targets.

Tour Length Performance: Analyzing the results obtained from the ex-635

periments the tour length performance of the algorithms seems to follow a gen-
eral trend: scaling with both the number of targets and their speeds. It can be
seen that, for the stationary target case, meaning the case in which the speed
of the targets is set to zero, the genetic and the ant-colony approaches, present
the best results in terms of tour length for small numbers of targets. However,640

as the number of targets increase, ant-colony seems to have an edge on the ge-
netic approach, providing better average results for most of the stationary target
experiments. It is visible, however, that the variability of these results scales
significantly for the ant-colony approach as the number of targets increases. On
the other hand, the genetic algorithm variability is not observed to scale as much645

with the number of targets, indicating a more convent behavior, even if towards
a local optimum, for this algorithm as the number of targets increases. The
simulated annealing approach, contrastingly, performs poorly even for a small
number of stationary targets, presenting results on average 30% to 50% worse

20

Table 2: Tour Length Performance of the Heuristic Algorithms (m)

8 targets 12 targets 16 targets
Min Avg Std Dev Min Avg Std Dev Min Avg Std Dev

Genetic Algorihm
0.0m/s 1425.9 1560.5 136.6 1612.7 1748.2 87.1 1721.0 1849.1 90.3
0.5m/s 1535.7 1614.3 91.9 1812.2 1937.6 73.5 1710.9 1881.7 117.5
1.0m/s 1339.4 1393.0 58.1 1677.9 1806.0 86.1 1863.4 2094.2 165.7
1.5m/s 1247.1 1311.7 57.8 1769.4 1936.7 118.8 2362.9 2604.9 160.1
2.0m/s 1297.2 1396.0 100.3 2205.7 2457.1 204.1 2330.9 2878.7 247.0

Simulated Annealing
0.0m/s 1535.6 2286.1 379.6 1691.7 2434.2 363.6 1971.3 2882.8 495.2
0.5m/s 1594.3 2282.7 248.9 1944.3 2794.1 389.1 1807.8 2753.1 454.9
1.0m/s 1399.3 1993.0 292.5 1732.5 2664.8 500.6 2065.6 3159.6 619.7
1.5m/s 1285.4 1874.1 304.9 1936.2 2863.8 510.7 2602.2 3954.1 777.1
2.0m/s 1297.2 1998.7 333.7 2301.7 3730.1 828.9 2669.5 4964.6 1253.9

Ant Colony
0.0m/s 1425.9 1433.0 17.1 1612.7 1678.6 58.0 1721.0 1856.5 78.9
0.5m/s 1535.7 1539.0 8.0 1812.2 1863.2 47.7 1710.9 1878.1 79.0
1.0m/s 1339.4 1349.2 12.1 1677.9 1769.7 50.3 1863.4 2086.0 130.2
1.5m/s 1247.1 1247.1 0.0 1769.4 1875.4 64.4 2367.0 2625.7 119.5
2.0m/s 1297.2 1309.7 25.2 2223.5 2410.3 121.8 2422.3 2949.6 247.2

32 targets 64 targets 100 targets
Min Avg Std Dev Min Avg Std Dev Min Avg Std Dev

Genetic Algorihm
0.0m/s 2511.9 2812.5 139.0 4883.4 5457.9 198.9 8212.3 9001.8 271.9
0.5m/s 2535.1 3037.4 185.8 6371.7 7390.2 388.0 14127.1 15916.7 757.3
1.0m/s 3055.9 3753.2 266.7 8066.4 9564.7 558.8 18337.8 22021.4 1532.8
1.5m/s 3819.0 4667.8 363.2 10986.6 14785.7 1249.5 31717.5 42673.1 4976.4
2.0m/s 3651.8 5374.0 705.0 14209.6 18154.2 1850.8 42854.2 63840.8 9045.3

Simulated Annealing
0.0m/s 2887.5 4088.7 465.2 5412.7 7136.5 659.0 8810.1 10744.0 748.8
0.5m/s 3101.9 4519.0 627.6 6022.1 8395.8 950.5 10669.1 14141.2 1251.2
1.0m/s 3650.3 5178.2 929.1 6513.3 10368.1 2294.8 13582.1 19701.3 3353.2
1.5m/s 4254.6 6862.4 1450.2 9934.4 17446.7 4756.1 20300.8 42226.3 11040.0
2.0m/s 4897.0 8975.8 2727.4 12335.0 24112.8 7187.1 31352.6 78158.7 27226.6

