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Abstract

Supervisory Control and Data Acquisition (SCADA) sys-
tems operate critical infrastructures in our modern society
despite their vulnerability to attacks and misuse. There are
several anomaly detection systems based on the cycles of
polling mechanisms used in SCADA systems, but the fea-
sibility of anomaly detection systems based on non-polling
traffic, so called spontaneous events, is not well-studied.
This paper presents a novel approach to modeling the timing
characteristics of spontaneous events in an IEC-60870-5-104
network and exploits the model for anomaly detection. The
system is tested with a dataset from a real power utility with
injected timing effects from two attack scenarios. One attack
causes timing anomalies due to persistent malfunctioning in
the field devices, and the other generates intermittent anoma-
lies caused by malware on the field devices, which is consid-
ered as stealthy. The detection accuracy and timing perfor-
mance are promising for all the experiments with persistent
anomalies. With intermittent anomalies, we found that our
approach is effective for anomalies in low-volume traffic or
attacks lasting over 1 hour.

1 Introduction

Supervisory Control and Data Acquisition (SCADA) sys-
tems are used for monitoring and controlling critical infras-
tructures such as waste water distribution facilities, gas pro-
duction systems, and power stations. In the past decades,
SCADA systems have increasingly adopted open protocols
and connected to the Internet for improved flexibility and
ease of use. These changes make SCADA systems vulner-
able to cyber attacks, in particular with Advanced Persistent
Threats (APT). Such attacks are usually slow and stealthy
but ultimately lead to sever damage on physical devices.

One building block for protection of these systems is the
implementation of anomaly detection. Most earlier works
on the network-based anomaly detection exploit the cyclic
traffic patterns found in the request-response communica-

tion mode [3, 14, 9]. That is, the SCADA master cyclically
sends a request to field devices such as a Remote Terminate
Unit (RTU) and a Programmable Logic Controller (PLC)
and the field devices return monitored values after receiv-
ing a request. However, some SCADA protocols also allow
non-requested communication whereby the field devices can
report monitored values in spontaneous events without re-
ceiving any request. In a previously proposed anomaly de-
tector [18], the authors observed low detection rates on an
IEC-60870-5-104 (from now referred to as IEC-104) dataset
because most of the communications were issued in non-
requested mode. This motivates the search for modeling ap-
proaches that deal with spontaneous event sequences used
for anomaly detection.

Anomaly detection is a technique that captures stable
characteristics of spontaneous traffic and identifies unusual
behaviours. In related research [17], Lin and Nadjm-Tehrani
characterized the timing attributes of two emulated IEC-104
datasets. The datasets show a diverse set of possible tim-
ing behaviours and many of them exhibit event sequences
varying in an irregular manner. However, process dynam-
ics might imply two stable attributes over a longer period:
(1) The probability distribution of event inter-arrival times
shows clear peaks. That is, some inter-arrival times are more
likely to be present than others, and (2) The probability dis-
tribution of inter-arrival times changes in groups of different
data flows in the same system. The flows in the same group
tend to change at approximately the same time. That is, there
could exist positive correlation between the occurrence of
spontaneous events in different flows.

In this work, we model the timing attributes of sponta-
neous traffic from a real power facility based on the above
two hypotheses. We also propose an anomaly detector to de-
tect anomalies within such traffic. The proposed detector is
tested with two attack scenarios at the field device level. Our
threat model is as follows. A field device such as RTU or
PLC is an interface between the field sensors, actuators and
SCADA master. Instead of directly breaking a field device,
attackers may target disrupting the controlled process and/or
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communication between the field device and SCADA master
in a gradual manner. Our goal is to detect anomalies caused
by the attacks before they cause irreparable damages on crit-
ical infrastructures. The contributions of this work are:

• Provide an empirical study on the timing attributes of
spontaneous traffic from a real power facility. The study
shows that inter-arrival times and correlation between
flows are stable and there are persistent timing charac-
teristics in spontaneous traffic.

• Present two attack scenarios producing timing anoma-
lies in the spontaneous traffic and provide the corre-
sponding anomaly generation approaches.

• Explore the potential of anomaly detection for IEC-104
spontaneous traffic by combining two methods for mod-
eling event inter-arrival times and correlation between
flows in the same network.

The rest of the paper is organized as follows. Section 2
presents the related work. Section 3 provides the background
knowledge needed for this work. Section 4 discusses the
threat models and caused traffic anomalies. Section 5 de-
scribes the components of the proposed anomaly detection
and evaluation system. Section 6 provides an overview of
the datasets and the parameter settings. Section 7 reports the
experimental methods and results. Section 8 concludes this
study.

2 Related Work

Various anomaly detection models have been proposed for
SCADA systems with different research methodologies. To
better position our work, this section reviews related work
in three orthogonal research domains: (1) network-based
anomaly detection, (2) physic-based anomaly detection, and
(3) content-based anomaly detection for SCADA systems.

2.1 Network-based Anomaly Detection
Network-based anomaly detection models target how the
components in a SCADA system communicate to each other
instead of looking into the payload. Many of the network-
level detectors make use of the cycles of SCADA traffic with
a focus on their cyclic sequences.

Timing-based anomaly detection usually employs statisti-
cal models and raises alarms when the monitored statistical
parameters exceed certain thresholds. Valdes and Cheung
[27] capture the attributes bytes per packet and packet inter-
arrival time and compare the testing traffic against the histor-
ical records by T-test. Sayegh et al. [25] model the historical
time intervals between signatures (i.e., a fixed sequence of
packets) and Barbosa et al. [3] model the historical period of
repeated messages in an orderless group. Lin et al. [18] fo-
cus on the inter-arrival time for periodic events and propose

a modeling approach based on the sampling distribution of
mean and range.

Sequence-aware intrusion detection systems usually em-
ploy automata-based models. Goldenberg and Wool [9],
Kleinmann et al. [15, 14], and Yang et al. [30] use Deter-
ministic Finite Automata to model the message sequences
of Modbus1, Siemens S72, and IEC-104 traffic respectively.
Yoon et al. [31] model the Modbus command sequences as
Dynamic Bayesian Network.

Recently, more non-cyclic traffic has been found in studies
with production data. Casselli et al. [5] propose a method-
ology to model the message sequences of Modbus, MMS3,
and IEC-104 in Discrete-time Markov Chain. The authors
observe no clear cyclic message patterns in the IEC-104
datasets. Faisal et al. [7] apply the Goldenberg and Wool’s
approach on a large dataset collected from a water facility in
the U.S. and show that the model performs poorly because
72% of the flows did not exhibit clear cyclic patterns. Later,
Markman et al. [21] propose a variant of the Goldenberg and
Wool’s model by considering the traffic on each flow as a se-
ries of bursts and create a burst-deterministic finite automata
for each flow. This methodology is tested with the same data
used in Faisal et al.’s study and 95% to 99% of the packets
are successfully captured by this model.

Our work differentiates itself from the previous work by
providing dedicated anomaly detection methodologies for
sopntaneous SCADA traffic while others focus on the cyclic
attributes. In an earlier work by Lin and Nadjm-Tehrani
[17], where they analyze the IEC-104 spontaneous traffic
and show that the emulated traffic contains some stable tim-
ing attributes other than cyclic sequences and periodicity, no
anomaly detection is proposed. In this work, we propose
an anomaly detection system for IEC-104 spontaneous traf-
fic and test the system with data collected from a real power
facility.

