
An Abstraction-Refinement Approach to Formal
Verification of Tree Ensembles

John Törnblom and Simin Nadjm-Tehrani

Dept. of Computer and Information Science
Linköping University, Linköping, Sweden

{john.tornblom,simin.nadjm-tehrani}@liu.se

Abstract. Recent advances in machine learning are now being consid-
ered for integration in safety-critical systems such as vehicles, medical
equipment and critical infrastructure. However, organizations in these
domains are currently unable to provide convincing arguments that sys-
tems integrating machine learning technologies are safe to operate in
their intended environments.
In this paper, we present a formal verification method for tree ensembles
that leverage an abstraction-refinement approach to counteract combi-
natorial explosion. We implemented the method as an extension to a
tool named VoTE, and demonstrate its applicability by verifying the ro-
bustness against perturbations in random forests and gradient boosting
machines in two case studies. Our abstraction-refinement based exten-
sion to VoTE improves the performance by several orders of magnitude,
scaling to tree ensembles with up to 50 trees with depth 10, trained on
high-dimensional data.

Keywords: Formal verification · Decision trees · Tree ensembles

1 Introduction

Machine learning technologies have enabled great progress in many domains in
recent years, e.g. computer vision, anomaly detection, and automatic control.
Manufactures of safety-critical systems such as vehicles, medical equipment and
critical infrastructure are now considering integrating these advances in their
products. However, safety-critical systems are often subject to strict regulations,
and as such, require convincing arguments that the systems are safe to operate
in their intended environments. Current industry standards often rely on soft-
ware testing and human experts capable of identifying circumstance under which
the software should (not) be tested. Unfortunately, these methods are often un-
suitable when machine learning technologies have been used to develop software
artifacts subject to verification.

Complementing software testing that relies on human experts who compre-
hend the internal structure of the software under test, formal verification tech-
niques offer additional evidence for correctness. Most research is so far focused
on formally verifying neural networks (see e.g. the survey by Liu et al. [9]), but



2 J. Törnblom and S. Nadjm-Tehrani

there are other learning models that may be more appropriate when verifiability
is important e.g. random forests [1], and gradient boosting machines [6].

Recent work by Törnblom and Nadjm-Tehrani [13] demonstrates that for-
mal verification of tree ensembles trained on low-dimensional data is practical.
However, the proposed method struggles with combinatorial explosion when tree
ensembles are trained on high-dimensional data. In this paper, we address these
shortcomings by extending that work with an abstraction-refinement approach
that counteracts combinatorial explosion, and thus enables formal verification
of tree ensembles trained on high-dimensional data. The contributions of this
paper are as follows.

– A formal abstraction-refinement based verification method tailored specifi-
cally for tree-based ensembles.

– A realization1 of the method, implemented as an extension to the toolsuite
VoTE [13].

– Application of the method in two case-studies from current literature.

The rest of this paper is structured as follows. Section 2 presents a background
on tree-based ensembles and the toolsuite VoTE which our implementation is
based upon. Section 3 presents our abstraction-refinement technique, and how
we realized it in VoTE. Section 4 presents applications of the method on two case
studies; a collision detection problem, and a digit recognition problem. Section 5
discusses related works on verification of tree-based ensembles. Finally, Sec. 6
concludes the paper and summarizes the lessons learned.

2 Background

In this section, we present the required background on tree-based ensembles
and the toolsuite VoTE. We also provide a definition of the classifier robustness
property which we will verify in case studies in Sec. 4.

2.1 Decision Trees

In machine learning, decision trees are used as predictive models to capture
statistical properties of a system of interest.

Definition 1 (Decision Tree). A decision tree implements a prediction func-
tion t : Xn → Rm that maps disjoint sets of points Xi ⊂ Xn to a single output
point ȳi ∈ Rm, i.e.

t(x̄) =


(y1,1, . . . , y1,m) x̄ ∈ X1

...

(yk,1, . . . , yk,m) x̄ ∈ Xk,

(1)

where k is the number of disjoint sets and Xn =
k⋃

i=1

Xi.