Ant Colony
0.0m/s 2514.2 2900.6 153.0 4599.8 5301.5 300.8 6883.0 7937.7 410.2
0.5m/s 2797.3 3236.9 186.7 6685.5 8584.1 647.8 15755.2 20361.1 1958.2
1.0m/s 3534.2 4486.5 330.5 11014.3 16774.7 2079.9 39991.2 62766.9 11714.4
1.5m/s 4569.1 6078.4 564.7 21841.6 39526.5 7699.6 201434.0 431994.5 114257.6
2.0m/s 6115.2 8893.8 1125.5 39162.4 97441.0 27238.0 520547.9 1512037.2 697691.5

than the other approaches. Simulated annealing also presents more variability650

in the results, indicating a poor convergence towards an optimal solution. This
behavior can be visualized by observing the SA boxes in the box-plot graphs of
Figure 8, which show a higher median and a way higher spread for the tours
predicted with the simulated annealing, for all situations of the stationary case
(first column) when compared with the other two methods.655

As the speed of the targets starts to increase, interestingly, the tour length
does not follow the same pattern, even decreasing in some situations. This cu-
rious behavior is due to the movement pattern of the targets, that, in some
situations, may generate shorter tours, getting closer to each other, or moving
as to align with each other in some manner, generating shorter tours, a tendency660

observed across all 3 algorithms. The speed parameter also affects significantly
the performance of the ant-colony algorithm, which was the best performer for
the stationary case. For the moving target case, however, a significant perfor-

21

GA SA ACO

2000

3000
8

Ta
rg

et
s

Le
ng

th
 (m

)

GA SA ACO GA SA ACO

GA SA ACO

2500

5000

7500

16
 T

ar
ge

ts

Le
ng

th
 (m

)

GA SA ACO GA SA ACO

GA SA ACO

5000

10000

15000

32
 T

ar
ge

ts

Le
ng

th
 (m

)

GA SA ACO GA SA ACO

GA SA ACO
 v=0m/s

0

100000

64
 T

ar
ge

ts

Le
ng

th
 (m

)

GA SA ACO
 v=1.0m/s

GA SA ACO
v=2.0m/s

Figure 8: Tour Length for 8,16,32 and 64 targets across multiple target speeds

mance decrease is observed as targets start to move faster, especially for higher
target counts. Simulated annealing is, as expected, as poor a performer as in665

the stationary case, however, interestingly enough, it manages to beat the ant-
colony algorithm in higher speed and for high target counts, highlighting the
extremely low performance of the latter in these situations. The genetic algo-
rithm, on the other hand, seems not to be affected too much by the increments
in target speed, still managing to be the best of the 3 algorithms in terms of670

its tour length performance. This last method also presents the least variable
results among the algorithms across all experiments with moving targets.

Execution Time Performance: The results in Table 3 and Figure 9
present the simulated annealing method as the fastest method, usually run-
ning in half the time taken by the genetic algorithm, which is the second fastest675

22

Table 3: Temporal Performance of the Heuristic Algorithms for 8-100 targets (time in ms)

8 targets 12 targets 16 targets 32 targets 64 targets 100 targets
Avg Std Avg Std Avg Std Avg Std Avg Std Avg Std

Dev Dev Dev Dev Dev Dev
Genetic Algorithm

0.0m/s 35.8 8.8 50.0 9.4 63.4 11.2 114.4 14.2 202.9 19.1 302.4 24.6
0.5m/s 46.9 3.6 66.5 6.2 82.9 4.9 127.1 8.2 182.7 6.4 251.1 2.2
1.0m/s 48.2 3.8 61.5 5.0 78.0 5.6 110.9 3.6 178.4 7.5 273.2 2.9
1.5m/s 47.0 4.8 64.3 5.8 77.5 5.2 110.1 2.9 190.9 2.5 297.9 3.3
2.0m/s 49.7 3.9 65.6 4.6 76.5 5.8 118.2 5.0 205.1 1.9 319.0 3.6