2.2 Physics-based Anomaly Detection
Physics-based anomaly detection models the physical pro-
cess managed by SCADA systems. Physics-based ap-
proaches model the process and detect the anomalies with
high accuracy while network-based approaches model the
network behaviour without knowing process semantics but
aim to alarm the users before the attack has major impacts
on the process. We consider these two approaches comple-
mentary not competing with each other. Giraldo et al. [8]
presents a literature review on physics-based anomaly detec-
tion.

System identification techniques can model behaviours of
a physical system by its inputs and outputs. Two models that

1Modbus. http://www.modbus.org/
2A proprietary protocol used Siemens S7 series PLCs.
3Manufacturing Message Specification (MMS). https://www.iso.org/

standard/37079.html
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are widely used are the Linear Dynamic State-space (LDS)
[26, 19] and the Auto-Regressive (AR) [11] models. These
models may accurately predict the system behaviour, but
they require a detailed description of the process and deep
understanding of system that are not always available.

Machine learning approaches require less or no prior
knowledge of the underlying process. Krotofil et al. [16]
use the correlation entropy in clusters of related sensors to
detect sensor signal manipulations. Kiss et al. [13] adopt
the Gaussian mixture model to form sensor clusters. Aoudi
et al. [2] propose a departure-based detection system that
measures the distance between the normal signals and the
signals under attack projected to a subspace. These works
show that sensors in SCADA systems are intricately corre-
lated. Since the sensor values and spontaneous events have
a cause-effect relationship, these works explain and support
our hypothesis that spontaneous traffic from different flows
can be correlated.

2.3 Content-based Anomaly Detection
Content-based anomaly detection based on in-depth analysis
of packet contents is an important research topic for general-
purpose networks. Due to the use of proprietary proto-
cols and lack of availability of specifications, content-based
anomaly detection for SCADA systems is still in its infancy.
Düssel et al. [6] present an anomaly detection system based
on n-grams using distance metrics. Hadžiosmanović et al.
[10] investigate four anomaly detection algorithms, POSEI-
DON, Anagram, PAYL, and McPAD, all using n-gram anal-
ysis for message payloads. The authors conclude that there
is no absolute best algorithm among the tested methods in
terms of detection rates and false positive rates. Wressneg-
ger et al. [29] propose an anomaly detection system based
on n-grams with a special focus on proprietary binary pro-
tocols. The authors show that the content-based approach is
applicable to binary protocols with high-entropy data.

3 Preliminaries

This section briefly presents how an IEC-104-compatible
RTU works and generates spontaneous events, together with
important fields of IEC-104 packets. The section also pro-
vides a short review on spontaneous traffic attributes found
in a previous study.

3.1 IEC-60870-5-104
The IEC-104 protocol applies to modern SCADA systems
for monitoring and controlling geographically widespread
processes. It enables communication between a master (con-
trol station) and one or more slaves (substations) via a stan-
dard TCP/IP network. IEC-104-compatible RTUs or PLCs
store inputs from the controlled process in its own storage

which is indexed by Information Object Addresses (IOA).
In order to improve the communication efficiency, IEC-104-
compatible RTUs scan monitored data in certain IOAs with
a fixed rate and generate spontaneous events when the mon-
itored data have changed.

Every spontaneous packet contains two important fields in
addition to IOA. First, Cause Of Transmission (COT) spec-
ifies whether it is a spontaneous packet or other type of
packet such as a reply on interrogation or a cyclic data re-
port. Second, Type IDentification (TID) specifies the type of
the monitored data. The most common data type is Moni-
tored MEasured point, normalized value (M ME NA) or its
variant (M ME TA and M ME TD). This datatype is 16-bit
long and contains a measured value from a certain IOA. The
system administrator needs to define an acceptable range for
each measured point. The RTU sends out a spontaneous
event when the measured value falls outside the range. Mon-
itored Single Point (M SP NA) is 1-bit long and Monitored
Double Point (M DP NA) is 2-bit long representing the state
of a switch or circuit breakers 4. A RTU sends out sponta-
neous events if the value of these two datatypes changes.

3.2 Known Spontaneous Traffic Attributes

This work is motivated by earlier results [17] which show
that the IEC-104 spontaneous traffic contains some timing
attributes that could last for a long time. Our notion of flow
is based on a sequence of timed events with a given IEC-104
type, from a given RTU, based on values stored in a given
IOA. There are two attributes explored this study. (1) Inter-
arrival time attribute: assuming that the spontaneous traffic
has limited groups of event inter-arrival times, and (2) cor-
relation attribute: assuming that positive correlation exists
between the changes on inter-arrival times in different flows.

To illustrate these attributes, we present the partial char-
acterization results of two flows, named IOA 10091 and
IOA 10092, which are initiated from the same RTU but dif-
ferent IOAs in a virtual SCADA testbed, RICS-el, developed
in a national research project [1]. The flows are from a 12
day collection and separated into 2-hour long segments for
characterization. We choose these flows because they show
strong characteristics, but the other flows in the same collec-
tion also contain similar attributes.

Inter-arrival time attribute. Figure 1 (a) presents the
histogram of event inter-arrival times within a segment of
two hours from IOA 10091. There exists clear peaks with
high frequency and several groups of inter-arrival times with
low frequency in the collected data over two hours. The anal-
ysis of the collected data shows that few of inter-arrival in-
tervals fall outside these groups in the subsequent 12 days.

4IEC 60870-5-104 summary.
https://spinengenharia.com.br/en/biblioteca/protocolo-iec-60870-5-104-
client/download/
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Figure 1: Traffic characteristics found in the collected data.
(a) Histogram of spontaneous event inter-arrival times from
IOA 10091. (b) L0 distances over time (hours) for two spon-
taneous traffic flows from the same RTU but different IOAs
[17].

Correlation attribute. Continuing with the above exam-
ple, we get several groups (i.e., peaks) of inter-arrival times
in the first segment of IOA 10091 and IOA 10092. The em-
pirical probability of each group can be easily calculated as
number of observations in the group divided by number of
observations in the segment. Figure 1 (b) shows the changes
in the probability distribution of each segment over 12 days.
The x axis gives the relative time in every two hours (a seg-
ment). The y axis gives the distance of probability distribu-
tion between the first segment and the later ones. The dis-
tance is defined as

D = ∑
σ1

i =σ2
i

(p(σ1
i )− p(σ2

i ))
2 + ∑

σ1
i 6=σ2

i

p(σ k
i )

2 (1)

where σi is the ith group of inter-arrival times in the set of
identified groups, and σ k

i means the ith group in distribution
k, k = 1 or 2. k = 1 means the distribution of the first two
hours and k = 2 means another distribution in comparison.
p(σ k

i ) thus means the empirical probability of the group.
Previous work does not calculate any type of correlation co-
efficients for the datasets. It only categorizes the traffic for
each flow by observing changes of L0 distances over time.