1 Published at https://github.com/john-tornblom/VoTE/releases/tag/v0.2.1



An Abstraction-Refinement Approach to Verification of Tree Ensembles 3

The n-dimensional input domain Xn includes elements x̄ as tuples in which
each element xi captures some feature of the system of interest as an input
variable. Each internal node in the tree is associated with a decision function
that separates points in the input space from each other, and the leaves define
output values. The tree structure is evaluated in a top-down manner, where
decision functions determine which path to take towards the leaves. When a leaf
is hit, the output ȳ ∈ Rm associated with the leaf is emitted.

In general, decision functions are defined by non-linear combinations of sev-
eral input variables at each internal node. In this paper, we only consider binary
trees with linear decision functions with one input variable, which Irsoy et al.
call univariate hard decision trees [7]. Although it has been demonstrated that
non-linear [7] and multivariate decision trees [14] can be useful, state-of-the-art
implementations of tree-based ensembles typically use univariate hard decision
trees, e.g. scikit-learn [10] and CatBoost [11].

2.2 Random Forests

Decision trees are known to suffer from a phenomenon called overfitting. Models
suffering from this phenomenon can be fitted so tightly to their training data
that their performance on unseen data is reduced the more you train them. To
counteract this issue with decision trees, Breiman [1] proposes random forests.

Definition 2 (Random Forest). A random forest f : Xn → Rm is an ensem-
ble of B decision trees that produces outputs by averaging the values emitted by
each individual tree, i.e.

f(x̄) =
1

B

B∑
b=1

tb(x̄), (2)

where tb is the b-th tree in the ensemble.

To reduce correlation between trees, each tree is trained on a random subset
of the training data, using potentially overlapping random subsets of the input
variables.

2.3 Gradient Boosting Machines

Similarly, Freidman [6] introduces a machine learning model called gradient
boosting machine that uses several decision trees to implement a prediction
function. Unlike random forests, these trees are trained in a sequential man-
ner. Each consecutive tree compensates for errors made by previous trees by
estimating the gradient of errors (using gradient decent, hence the name). In
a learning context, this is conceptually very different from random forests, but
during prediction, these two models have many things in common.

Definition 3 (Gradient Boosting Machine). A gradient boosting machine
f : Xn → Rm is an ensemble of B additive decision trees, i.e.

f(x̄) =

B∑
b=1

tb(x̄), (3)



4 J. Törnblom and S. Nadjm-Tehrani

where tb is the b-th tree in the ensemble.

2.4 Classifiers

Decision trees and tree ensembles may be used as classifiers. A classifier is a
function that categorizes samples from an input domain into one or more classes
and assigns each sample a label unique to its class. In this paper, we only consider
functions that map each point from an input domain to exactly one class.

Definition 4 (Classifier). Let f(x̄) = (y1, . . . , ym) represent a model trained
to predict the probability yi associated with a class i within disjoint regions in
the input domain, where m is the number of classes. A classifier fc(x̄) may then
be defined as

fc(x̄) = argmax
i

yi. (4)

A random forest typically infers probabilities by capturing the number of times
a particular class has been observed within some hyperrectangle in the input do-
main of a tree during training. Training a gradient boosting machine to predict
class membership probabilities is somewhat different, and depends on the charac-
teristics of the used learning algorithm, often involving post-processing the sum
of all trees. For example, when training multiclass classifiers in CatBoost [11],
individual trees emit values from a logarithmic domain that are summed up, and
finally transformed and normalized into probabilities using the softmax function,
i.e.

softmax(y1, . . . , ym) =
(ey1 , . . . , eym)

m∑
i=1

yi

. (5)

2.5 Classifier Robustness

Bruneau et al. [2] describe robustness as the ability of a system of interest to
withstand a given level of stress without suffering degradation or loss of function.
In the context of machine learning, such a description includes a classifier’s ability
to maintain decisiveness in its predictions despite noisy or adversarial input.
Formally, such an equivalence relationship between input and output may be
defined as follows.