Simulated Annealing
0.0m/s 16.2 1.7 22.9 2.2 28.9 3.1 49.7 5.5 90.7 8.1 121.7 14.2
0.5m/s 22.9 2.5 32.3 2.7 40.3 4.2 62.6 5.1 88.1 2.3 119.1 1.2
1.0m/s 23.2 2.1 30.4 2.8 36.4 3.7 54.8 2.7 83.6 1.5 128.8 1.6
1.5m/s 22.7 2.2 29.8 2.9 38.4 3.2 55.6 3.0 92.3 1.1 142.3 2.0
2.0m/s 24.4 2.4 32.6 3.0 38.2 2.5 58.7 2.6 99.3 1.3 152.3 2.0

Ant Colony
0.0m/s 39.2 3.7 79.3 6.4 130.9 10.7 438.7 38.9 1452.8 249.0 3123.9 440.2
0.5m/s 45.8 5.0 86.9 6.9 126.4 9.1 365.7 23.4 1133.3 65.6 2766.6 13.8
1.0m/s 46.5 3.8 82.7 6.6 118.4 9.4 308.4 18.0 1076.1 6.3 2767.9 133.6
1.5m/s 43.3 3.9 77.7 7.1 112.7 10.3 300.2 6.7 1090.3 5.4 2798.0 24.0
2.0m/s 45.7 4.2 79.1 6.4 110.5 5.8 304.0 6.4 1099.8 6.3 2803.5 19.1

method. The ant-colony algorithm, on the other hand, is on average the slower
of the three for almost every scenario, presenting an especially degraded execu-
tion time performance for the scenarios with higher target counts. In its turn,
the genetic algorithm manifests a constant trend on its temporal behavior across
the experiments, demonstrating a slight increase as the targets get faster, and680

a more accentuated, but still controlled, relation to the number of targets.
Remarkably, the ant-colony approach presents a curious behavior when it

comes to its performance in the stationary case, showcasing an extremely high
execution time for this kind of situation. Interestingly, the genetic algorithm
also presents a different behavior for the stationary case, exhibiting a slightly685

increased variability in the execution times for this scenario, something not
observed for the scenarios in which the targets are moving.

5.2.2. Evaluation in the Impact of Parameter Variation

This section presents the results of the study of parameterization effects on
the behavior of the metaheuristics. Figures 11 to 14 present the parameteriza-690

tion effects on the genetic algorithm performance, while Figures 16 to 17 present
similar results for the Ant-Colony approach. Figure 15, in turn, illustrates the
effects of parameterization on the Simulated Annealing algorithm.

All experiments in this section were run for 32 targets and the target dis-
tribution is the same for all algorithms. Only the results for targets speeds695

of 0m/s, representing the stationary case, and 2m/s, representing the moving
target case are presented, other speeds for the moving target case manifest the
same trend of the 2m/s case and were, thus, omitted.

Genetic Algorithm Parameterization: Figure 11 presents the relation
between the number of generations, the number of individuals per generation700

and the tour length performance of the genetic algorithm for the stationary case

23

GA SA ACO

20

40

60
8

Ta
rg

et
s

Ti
m

e
(m

s)

GA SA ACO GA SA ACO

GA SA ACO

50

100

150

16
 T

ar
ge

ts

Ti
m

e
(m

s)

GA SA ACO GA SA ACO

GA SA ACO

200

400

32
 T

ar
ge

ts

Ti
m

e
(m

s)

GA SA ACO GA SA ACO

GA SA ACO
 v=0m/s

0

1000

2000

64
 T

ar
ge

ts

Ti
m

e
(m

s)

GA SA ACO
 v=1.0m/s

GA SA ACO
v=2.0m/s

Figure 9: Execution Time for 8,16,32 and 64 targets across multiple target speeds

(Figure 11a), and for the moving target case (Figure 11b). As can be seen on
these graphs, the tour lenght performance is very poor when both the number
of generations and the population of each generation is small. This behaviour,
however, shifts as both parameters increase. The number of generations rule705

the quality of the solution in the beginning when it is too small, the number of
individuals on the population, however, starts to have a more significant effect
on the results as the number of generations increase. The results also show
that it is possible to obtain good results results just by having a high generation
number and a small population size, to obtain the best possible results, however,710

the population size must be significantly augmented.
The execution time of the algorithm, as expected, increases both with the

generation size and the population size. Both parameters govern the amount of
exploration to be performed by the algorithm in the search space and seem to