In Section 5.1 we will enrich the modeling of the spon-
taneous traffic by exploiting both attributes. For the sake of
simplicity, we refer to the model based on the first attribute
as inter-arrival time model and the second one as correlation
model in the rest of the paper.

4 Threat Model

This section presents two types of attacks on the field device
level and the possible traffic anomalies caused by the attacks.

This provides an intuitive view on the need for anomaly de-
tection.

In order to disrupt the controlled process and communi-
cation, an attacker can (1) take control of other components
and launch attacks such as Denial-of-Service (DoS) to the
targeted field devices or (2) exploit code-integrity vulnerabil-
ities in the targeted field devices and run malware on them.

Attack against field devices. Legacy SCADA field de-
vices have limited computing capabilities so that they are
fragile and sensitive to network traffic increment [4, 28].
Niedermaier et al. [24] showed that most of the PLCs from
major vendors are vulnerable to packet flooding in different
network levels and even scanning for benign purposes. The
attacker can influence the PLC cycle times and the controlled
processes. With regards to the network anomalies, this type
of attacks causes network performance degradation due to
competition on resources such as CPU and I/O port of the de-
vices. Long et al. [20] model the network performance under
DoS attack with two queuing models but no real attacks and
devices are involved. Other authors [23, 12] simulated the
impact of different DoS attacks on SCADA networks. Both
simulations showed performance impacts including network
delays, packet drops, and unavailability of targeted devices.

Malware on field devices. Many SCADA field devices
were designed without security considerations, and poten-
tial vulnerabilities allowing remote code execution on RTUs
have been documented officially (e.g., CVE-2017-12738,
CVE-2018-10605). Therefore, an attacker would gain re-
mote access to field devices and modify their software to
launch an attack against the critical infrastructure. Malicious
changes on the controlled process can possibly be observed
by an operator from abnormal number of alarms, values of
measurements, amount of traffic, etc. In order to hide the
malicious activity, the malware usually suppresses the real
outbound packets and sends altered packets to the SCADA
master. Stuxnet5 and Irongate6 capture normal outbound val-
ues and replay it to mask anomalies produced while launch-
ing attack to the controlled process. In this work we propose
a more stealthy scenario wherein the replayed traffic not only
contains the historical measurements but also follows histor-
ical timings to send. With regards to the anomalies, the value
of the payload, size of messages, and timings are totally le-
gitimate. However, SCADA traffic usually contains phase
transitions or seasonal changes. This makes it detectable (af-
ter a period of time) by comparing the similarities between
field devices. A slow detection is acceptable because this
kind of malware is usually a part of an APT, which is de-
signed to be effective for an extended period of time.

The two proposed attack scenarios will be used to generate
relevant test cases for evaluation in Section 7.

5https://www.symantec.com/content/en/us/enterprise/media/security response/
whitepapers/w32 stuxnet dossier.pdf

6https://www.fireeye.com/blog/threat-research/2016/06/irongate ics malware.html
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Figure 2: System components and workflow

5 Proposed Anomaly Detection System

The proposed system contains three main modules as illus-
trated in Figure 2. First, an Extractor software that can be
run in a operation site, e.g., a utility company, for collecting
the input traces to the anomaly detection process. The Ex-
tractor records the timestamps of packets containing sponta-
neous events (COT=spont) and separates the timestamps in
flows which are defined by a three-tuple {RTU, TID, IOA}.
The timestamp sequences in each flow are then used as learn-
ing data and later sequences collected in a similar way can
be used as testing data.

Second, for each flow from the first step the learning data
is transformed into two data types as the inputs for the Mod-
eler to build models. For the inter-arrival time model, we
form a sequence of inter-arrival times ∆learning, and denote
each inter-arrival time appearing in the sequence by δi. For
the correlation model, we form a time series Xlearning, and xi
denotes the number of spontaneous events in ith bin. The bin
size is a configurable parameter, and will be 1 minute in this
work.

Third, the models are sent to the Detector. The testing data
in the same format as the learning data will be transformed
into ∆testing and Xtesting and used to test our Detector.

In our evaluation of the method, as we are creating syn-
thetic attacks to test the detector, we also have a separate
Anomaly Generation function (dashed box) which will in-
ject suitable anomalies in the collected test data to create test
sets which are a combination of real utility data and attack-
induced variations of them.

The Extractor is written in Python and the other modules
are developed and run in R.

5.1 Modeling Spontaneous Events

This section presents how we construct the inter-arrival time
model and the correlation model.

Figure 3: Distribution of inter-arrival times from a sequence
within an event set in our data: (a) Histogram of δi ≤ 12
seconds. (b) The smoothed version of the sequence, band-
width=0.15.

5.1.1 Inter-arrival time model

The process of building the inter-arrival time model contains
three steps: smoothing, grouping, and finding boundaries.
The first two steps are developed in an earlier work [17] with
modifications on choice of parameters (bandwidth, size of
GroupList). This section includes these two steps for the
sake of completeness.

Smoothing. This step uses kernel density function to
smooth out the discontinuities in the distribution of ∆learning.
The smoothed distribution of inter-arrival times is called
∆smoothed . Figure 3 shows part of the frequency distribution
of inter-arrival times which is less than 12 seconds and its
corresponding smoothing results. The bandwidth parame-
ter of the kernel decides the smoothness level of ∆smoothed .
The parameter can be an arbitrary large number as long as
the peaks are still higher than the bottoms in the resulting
∆smoothed .

Grouping. The next step starts with finding the relative
low points in ∆smoothed with Algorithm 1. The algorithm out-
puts a GroupList which contains a list of low points in pairs.
The inter-arrival times within a pair of low points are consid-
ered as in the same group.

Finding boundaries. The last step finds the best fitting
boundaries of each group. These boundaries are used for
detection later. There are two methodologies used for find-
ing the best fitting boundaries. (Section 6 compares the two
methodologies.) (1) The best-fitting boundaries can be set
as simply percentile of 99.99% and 0.01% of observations
in each group without any assumptions on their distribution.
(2) With a Gaussian distribution assumption, the module cal-
culates the mean and standard deviation of the observations
in each group and sets the boundaries as mean plus/minus
three standard deviations.

In both of the methodologies, the module needs to esti-
mate the boundaries of groups having too few observations
in a specialized way. Without a specific assumption of distri-
bution, the module takes the range between boundaries in the
largest group of the same flow and centers the range with the
median of the current group. With a Gaussian distribution
assumption, the module calculates only the mean and reuses
the standard deviations in the largest group of the same flow.
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Algorithm 1: Finding low points
Input : ∆smoothed
Output: GroupList

1 GroupList← empty // list for output

2 while true do
3 peak← HighestPoint(∆smoothed);
4 L = R = peak;
5 while ∆smoothed [R+1]< ∆smoothed [R] do
6 R← R+1;
7 end
8 while ∆smoothed [L−1]< ∆smoothed [L] do
9 L← L−1;

10 end
11 if (L == R) then
12 break;
13 end
14 GroupList[i]← (L,R);
15 ∆smoothed ← ∆smoothed−PointsBetween(L,R);
16 end

The criteria for adopting this specialized estimation needs to
be decided experimentally (See Appendix A).

5.1.2 Correlation model

The process of building the correlation model contains three
steps: correlation pairing, phase separation, and finding
boundaries. We aim to find a monotonic relation between the
time-series and pair them. The two paired time-series change
(increase or decrease) with the same direction but not always
at the same rate. As observed in the earlier work [17, 22, 9],
SCADA traffic exhibits phases, and the timing characteris-
tics of the traffic may be different in each phase. We assume
correlated time-series are in a monotonic relation instead of
linear relation because of phase transitions.

Correlation pairing. This step starts with calculating
the Spearman rank correlation matrix between event volume
time-series of different flows. Spearman correlation mea-
sures the strength and direction of two variables belonging
to a monotonic relation. For two time-series X p = xp

1 , . . . ,x
p
m

and Xq = xq
1, . . . ,x

q
m, the Spearman rank correlation is 7:

ρpq =
COV (R(X p),R(Xq))

σR(X p)σR(Xq)
(2)

where R(Xk) denotes the ranked time-series
R(xk

1), . . . ,R(x
k
m). In a ranked time-series the numeri-

cal value in each bin xk
i is replaced by their rank in the

sorting. In addition, COV (R(X p),R(Xq)) is the covariance
of ranked time series and σR(X p) and σR(Xq) are the standard
deviations.

7Spearman, C. The Proof and Measurement of Association Between
Two Things. American Journal of Psychology (1904).

In the calculated correlation matrix, for any row represent-
ing a flow in the system, the column with the highest coef-
ficient thereby gives the most correlated flow and pairs with
it. Note that the pairs are not always symmetric. It can be the
case that time-series X p is most correlated with Xq and Xq is
most correlated with another time-series.

Phase separation. This step separates the time-series into
phases by assuming the relation between two paired time-
series X p and Xq at time point i and phase k follows:

xp
ki = xq

ki + ε
pq
k , ε

pq
k ∼ N(µpqk,σ

2
pqk) (3)

where ε
pq
k is a constant with added noise. ε

pq
k is independent

from xp
ki and follows Gaussian distribution. That is, the dif-

ference between xp
ki and xq

ki should fall within the range of
ε

pq
k .

The process of separation starts by observation of the his-
togram of Dpq, the arithmetic difference between two paired
time-series X p and Xq. If the histogram is not a bell curve,
we consider it as a Gaussian Mixture Model (GMM). Then,
we use an Expectation−Maximization (EM) algorithm 8 im-
plemented in the R library to separate the GMM into a few
Gaussian models. Each Gaussian model is called a compo-
nent and represents a phase. This algorithm gives each dpq

i
a posterior probability of belonging to one of these compo-
nents. We can assign dpq

i , xp
i and xq

i into the most likely
component at every time point i. The set of datapoints in
component k is called X p

k and Xq
k .

Finding boundaries. This step removes the outliers in
X p

k and Xq
k , sets entering conditions for each phase, and finds

the estimated boundaries of ε
pq
k for detection. Fluctuations

in the volume of each bin from the same phase causes out-
liers in the probability distribution of X p

k and Xq
k to be gener-

ated in the previous step (See Figure 4). Our model excludes
the outliers by adjusting entering conditions (cut-off lines) of
phase k (e.g., xp

i ∈ X ′pk , k = 1, if 7 > xp
i > 3).

The module calculates the boundaries of ε
pq
k with the ad-

justed results X ′pk and X ′qk . Let Dpq
k as the arithmetic differ-

ence between X ′pk and X ′qk for each k. The estimated bound-
aries of ε

pq
k is set as the mean plus/minus three standard devi-

ations of Dpq
k . The example calculation of boundary settings

with the used datasets are illustrated in detail in section 6.

5.2 Detection Mechanism
We use a two-layer approach to generate alarms for unusual
network behaviours. In the first layer, the input traffic is pre-
processed into two data types ∆testing for the inter-arrival time
model and Xtesting for the correlation model. The detector
generates an inter-arrival time warning if an inter-arrival time
falls outside the boundaries of the learned groups and gen-
erates a correlation warning if the difference of two paired

8NormalmixEM in library ”mixtools”. https://cran.r-project.org/web/
packages/mixtools/mixtools.pdf
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Dataset TID # Flows # Used Flows AEF
RTU A M ME NA 21 19 228780

M DP TB 8 0 13
M SP TB 3 0 2

RTU B M ME NA 16 14 7837

Table 1: Overview of datasets during 30 days. Here AEF
stands for Average Number of events per Flow.

time-series falls outside the boundaries of the identified cur-
rent phase in the pair.

In the second layer, the detector calculates the number
of inter-arrival time warnings for each RTU and correla-
tion warnings in every minute to form a multivariate time-
series. The system uses sliding windows W∆ RTUi and WX
on the time-series to filter out noise. The detector generates
alarms when the number of warnings exceeds the predefined
second-layer thresholds T∆ RTUi or TX . Every RTU in the net-
work has its own detection parameters W∆ RTUi and T∆ RTUi,
and we refer to it as a RTUi component of the inter-arrival
time model. As usual, the configurable parameters of a de-
tection mechanism are a means to set a desired level of accu-
racy or false positive rate, as will be evident in Section 7.3.
The alarms will be sent to the operator monitoring the system
but the warnings are internal elements of the analysis used to
set thresholds.

6 Datasets and Parameter settings

This section presents an overview of the datasets and the pa-
rameter settings for model construction. It elaborates which
parts of our data are used for the further experiments and
how they are used.

The experiments employ network traces collected from a
real-world power facility. The data collection was performed
by the utility personnel embedding the Extractor component
in Figure 2 in their facility and providing the event inter-
arrival times for spontaneous events for our evaluation. The
network uses multiple protocols and we collect only the tim-
ings of communications between the SCADA master and 2
IEC-104 specific RTUs. The datasets have a duration of 30
days and we choose learning data to be 300-hour long (i.e.,
about 12 days). Table 1 presents a brief summary of the
datasets we used in our experiments.

Our datasets contain different types of measurements
(TID) and flows. The flows with small event quantities
(less than 200 events) are outside our scope because these
flows, such as M DP TB, M SP TB and unused M ME NA
traffic, apparently have very different timing characteristics
and should be monitored using alternative methods. Conse-
quently, all of the used 33 flows are from M ME NA mea-
surement traffic. Our datasets also show different event rates
in each RTU. RTU A has a much higher event rate than RTU

B.

6.1 Parameter and design choices for the
inter-arrival time model

The top 5 flows with the highest event frequencies from RTU
A and the top 3 flows from RTU B are used for buillding the
models. This is because the slow flows contain less observa-
tions for each group. Therefore, there are more groups in the
slow flows requiring specialized estimation for the bound-
aries as mentioned in Section 5.1.1. We exclude these flows
to focus the feasibility study of our approach on the more
frequently populated flows.

Table 2 shows the learning results in terms of warning
rates for the selected flows. It explains the methodology
to find the best-fitting boundaries for detection with limited
length of learning data. Warning rate is defined as the num-
ber of inter-arrival times which can not be categorized in
any group divided by the amount of inter-arrival times in the
whole learning data in percentage (%). Warning rate I is cal-
culated directly after the Grouping step (the second step of
the inter-arrival time model construction). The results show
that the initial grouping covers most of the data points by the
chosen bandwidth parameter for algorithm 1.