24

GA SA ACO
 v=0m/s

0

20000

40000

60000

80000

100000

120000

140000

160000

To
ur

 L
en

gt
h

(m
)

GA SA ACO
 v=1.0m/s

GA SA ACO
v=2.0m/s

(a) Tour Length

GA SA ACO
 v=0m/s

0

500

1000

1500

2000

Ex
ec

tu
tio

n
tim

e
(m

s)

GA SA ACO
 v=1.0m/s

GA SA ACO
v=2.0m/s

(b) Execution Time

Figure 10: Execution Time and Tour Length for 32 targets across multiple target speeds

have a similar influence on the execution time, as can be seen on Figure 12.715

Figure 13, in its turn, presents the influence of the crossover and mutation
rate parameters of the algorithm. Crossover rate mainly defines the number of
new solutions that will be created as a crossover of the existing ones in a new
generation, with the other individuals of the population being created randomly.
This parameter contributes, thus, to both the exploration and exploitation rates720

25

50 100 150 200 250 300
Number of Generations

10

20

30

40

50

60

70

80

90

100
Po

pu
la

tio
n

pe
r G

en
er

at
io

n

2700

3150

3600

4050

4500

4950

5400

5850

6300

(a) Target Speed:0m/s

50 100 150 200 250 300
Number of Generations

10

20

30

40

50

60

70

80

90

100

Po
pu

la
tio

n
pe

r G
en

er
at

io
n

4400

5600

6800

8000

9200

10400

11600

12800

14000

(b) Target Speed:2m/s

Figure 11: Impact of the Number of Generations and Population Size Parameters in the
Tour Length Performance of the Genetic Algorithm (m)

50 100 150 200 250 300
Number of Generations

10

20

30

40

50

60

70

80

90

100

Po
pu

la
tio

n
pe

r G
en

er
at

io
n

0

75

150

225

300

375

450

525

600

Execution Tim
e in M

s

Figure 12: Impact of the Number of Generations and Population Size Parameters in the
Execution Time Performance of the Genetic Algorithm (ms)

of the algorithm, meaning the rate in which new solutions are explored and
the rate in which solutions in the neighborhood of previously visited points are
searched. Mutation rate, on the other hand, contributes more to the exploitation
rate of the algorithm, defining how t solutions that are in the neighborhood of
already explored solutions are visited.725

The results gathered from the experiments show that, apart from the case in
which a really small crossover rate is used, the mutation rate is the parameter
that defines more significantly the performance of the algorithm in terms of the
tour length performance, exhibiting the best results when its value is around
0.6 or 60%. However, the trend observed in Figure 14 shows that the crossover730

26

0.2 0.4 0.6 0.8 1.0
Crossover Rate

0.2

0.4

0.6

0.8

1.0
M

ut
at

io
n

Ra
te

2700

2790

2880

2970

3060

3150

3240

3330

3420

(a) Target Speed:0m/s

0.2 0.4 0.6 0.8 1.0
Crossover Rate

0.2

0.4

0.6

0.8

1.0

M
ut

at
io

n
Ra

te

4800

5100

5400

5700

6000

6300

6600

6900

7200

(b) Target Speed:2m/s

Figure 13: Impact of the Crossover and Mutation Rate Parameters in the Tour Length
Performance of the Genetic Algorithm (m)

rate has a significant impact on the execution time of the genetic algorithm.
The mutation rate, on the other hand, does not have a considerable impact on
the execution time, still slowing the execution sown, but not by such expressive
amounts as the crossover rate.

0.2 0.4 0.6 0.8 1.0
Crossover Rate

0.2

0.4

0.6

0.8

1.0

M
ut

at
io

n
Ra

te

95

110

125

140

155

170

185

200

215

execution tim
e in m

s

Figure 14: Impact of the Crossover and Mutation Rate Parameters in the Execution Time
Performance of the Genetic Algorithm (ms)

Simulated Annealing Parameterization: Figure 15 shows the result of735

varying the initial or maximum temperature and the number of tries in the
Simulated Annealing algorithm. Apparently, for the stationary case, in which
the speed of the targets is 0m/s (Figure 15a), increasing the initial temperature

27

parameter seems to degrade the tour length performance of the algorithm. For
the non-stationary case (Figure 15b), however, this effect, besides still notice-740

able, is less meaningful. The number of retries, on the other hand, seems to
benefit the tour length performance as it increases, especially for the stationary
case.