There are two alternatives methodologies to find the best
fitting boundaries for detection. Warning II and warning III
are calculated after completing the Finding boundaries step.
In warning II cases we find best fitting boundaries with-
out any specific assumption on their distribution (i.e., the
first methodology for finding boundaries in Section 5.1.1).
We can observe that this methodology leads to high warn-
ing rates for the flows from the low-event-rate RTU (RTU
B). In warning rate III cases we find boundaries with Gaus-
sian distribution assumption (i.e., the second methodology).
We note that the two methods are suitable in different cases.
The warning II method works better when there are sufficient
number of observations, and the second method (Gaussian,
warning III) performs best with learning data with fewer ob-
servations. Therefore, the boundaries estimated with the first
methodology are used for RTU A component and the bound-
aries estimated with the second methodology are used for
RTU B. The detailed warning rates for the whole dataset will
be presented in Table 4 of Appendix A.

6.2 Parameter and design choices for the cor-
relation model

For the correlation model, we form 33 pairs from the used
33 flows through the correlation pairing process described in
Section 5.1.2. 3 out of 33 pairs are a mixture of two distri-
butions and require a phase separation process. These pairs
contain phase transitions which is the desired feature as men-
tioned in Section 4. They are included for further experi-
ments no matter how many warnings they have produced in
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Flow Warning rate I Warning rate II Warning rate III
A 3019 ≈ 0 0.03 0.46
A 3014 0 0.02 0.59
A 3013 ≈ 0 0.02 0.52
A 3012 ≈ 0 0.02 0.46
A 3020 ≈ 0 0.02 0.49
B 3019 0.10 14.88 0.54
B 3016 0.10 14.86 0.46
B 3006 0.08 0.22 1.48

Table 2: Overview of selected datasets and learning results.
Warning rates are presented in %.

the learning period. 20 out of the remaining 30 pairs have
warning rates below 1 % for the learning data and are in-
cluded for further experiments as well. It is apparent that the
pairs having high warning rates are not tightly correlated.
These flows are thus useless to include in our correlation-
based learning. Table 4 of Appendix A lists all the pairs and
their warning rates for the learning data.

Figure 4 (a) presents an example of two paired time-series
containing phases. The two time-series show clear high and
low values with somewhat visible correlation. Figure 4 (c)
is the histogram of difference between the two time-series
and indicates it may be a mixture model of two compo-
nents. The EM-algorithm results suggest that it is a mix-
ture of component 1 ∼ N(−6.25,8.20) and component 2
∼N(−0.31,1.08), where∼N(µ,σ) denotes a Gaussian dis-
tribution with mean µ and standard deviation σ . The pro-
portion of these two components are 0.62 and 0.38 respec-
tively. We separate the original time-series into two groups
according to the posterior probabilities. Figure 4 (d) is the
histogram of RTUA 3018 dataset that are in the component 2
(high-value phase). Since we model the distribution with two
components, the boundary of the high-value phase is simply
set at one-side as presented by the red line at 18. Figure 4 (e)
is the histogram of the difference between RTUA 3018 and
RTUB 3015 when the value of RTUA 3018 is higher than
18. The learned boundaries of differences for this pair in
the high-value phase are -7 and 10 and the boundaries in the
low-value phase are -27 and 6.

This example shows that the replay attacks may break the
correlation between some paired time-series if one flow re-
plays the historical data but another one has changed to an-
other phase. It indicates our hypothesis for the approach be-
ing suitable for detecting replay attacks is likely to work.

7 Evaluation

We evaluate the proposed anomaly detector in two steps.
First we study whether the testing data (with no attacks in-
jected) exhibits signs of pre-existing anomalies. Then we
create synthetic anomalies according to the threat models

presented in Section 4 and show the performance of the de-
tector against the synthetic anomalies. The performance is
evaluated with detection accuracy and time-to-detection.

7.1 Warnings and Actual Anomalies
Figure 5 shows the warnings generated by each model on
the collected data from the utility for testing over time. The
inter-arrival time model generates warnings at a relatively
stable rate compared to the correlation model. The corre-
lation model shows an anomalous burst of warnings around
40000 minutes and it lasts for thousand minutes till the end
of the data. These anomalies are generated mostly from a
correlation pair as shown in figure 6. As a result of discus-
sions with the utility company we found that the correlation
break is caused due to a manual intervention by the operator
at the company, where a line breaker was used to turn off
the current on a line at 8:53, perform a redirection, includ-
ing connecting the ground, and restarted the transmission on
the original line at 9:44. The normally correlated line was
not touched, so the anomaly detected was grounded in real-
ity. The detailed warning rates for each flow can be found in
Table 5 of Appendix B.

Due to the existence of actual anomalies, we exclude the
data after 39750 minutes for the following evaluation of the
anomaly detector in the step where injected anomalies are in-
serted in the dataset. The authors have noticed that there are
still some short bursts of warnings in the used segment of the
dataset and these bursts may be caused by manual operations
on the system or traffic noise. Since the log of operations is
not available for our study, we decide to treat them as nor-
mality.

7.2 Synthetic Anomaly Generation
We create two types of synthetic anomalies according to the
threat models presented in Section 4. We refer to the anoma-
lies caused by the attack against field devices as performance
downgrade anomalies and the one caused by the malware on
field devices as replay anomalies. For each type of synthetic
anomaly, we conduct several experiments on each RTU with
different severity/scale. An experiment will be repeated 25
times with randomly generated anomalies as explained be-
low.

7.2.1 Performance Downgrade Anomalies

In this scenario we emulate cases where attacks lead to per-
formance downgrade. This is done through an anomaly
generator that adds delays to and drops packets from the
RTU traffic. The anomaly generator is implemented to em-
ulate the impacts of such attacks with a queuing model
as g(L,µ,φ ,ψ), where g represents the queue model with
queue length L, µ is the mean service rate (events/second),
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Figure 4: An example pair of time-series. (a) Time-series from flow {RTUA, M ME NA, 3018}, called RTUA 3018. (b)
Time-series from flow {RTUA, M ME NA, 3015}, called RTUA 3015. (c) The histogram of difference between RTUA 3018
and RTUA 3015. (d) The result of running EM-algorithm: the histogram of RTUA 3018 dataset that are in the high-value
phase. (e) The histogram of difference between RTUA 3018 and RTUB 3015 when the value of RTUA 3018 is higher than 18.

Figure 5: Number of warnings generated by component RTU
A of the inter-arrival time model, component RTU B of the
inter-arrival time model, and the correlation model in every
24 minutes

Figure 6: A pair of time-series with correlation breaks.

φ is the malicious traffic rate, and ψ is the original traffic
randomly selected in our testing data.