As both parameters influence the size of the search space, the execution time
of simulated annealing algorithm scales with both of them, being smaller when745

both parameters are small, and increasing as the parameters are increased.

20 40 60 80 100
Max Temeperature

20

40

60

80

100

Re
tri

es
 p

er
 T

em
p.

 L
ev

el

3840

4080

4320

4560

4800

5040

5280

5520

(a) Target Speed:0m/s

20 40 60 80 100
Max Temeperature

20

40

60

80

100

Re
tri

es
 p

er
 T

em
p.

 L
ev

el

6600

7050

7500

7950

8400

8850

9300

9750

(b) Target Speed:2m/s

Figure 15: Impact of the Maximum Temperature and Retry Count in the Tour Lenght
Performance of the Simulated Annealing Algorithm (m)

Ant Colony Parameterization: The effects of population size and gener-
ation number in the Ant-Colony algorithm are represented in Figure 16 for the
stationary (Figure 16a) and non-stationary (Figure 16b) cases. As expected, the
quality of the tour length performance scales with both parameters. The gener-750

ation number, however, has a considerable impact on the quality of the solution
when it is smaller than 20 (meaning the algorithm is run for 20 generations).
This trend shifts when the number of generations is larger than 20, meaning
that, from this point on, the population size of each generation is the parameter
ruling the tour length performance of the solution. It is, however, noticeable755

that good results can be obtained for both cases, stationary and non-stationary,
with relatively reduced populations, while optimal, or the best possible results,
require a considerably bigger population.

The execution time of the ant-colony algorithm scales both with the pop-
ulation size and the generation number. With neither of them presenting a760

particularly significant influence on the execution time. A graphic representa-
tion of this behavior was omitted since visually, the curves are very similar to
those of the Genetic Algorithm, presented in Figure 12.

The Maximum and Minimum parameters of the min max Ant-Colony ap-
proach define the minimum and maximum bounds for the amount of pheromone765

28

20 40 60 80 100
Number of Generations

100

200

300

400

500
Po

pu
la

tio
n

pe
r G

en
er

at
io

n

2850

3300

3750

4200

4650

5100

5550

6000

(a) Target Speed:0m/s

20 40 60 80 100
Number of Generations

100

200

300

400

500

Po
pu

la
tio

n
pe

r G
en

er
at

io
n

6400

8800

11200

13600

16000

18400

20800

23200

25600

(b) Target Speed:2m/s

Figure 16: Impact of the Number of Generations and Population Size Parameters in the
Tour Lenght Performance of the Ant Colony Algorithm (m)

in any trail between two targets in the search space. Changes on these parame-
ters do not influence the execution time of the algorithm since no extra opera-
tions are added or removed when these parameters are modified. The values of
Min and Max influence, however, the tour length performance of the algorithm.
Figure 17 shows a graphical representation of the effects of these parameters on770

the tour length, Min and Max are represented on the figure as percentages of
the maximum pheromone values an ant can deposit each time it goes through
a path. For moving targets (Figure 17b), the best results are achieved when
both Min and MAX are high. For the stationary case(Figure 17a), on the other
hand, the best scenario is found when the Min value is equal to about 0.5% of775

the pheromone strength and the max value rounds 10%-15%. A zoom in graph
highlighting this behavior is seen in Figure 18.

6. Discussion

The results presented in Section 5 show that each of the metaheuristics780

exhibits good performance in one or more criteria. The Genetic Algorithm is
the better performer when it comes to the tour length performance across both
the stationary and non-stationary scenarios, achieving near-optimal results for
most of the stationary cases, and the best results among the three algorithms in
the non-stationary case. The Genetic Algorithm also presented itself as a good785

choice in terms of execution time, being slower than the Simulated Annealing
algorithm, which is the fastest one, but providing better results in terms of tour
length.