To create the queuing model we first abstract the origi-
nal network packets with their arrival times and number of
events (a packet may contain multiple number of events). An
event occupies one unit of queue length L. Then, we select
a malicious packet rate φ which represents the severity of
attacks. We can escalate the severity of attacks by increas-
ing φ . The original and malicious traffic compete for some
shared resources such as CPU time, network card bandwidth,
etc. The queue and the service module model the shared re-
sources. The synthetic arrival time of an event is the sum of
its original time and waiting time. Service time is only used
to model the normal congestion in the queue but not included
in the calculation of synthetic arrival times. This is set to pre-
vent generating anomalies when the malicious traffic rate is

0.
There are three configurable parameters in the model,

φ ,µ,L. The parameters for experiments are tuned to match
the results of simulation of DoS attacks on real RTUs [12]
where an RTU shows little delay when φ is 100 packets per
second and can barely send traffic at the rate of 580 packets
per second. Therefore, µ is set as 82.64 to create congestion
in the queue when φ is 100. We assume the queue becomes
full of malicious packets after a period of time t = 180 sec-
onds (corresponding to the attack rate φ = 580). The length
of the queue is thus set as L = (φ −µ)∗ t ∼= 89524.

We conduct an experiment on each RTU for φ equals to
100 and 200 respectively. This leads to four experiments.
The experiments with φ equals to 100 are intended to model
the case where resource claims only create delays. They will
be used to show the effectiveness of delay detection. The
experiments with φ equals to 200 model a case where the re-
source exhaustion creates both delays and packet loss. They
will be used to show the timing efficiency of the delay detec-
tion (i.e., the detector can find delays before packet losses.).

The total data set was used as follows: The 18 days re-
maining after removing the 12 days learning time was fur-
ther reduced to remove the 3 days that included the ”benign”
anomalies as described in Section 7.1 that appeared at the
end of the period. This leaves us with a 15 day interval as
testing data. From these 15 days we extract 40-minute long
samples at random as the inputs (ψ) of the anomaly genera-
tor and then replace the 40-minute long samples in the testing
data with the resulting traffic of the queuing model.

7.2.2 Replay Anomalies

Next, we create a threat scenario that the malware repeats
certain daily activities and gradually makes damages on the
controlled process. It records a 20-second9 traffic sequence
before it starts the malicious activity and replaces the out-

9Stuxnet records process values for 21 seconds. Irongate records 5 sec-
onds.
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bound traffic with forged traffic while running the activities.
The forged traffic replays the values in the recorded and fol-
lows the recorded inter-arrival times. We expect that an eva-
sive attacker’s forged traffic can bypass the monitor of inter-
arrival time component since it replays the regular timings.
However, the traffic may cause correlation breaks for the cor-
related flows from different RTUs.

We conduct one experiment for each activity duration
equal to 10 hours, 1 hour, 30 minutes and 5 minutes respec-
tively. This will be done once for RTU A and once for RTU
B, leading to 8 experiments. From the 15-day testing data
we use the first day to extract the 20-second intervals for the
replay action at random, and selected the 10 hour, 1 hour, 30
minutes, and 5 minutes intervals for the 8 replay experiments
from the remaining 14 days at random.

7.3 Detection accuracy

This section summarizes the resulting detection accuracy
for the experiments presented in Section 7.2.1 (performance
downgrade anomalies) and 7.2.2 (replay anomalies). The
section first discusses the impact of detection parameters us-
ing AUC (Area Under the Curve) and ROC (Receiver Op-
erating Characteristics) curve. During the calculation of
ROC, True Positive Rate (TPR) is defined as the number
of true alarms divided by the number of windows with in-
serted events, and False Positive Rate (FPR) is defined as the
number of false alarms divided by the number of windows
without inserted events. Detection rate is defined as the num-
ber of detected event insertions divided by the number of in-
serted events. Our evaluation is based on the assumption that
one type of attack is active at any interval of time. Thereby
we evaluate reactions to each type of attack separately with
a set of experiments.

There are two types of tunable detection parameters: win-
dow size (W∆ RTUi, WX ) and detection threshold (T∆ RTUi,
TX ). Figure 7 presents the detection ability for each model
and the corresponding experiments in terms of AUC rang-
ing from 0.5 to 1, where 1 is the best value with highest
detection and lowest false positives. We execute our exper-
iments 25 times with a given window size from 10 to 100
minutes (shown on the x axis) and present the median of the
25 AUCs. The results show that the inter-arrival time model
has AUCs close to 1 for detection on all types of downgrade
anomalies and with all the window sizes. In contrast, the
correlation model has a wide range of AUCs from slightly
higher than 0.5 to 1, where the duration of malicious activity
is varies from 5 to 600 (minutes).

For the correlation model and the replay experiments,
there are three groups of results. The leading group includes
the experiments on RTU B with activity duration of 600, 60,
and 30 minutes and the experiment on RTU A with activity
duration of 600 minutes and 60 minutes. The middle group
contains only the experiment on RTU B with activity dura-

Anomaly Type Scale Location Detection Rate FPR
Performance 100 RTU A 100 0.1
Downgrade 100 RTU B 100 0.5

200 RTU A 100 0.1
200 RTU B 100 0.5

Replay 600 RTU A 61.3 1.2
600 RTU B 69.4 1.2
60 RTU A 76.5 1.1
60 RTU B 80.0 1.0
30 RTU A 61.4 1.1
30 RTU B 69.3 1.0
5 RTU A 44.5 1.1
5 RTU B 52.9 1.0

Table 3: Detection accuracy (%) with FPR around 1 %

tion of 5 minutes. The remaining experiments are in the bot-
tom group. The leading and middle group show higher AUCs
with small window size, and the AUCs decrease as the win-
dow sizes grow. The bottom group has AUCs just above 0.5
with small window size. Though the AUCs grow as the win-
dow sizes increase, we speculate this is just because some
false positives become true positives in an increased window
size (i.e., some inserted events are included in the window).
Since this would give an overly positive picture, we suggest
a small window size for anomaly detection.

Figure 8 shows an example ROC curve of the inter-arrival
time model detecting downgrade anomalies on RTU A with
a fixed window size 100 (minutes). The detection thresh-
olds decide the cut-off line. The configuration of detec-
tion thresholds depends on the acceptable FPR. If consid-
ering an acceptable FPR as 1%, which means 1 false alarm
per hundred minutes, we can set the detection parameters as
W∆ RTUA = 30, W∆ RTUB = 30, WX = 10 and T∆ RTUA = 11,
T∆ RTUB = 7, TX = 10. Table 3 presents the average detection
accuracy (%) with these settings.

The inter-arrival time model providing 100% detection
rates and false positive rates below 0.5%. The correlation
model has detection rates between 61% to 80% for the lead-
ing group of experiments. This is satisfactory because these
attacks are expected to be hard to detect as mentioned in
section 4. On the other hand, the correlation model shows
lower detection rates for the remaining experiments which
have low AUCs. The detection rates are between 44% to
61%. This implies that the correlation technique applied here
would not be an effective technique for finding anomalies
that occur in high volume traffic with short period of activi-
ties.

7.4 Timing Performance

This section presents the timing performance for the exper-
iments presented in Section 7.2.1 (performance downgrade
anomalies) and 7.2.2 (replay anomalies) in TTD (Time To
Detection). The TTD measurement is based on time-series
bins (minutes). It is defined as the time on which the IDS
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Figure 7: The median of AUCs for: (a) performance downgrade experiments, (b) replay experiments.

Figure 8: ROC curve of the inter-arrival time model on
its first run of experiment performance downgrade RTU A,
φ=100. T means threshold TRTUA

raises its first alarm minus the time of the first event inser-
tion. The results of the measurements are shown in a boxplot
with median, quantile 25% and 75 %.