Simulated Annealing, in turn, produces the best results in terms of execution
time. It’s tour length performance, however, is very poor in scenarios in which790

a reduced number of targets as presented in the experimental results. In the

29

10 20 30 40 50
Max (% of the pheromone strength)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
M

in
 (%

 o
f t

he
 p

he
ro

m
on

e
st

re
ng

th
)

2910

2940

2970

3000

3030

3060

3090

3120

3150

Tour Length in m

(a) Target Speed:0m/s

10 20 30 40 50
Max (% of the pheromone strength)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

M
in

 (%
 o

f t
he

 p
he

ro
m

on
e

st
re

ng
th

)

7000

7300

7600

7900

8200

8500

8800

9100
Tour Length in m

(b) Target Speed:2m/s

Figure 17: Impact of the Number of the Max and Min Parameters in the Tour Lenght
Performance of the Ant Colony Algorithm (m)

10 20 30 40 50
Max (% of the pheromone strength)

0.2

0.4

0.6

0.8

1.0

M
in

 (%
 o

f t
he

 p
he

ro
m

on
e

st
re

ng
th

)

2910

2940

2970

3000

3030

3060

3090

3120

3150

Tour Length in m

Figure 18: Impact of the Number of the Max and Min Parameters in the Tour Lenght
Performance of the Ant Colony Algorithm for the Stationary Case - Zoomed (m)

scenarios with a bigger number of targets, like 64 or 100 targets, the simulated
annealing managed to beat the Ant-Colony Optimization algorithm, while still
being the fastest algorithm by a large margin.

As discussed in Section 5, the Ant-Colony algorithm is the best algorithm in795

terms of tour length performance for the stationary case, in which the targets
do not move. As targets start to move and increase in number, however, the
Ant-Colony algorithm performance degrades significantly for both metrics, the
algorithm becomes, then, the worst algorithm among the three.

Analyzing the results concerning the parametrization of the genetic algo-800

rithm, it could be argued that, from the trends seen in Figures 11 and 12 the

30

genetic algorithm could be accelerated, depending on the application, the num-
ber of targets, and their speeds, by tweaking the generation number and popu-
lation size parameters. It could be possible, in certain situations, to achieve a
considerable speed up on the execution times of the algorithm by running it for805

many generations with a small population, gaining speed without compromising
the tour length performance, especially when the number of targets is small and
the search space reduced. Modifying the crossover rate and the mutation rate
parameters, on the other hand, would not bring any benefits for either execution
time or tour length, these are best left at their optimal values.810

Such an approach would make sense in practical situations, such as when
this algorithm is deployed on a UAV or mobile robot and used to calculate
the best routes to intercept a series of mobile targets. An example of such an
application would be a surveillance drone that needs to intercept a group of
criminals on the run and photographs them. In such applications, it is better815

to have an algorithm that runs fast enough and outputs an acceptable solution,
than to have a slow-paced algorithm that outputs the best solution but takes
too much time to do it, giving the targets time to scape.

A similar case could be made for the Ant-Colony Optimization algorithm.
Observing Figure 16, it could be argued that letting the algorithm run for a820

small number of generations, each of them with a big population, could speed
up the algorithm and improve the poor tour length results for high-speed targets
and/or a high target count. The performed experiments suggest, however, that
the speed-up provided by this strategy is significant, but the improvement in
the tour length performance is not, making this strategy not very useful in real825

applications.
The experimental results also show that no significant speed-up or improve-

ment can be achieved for the implemented Simulated Annealing algorithm. Ac-
cording to the experimental simulations conducted during the development of
this work, increasing the retry number parameter only helps to a certain point,830

not providing a significant improvement in the tour length performance, while
hurting the execution time performance of the algorithm.

Overall, the genetic algorithm seems to be the best metaheuristic approach
to solve the TDTSP problem. The experiments showed that this algorithm is the
one that presents the most consistent and homogeneous tour length results for835

all numbers of targets, moving at all speeds, maintaining an acceptable trade-
off between performance and execution time. The results also show that some
parameter tweaking is still possible, making this algorithm especially suitable
to be deployed in embedded, or even high performance, systems and adjusted
as necessary to fulfill the requirements of the application it is used on.840

7. Conclusion

This work presented a quantitative and qualitative comparison between
three different heuristic algorithms to solve a Moving-Target-TSP. The results
from this comparison have shown that the implemented genetic algorithm has
achieved the best performance among the methods in both the quality of the845