7.4.1 Performance Downgrade Experiments

The TTD in each downgrade experiment is compared with
the time to the first packet drop in the experiment with
φ=200. If our approach can detect anomalies before the
first packet drop, it outperforms the general-purpose network
monitoring tools which identifying and monitoring packet
loss. As mentioned in Section 7.2.1, we abstract the orig-
inal network packets with their arrival times and number
of events and emulate the performance degradation with a
queuing model. The experiments with φ equals to 200 model
a case where the resource exhaustion creates both delays and
packet loss. If the ith packet in the original traffic Pkt i is the
first packet being dropped in the emulation results, the time
to first packet drop is calculated as T (Pkt i−1)+δi,i−1, where
T (Pkt i−1) denotes the delayed time of Pkt i−1 and δi,i−1 de-
notes the inter-arrival time between the Pkt i−1 and Pkt i in
the original traffic.

Figure 9 presents the timing performance for performance
downgrade experiments. The time to the first packet drop
measurements are centered around 30 minutes for both of the

Figure 9: Comparison between time to detection and time to
first drop

RTUs. The median of TTD measurements for each experi-
ment from left to right is 2, 9, 4, and 8 minutes. Every itera-
tion of all the experiments has TDD less than 30 minutes. It
is worth noting that TTD measurements become longer with
higher severity of attack. This is because the attacks with a
higher input rate (φ ) to the queuing model cause more de-
lays between two events such that the number of events and
alarms in one minute (bin) decreases.

7.4.2 Replay Experiments

Figure 10 presents the timing performance for replay exper-
iments. In some of the iterations for some experiments there
is no detection. Figure 10 (a) presents the TTD measure-
ments for the iterations with detection. The median of TDD
for each experiment from left to right is respectively 4, 5.5,
7, 9, 3.5, 4, 4 and 4 minutes. This shows, for most of the
cases, our approach detects the anomalies in a short time if
they are detectable.

Figure 10 (b) shows the number of iterations without de-
tection for all the replay experiments. The number for each
experiment from left to right is 13, 7, 4, 1, 9, 5, 0, and 0. This
shows, in a given dataset, the recorded traffic characteristics,
the traffic characteristics during the replay, and the length of
replay period influence the probability of occurrences of de-
tectable anomalies. Among them, the length of replay period
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Figure 10: Timing performance for all replay experiments.
(a) Time to detection measurements. (b) Number of iteration
without detection, where ND denotes no detection.

plays a decisive role in our experiments. When the length of
replay period is short, it could be pretty hard to detect re-
played events if both of the recorded traffic and the traffic
during replay do not deviate from the learned normality.

7.5 Discussions

This section discusses the proposed approach in terms of its
generality and robustness to APT according to the analysis.
We then go on to discuss the challenges regarding FPR and
lack of semantics for network-based anomaly detection sys-
tems and how can them be addressed in practice.

This research inherited the findings of previous work
which used a 12-day dataset generated from a virtualized
testbed combining a SCADA network formed of virtual ma-
chines and a power grid simulator [17]. Though the pre-
vious work did not conclude the existence of the used at-
tributes, inter-arrival time and correlation attributes, we can
infer from its observations that these attributes may exist as
shown in the section 3.2. Considering the results of empir-
ical study in this work, we can expect the used attributes to
appear in other power grid network traffic as well, but more
work on new sites would be useful before generalizing the
result.

Our method was shown promising for flows that have a
pattern which is possible to model. It is still an open question
whether smart grids with frequent re-configurations in the
face of market changes or demand-response imbalances may
exhibit new patterns of timing for spontaneous events.

The proposed approach is a composition of two compo-
nents. The inter-arrival time component examines the pcap
timestamp of the packets, which means the time when the

packet arrives at the data collection workstation, instead of
the time tag in the payload. In practice, this kind of IDS is
usually located in the kernel of the workstation and extracts
the arrival time directly from the network driver. This infor-
mation can not be simply altered for evasion or poisoning as
long as the adversaries do not take control of the network
driver. When the network driver has been compromised,
it’s too late for any network-based IDS. However, the ad-
versaries may take control of a field device and send forged
data that mimic the regular timings as shown in section 7.2.2.
This kind of evasion can bypass our inter-arrival time com-
ponent but it is still detectable by the correlation component
as shown in Table 3. This is because the correlated traffic
flows are located across the RTUs in the network. The only
way to bypass the monitoring of the correlation component
is to take control of all the monitored field devices and send
the forged data simultaneously. Hence, our approach fits the
distributed nature of SCADA systems.

Two main challenges for network-based anomaly detec-
tion are avoidance of high false positive rates and reaction to
alarms lacking semantics. Our approach reported around 1%
FPR, which means 1 alarm per 100 minutes in the config-
ured setting and less than 15 alarms a day. The evaluation on
whether the FPR is manageable depends on the settings of
the facilities. Solely receiving the alarm with no connection
to the system information puts the burden on the operator for
further investigations. However, a growing number of crit-
ical infrastructure facilities are supported by a security op-
eration center housing security expertise as well as domain
knowledge about the operational setting. Combining capa-
bilities of different technologies such as digital forensics, an
anomaly detector with 15 alarms a day can be helpful.

8 Conclusions and Future Work

This work explores the potential of modeling IEC-104 spon-
taneous events using two timing attributes. One is based on
the inter-arrival times, and the other is based on the correla-
tion between flows. These two attributes have been shown
very stable in the whole experiment period of this work on a
dataset collected from a real power station. Our experiments
generate consistent false alarm rates in the learning and test-
ing period if the learning period contains enough number of
observations.

We also propose methods for modeling two attack sce-
narios at the field device level and analyze their impact on
timings. The performance downgrade anomalies are caused
by attacks against a field device and their impact is persis-
tent. The replay anomalies are caused by malware on a field
device and the impact is intermittent.

The proposed anomaly detector successfully detects real
anomalies in the dataset from a real power facility as well as
some of the synthetic anomalies. Our approach shows differ-
ent level of detection accuracy for different type of anoma-
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lies. For the performance downgrades (persistent) anoma-
lies, our approach exhibits a 100% detection rate with at
most 0.5% false positive rate. For the replay (intermittent)
anomalies, the detection rates and timing performances are
satisfactory for experiments under the following conditions:
(1) the anomalies last for a longer period (over 1 hour), or
(2) the original traffic has relatively low event rates.

The preliminary results show that the idea of modeling the
timing characteristics of spontaneous events for anomaly de-
tection is fruitful. The spontaneous traffic exhibits persistent
timing characteristics with regards to its inter-arrival times
and correlation between flows. This study can be used as a
foundation of future research on anomaly detection in spon-
taneous traffic and our dataset is available for further trials.
The obvious future work includes studying a more advanced
machine learning model to enhance the detection ability of
replayed events. The fact that the timing performance of
the inter-arrival time model decreases when the severity of
attacks increases also indicates a potential need of a more
complicated model to monitor the change to alarm distribu-
tions, such as a model using range value or moving average.