31

solutions (tour length performance) and temporal behavior. This result points
towards a useful method that can be used in a variety of different emerging ap-
plications that require targets to be intercepted by an agent. UAV surveillance
is a good example of these fields, as UAVs have become cheaper, they can be
used as urban or crowd monitoring agents, being able to monitor moving targets850

in urban environments in real time by making use of such algorithm.
The three presented methods are, however, not the only methods that exist

to deal with TSP problems that may be applied to this kind of problem and
associated with the numeric interception module. Many other methods such as
LKH heuristics, swarm optimization, branching, k-opt and memetic algorithms855

can also be experimented using a similar approach to verify their usability on an
MT-TSP. Even the methods presented on this work have many variations that
are worth investigating, ACO, for example, has suffered many modifications
along the years that improved its performance on solving the stationary TSP.
GA, in turn, has different selection methods, crossover operators, such as OX,860

ER, and CSP, and mutation operators, as Throas, Thrors, and PSM, that can
be used and evaluated. Thus, future investigations can explore other approaches
to solve the studied MT-TSP problem.

The work presented in this article could also be extended to consider the 1-D
MT-TSP, which according to Helvig et al. (Helvig et al., 2003), can have its865

exact optima computed and compared to the results found by the metaheuristic
algorithm presented in this work. Such a comparison could bring valuable insight
to how well the algorithms perform against a method that is able to find the
optimal solution to the 1-D MT-TSP problem, and to how significant the speed-
up provided by the metaheuristics is.870

Acknowledgements

The authors would like to thank the Brazilian Research Support Agency -
CNPq and Sweden’s Innovation Agency - Vinnova, by means of the NFFP7
project, for the support provided to develop this work.875

References

Abdoun, O., Abouchabaka, J., & Tajani, C. (2012). Analyzing the perfor-
mance of mutation operators to solve the travelling salesman problem. CoRR,
abs/1203.3099 .

Abeledo, H., Fukasawa, R., Pessoa, A., & Uchoa, E. (2013). The time depen-880

dent traveling salesman problem: polyhedra and algorithm. Mathematical
Programming Computation, 5 , 27–55.

Cheng, C.-B., & Mao, C.-P. (2007). A modified ant colony system for solving the
travelling salesman problem with time windows. Mathematical and Computer
Modelling , 46 , 1225–1235.885

32

Choubey, N. S. (2013). Moving target travelling salesman problem using genetic
algorithm. International Journal of Computer Applications, 70 .

Dekkers, A., & Aarts, E. (1991). Global optimization and simulated annealing.
Mathematical Programming , 50 , 367–393.

Dorigo, M., Birattari, M., & Stutzle, T. (2006). Ant colony optimization. IEEE890

Computational Intelligence Magazine, 1 , 28–39.

Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: a new meta-
heuristic. In Proceedings of the 1999 congress on evolutionary computation-
CEC99 (pp. 1470–1477). IEEE volume 2.

Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by895

a colony of cooperating agents. Trans. Sys. Man Cyber. Part B , 26 , 29–41.

Englot, B., Sahai, T., & Cohen, I. (2013). Efficient tracking and pursuit of
moving targets by heuristic solution of the traveling salesman problem. In
52nd IEEE Conference on Decision and Control (pp. 3433–3438).

Goldberg, D. E., & Lingle, R., Jr. (1985). Alleleslociand the traveling sales-900

man problem. In Proceedings of the 1st International Conference on Genetic
Algorithms (pp. 154–159). Hillsdale, NJ, USA: L. Erlbaum Associates Inc.

Hammar, M., & Nilsson, B. J. (1999). Approximation results for kinetic variants
of tsp. In International Colloquium on Automata, Languages, and Program-
ming (pp. 392–401). Springer.905

Helvig, C., Robins, G., & Zelikovsky, A. (2003). The moving-target travel-
ing salesman problem. Journal of Algorithms, 49 , 153–174. 1998 European
Symposium on Algorithms.

Helvig, C. S., Robins, G., & Zelikovsky, A. (1998). Moving-target tsp and related
problems. In European Symposium on Algorithms (pp. 453–464). Springer.910

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems. (2nd ed.).
Cambridge, MA: MIT Press.

Keller, J. (2015). Wrong again: Uav market heading nowhere but up over the
next decade. URL: http://www.militaryaerospace.com/articles/2015/
08/uav-market-blog.html.915

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by sim-
ulated annealing. Science, 220 , 671–680. doi:10.1126/science.220.4598.
671.

Mendiratta, K., & Goyal, A. (2014). Implementation of csp cross over in solving
travelling salesman problem using genetic algorithms. International Journal920

of Engineering Trends and Technology , 11 , 455–459.

33

http://www.militaryaerospace.com/articles/2015/08/uav-market-blog.html
http://www.militaryaerospace.com/articles/2015/08/uav-market-blog.html
http://www.militaryaerospace.com/articles/2015/08/uav-market-blog.html
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1126/science.220.4598.671

Mohd Razali, N., & Geraghty, J. (2011). Genetic algorithm performance with
different selection strategies in solving tsp. In International Conference of
Computational Intelligence and Intelligent Systems (pp. 1–6). volume 2.

Osaba, E., Yang, X.-S., Diaz, F., Lopez-Garcia, P., & Carballedo, R. (2016).925

An improved discrete bat algorithm for symmetric and asymmetric traveling
salesman problems. Engineering Applications of Artificial Intelligence, 48 ,
59–71.

Potvin, J.-Y. (1996). Genetic algorithms for the traveling salesman problem.
Annals of Operations Research, 63 , 337–370.930

Rajesh Matai, S. S., & Mittal, M. L. (2010). Traveling salesman problem: an
overview of applications, formulations, and solution approaches. In Traveling
Salesman Problem, Theory and Applications chapter 1. InTech.

Saenphon, T., Phimoltares, S., & Lursinsap, C. (2014). Combining new fast
opposite gradient search with ant colony optimization for solving travelling935

salesman problem. Engineering Applications of Artificial Intelligence, 35 ,
324–334.

Shukla, A., Pandey, H., & Mehrotra, D. (2015). Comparative review of selection
techniques in genetic algorithm. In 2015 1st International Conference on
Futuristic Trends in Computational Analysis and Knowledge Management,940

ABLAZE 2015 (pp. 515–519).

Stützle, T., & Hoos, H. H. (2000). Max–min ant system. Future Generation
Computer Systems, 16 , 889–914.

Su, Z. C., Hlaing, S. H., & Khine, M. A. (20011). An ant colony optimization
algorithm for solving traveling salesman problem. In Procedures of Interna-945

tional Conference f Compututer Scince and Information Technology 2011 (pp.
54–59). volume 16.

Tuba, M., Jovanovic, R., & Jovanovic, R. (2013). Improved aco algorithm with
pheromone correction strategy for the traveling salesman problem. Inter-
national Journal of Computers, Communications and Control (IJCCC), 8 ,950

477–485.

Xing, L.-N., Chen, Y.-W., Yang, K.-W., Hou, F., Shen, X.-S., & Cai, H.-P.
(2008). A hybrid approach combining an improved genetic algorithm and
optimization strategies for the asymmetric traveling salesman problem. En-
gineering Applications of Artificial Intelligence, 21 , 1370–1380.955

Xu, Mingji, Li, Sheng, & Guo, Jian (2017). Optimization of multiple traveling
salesman problem based on simulated annealing genetic algorithm. MATEC
Web Conf., 100 , 2–25.

Üçoluk, G. (2002). Genetic algorithm solution of the tsp avoiding special
crossover and mutation. Intelligent Automation & Soft Computing , 8 , 265–960

272.

34

	Introduction
	Moving-Target TSP
	Heuristic Methods to solve TSP
	Genetic Algorithm Methods
	Genetic Algorithms application in TSPs

	Simulated Annealing
	Simulated Annealing application in TSPs

	Ant Colony Optimization
	Ant Colony Optimization application in TSPs

	The Proposed Solution
	Numeric Movement Prediction Module
	The Solution Using Ant Colony Optimization
	The Solution Using Simulated Annealing Optimization
	The Solution Using Genetic Algorithm Optimization

	Experimental Evaluation
	Methodology
	Experimental Results
	Comparative Performance Evaluation
	Evaluation in the Impact of Parameter Variation

	Discussion
	Conclusion