To our knowledge this is the first study of anomaly de-
tection focusing on IEC-104 spontaneous traffic. We do
not compare our approach with methodologies designed for
other types of traffic. Nevertheless, we plan to generate
more attack scenarios and study their impact on timing in the
context of a national emulated testbed for SCADA systems
(RICS-el). Emulated testbeds allow comparison of multiple
methods in the same repeatable scenario, but a functioning
shared research infrastructure for this purpose is still miss-
ing in the research community.
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Appendix

This appendix section lists additional measurement results for the proposed modeling approach. The notion of warning means
the first-level anomalies generated by the proposed detection methodology as described in 5.2. They form the basis of further
analysis to derive the alarms that will be sent to the operators.

A warning rates over the learning period

Table 4 shows the overview of the datasets and the warning rates generated by the inter-arrival time model and the correlation
model for the learning data. For the inter-arrival time model, warning rate I is calculated directly after the Grouping step (the
second step of the inter-arrival time model construction). Warning II is calculated after completing the Finding boundaries step.
In these cases we find best fitting boundaries without any specific assumption on their distribution. Warning rate III is calculated
after completing the Finding boundaries step with Gaussian distribution assumption. For the correlation model, warning rate
(Corr.) is calculated after finishing all steps of (correlation) modeling and used to select useful pairs.

The flows are listed in a descending order of its size (number of events). With this specific dataset, we choose to adopt the
specialized estimation of inter-arrival time group boundaries when the number of observations is less 50 in the first methodology
(percentile) and when the number of observations is less 5 in the second methodology (Gaussian).

It is worth noticing that the inter-arrival time model produces high amount of (false) warnings in either methodologies
when the number of events is too small (less than 8330). The specialized estimation of boundaries for groups with too few
observations is no longer effective when most of the groups in the same flow are too small.

Table 4: Overview of datasets and learning results.
RTU IOA # Events Used in ∆ Warning Rate I Warning Rate II Warning Rate III Paired IOA Used in Corr. Warning Rate (Corr.)

RTU A 3019 381038 Y 0.0003 0.026 0.46 A3010 Y 0.422
3014 347000 Y 0 0.020 0.59 A3013 N 2.578
3013 346959 Y 0.0003 0.022 0.52 A3014 N 2.578
3012 341235 Y 0.0003 0.023 0.46 A3013 N 2.439
3020 328329 Y 0.0003 0.021 0.49 A3010 Y 0.003
3011 311823 N 0.0003 0.025 0.52 A3015 N 1.761
3015 311087 N 0 0.024 0.55 A3011 N 1.761
3017 252486 N 0.0003 0.025 0.41 A3016 Y 0.211
3018 243580 N 0.0057 0.026 0.85 A3015 Y 1.772
3010 204059 N 0.0044 0.026 0.28 A3019 Y 0.422
3021 202539 N 0 0.027 0.50 B3006 Y 0.156
3016 198924 N 0 0.025 0.40 A3017 Y 0.211
3005 192750 N 0.0026 0.025 0.54 A3002 N 1.728
3004 128184 N 0.0062 0.033 0.38 A3009 Y 0.350
3007 128166 N 0 0.020 0.25 A3010 Y 0.617
3002 122920 N 0.0016 0.024 0.57 A3005 N 1.728
3008 111891 N 0 0.017 0.23 A3003 Y 0.594
3003 111562 N 0.0009 0.024 0.25 A3008 Y 0.594
3009 82339 N 0.0073 0.035 0.38 A3004 Y 0.350

RTU B 3019 16448 Y 0.10 14.88 0.54 B3016 Y 0.850
3016 16276 Y 0.10 14.86 0.46 B3019 Y 0.850
3006 15706 Y 0.08 0.22 1.48 B3019 N 1.144
3009 8330 N 0.16 0.16 0.23 B3002 N 1.622
3002 8278 N 0.13 1.96 4.42 B3009 N 1.622
3004 6421 N 0.20 2.85 6.17 B3011 Y 0.067
3012 6011 N 0.13 2.23 7.32 B3005 Y 0.228
3011 5858 N 0.15 2.36 8.04 B3005 Y 0.356
3018 5657 N 0.16 11.47 0.69 B3009 Y 0.156
3014 4936 N 0.12 2.90 9.70 B3013 Y 0.111
3008 4923 N 0.08 3.64 10.97 B3014 Y 0.172
3005 4157 N 0.07 7.22 11.47 B3011 Y 0.356
3013 4138 N 0.05 4.18 13.03 B3014 Y 0.111
3015 2576 N 0.70 1.86 5.09 A3021 Y 0.033

B warning rates over the testing period

Table 5 presents the warning rates generated by the inter-arrival time model and the correlation model for the testing period
from the original traffic. Corr. Warning Rate I is calculated in the original testing period till 41591 minutes. Corr. Warning
Rate II is calculated in the testing period before 39500 minutes. ∆ Warning Rate is calculated in the original testing period as
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well. Most of the flows have warning rates that are consistent with the results in Table 4. This shows the stability of the used
timing characteristics.

Table 5: The plain warning rates for the inter-arrival time model and the correlation model in the test phase.
RTU IOA Used in ∆ ∆ Warning Rate Paired IOA Used in Corr. Corr. Warning Rate I Corr. Warning Rate II

RTU A 3019 Y 0.002 A3010 Y 0.725 0.363
3014 Y 0.012 A3013 N 4.849 4.910
3013 Y 0.029 A3014 N 4.849 4.910
3012 Y 0.043 A3013 N 4.565 4.519
3020 Y 0.001 A3010 Y 7.503 0.345
3011 N 0.025 A3015 N 0.886 0.924
3015 N 0.006 A3011 N 0.886 0.924
3017 N 0.007 A3016 Y 0.682 0.657
3018 N 0.154 A3015 Y 0.026 3.434
3010 N 0.003 A3019 Y 0.752 0.363
3021 N 0.001 B3006 Y 0.144 0.156
3016 N 0.000 A3017 Y 0.682 0.657
3005 N 0.015 A3002 N 3.090 3.117
3004 N 0.021 A3009 Y 0.271 0.262
3007 N 0.003 A3010 Y 0.674 0.708
3002 N 0.009 A3005 N 3.090 3.117
3008 N 0.004 A3003 Y 0.606 0.625
3003 N 0.002 A3008 Y 0.606 0.625
3009 N 0.027 A3004 Y 0.271 0.262

RTU B 3019 Y 0.682 B3016 Y 1.441 1.324
3016 Y 0.597 B3019 Y 1.441 1.324
3006 Y 1.252 B3019 N 2.039 1.779
3009 N 1.816 B3002 N 1.246 1.256
3002 N 7.473 B3009 N 1.246 1.256
3004 N 11.398 B3011 Y 0.013 0.014
3012 N 11.909 B3005 Y 0.322 0.271
3011 N 12.716 B3005 Y 0.568 0.520
3018 N 5.463 B3009 Y 0.102 0.106
3014 N 16.947 B3013 Y 0.424 0.400
3008 N 16.188 B3014 Y 0.411 0.400
3005 N 23.503 B3011 Y 0.568 0.520
3013 N 22.965 B3014 Y 0.424 0.400
3015 N 21.467 A3021 Y 0.008 0.009
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