Definition 5 (Robustness against Perturbations). Let fc : Xn → L be
the classifier subject to verification, Xl ⊂ Xn a set of samples with label l ∈ L
where robustness against perturbations is desirable, ε ∈ R≥0 a robustness margin,
and ∆ = {δ ∈ R : −ε < δ < ε} perturbations. We denote by δ̄ a tuple of
perturbations, i.e. an n-tuple of elements drawn from ∆. The classifier is robust
against perturbations with respect to Xl and ∆ iff

∀x̄ ∈ Xl, ∀δ̄ ∈ ∆n, fc(x̄) = fc(x̄+ δ̄) = l. (6)

Note that this definition does not capture all possible input perturbations. De-
pending on the application, other equivalence relationships such as axial rota-
tions may also be of interest, but are out of scope for this paper.



An Abstraction-Refinement Approach to Verification of Tree Ensembles 5

2.6 Verifier of Tree Ensembles

VoTE (Verifier of Tree Ensembles) [13] is a toolsuite for formally verifying that
tree ensembles comply with requirements. The toolsuite implements two tech-
niques, one approximate but conservative technique that bounds the output of
a tree ensemble, and one precise and exhaustive technique that computes and
enumerates equivalence classes in a tree ensemble, i.e. sets of points in the input
domain that yield the same output tuple. The approximate technique has been
used to verify e.g. that probabilities computed in a classifier are in the range
[0, 1], and the precise technique can be used to verify robustness.

As shown in Fig. 1, the toolsuite consists of two components, VoTE Core and
VoTE Property Checker. VoTE Core is instantiated from the ensemble subject
to verification, f : Xn → Rm. It takes as input a hyperrectangle defining Xn,
and emits all equivalence classes in f , i.e. sets of points in the input space that
yield the same output. These equivalence classes are then checked for compliance
against a property P by a VoTE Property Checker.

...

Tree	1
Refinery

Tree	B
Refinery

Initialize

FinalizeVoTE	Property
Checker

VoTE	CoreInput	Domain
Definition

(Xn)

Pass/Fail

Property
(ℙ)

Fig. 1. The design of VoTE.

3 Abstractions and Refinements

In this section, we present our abstraction-refinement based verification approach
that combines the two verification techniques mentioned in Sec. 2.6. The basic
idea is to abstract multiple input-output mappings of a system subject to verifi-
cation using the approximate technique, and then iteratively refine them using
the precise technique.

3.1 Terminology

Requirements on systems considered in this paper may be expressed in terms of
input-output mappings, expressions which we call mapping specifications.

Definition 6 (Mapping Specification). Let Xn be the n-dimensional input
domain of a system subject to specification, and Rm its m-dimensional output
range. A mapping specification P is a set of pairs (x̄, ȳ) where x̄ ∈ Xn and
ȳ ∈ Rm, that specifies the expected input-output mappings of the system. More
specifically, we expect that any implementation of the system maps x̄ to ȳ.



6 J. Törnblom and S. Nadjm-Tehrani

Verification of software with respect to a mapping specification may be carried
out by means of exhaustive testing if the specification has a small enough cardi-
nality. For large specifications, abstraction techniques may be used. Generally,
an abstraction is a description that omits information that is irrelevant to the
problem at hand. For example, classifier requirements are often only concerned
with the most probable class in a prediction, in which case numerical proba-
bilities and the order of less probable classes are irrelevant. To capture several
input-output mappings with a single data structure, we use abstract mappings.

Definition 7 (Abstract Mapping). An abstract mapping of a function f :
Xn → Rm is a pair of sets (Xi, Ya) where Xi ⊆ Xn denotes a precise input
region, and Ya ⊆ Rm is a conservative approximation of the output of f with
respect to Xi, i.e. Ya ⊇ {f(x̄) : x̄ ∈ Xi}.

Our goal is to systematically construct abstract mappings from an implementa-
tion of a system and then reason about the implementation’s compliance with a
mapping specification using a mapping checker.

Definition 8 (Mapping Checker). Let P be a mapping specification, (Xi, Ya)
an abstract mapping of the tree ensemble f subject to verification, such that
Xi ⊆ {x̄ : (x̄, ȳ) ∈ P}, and Ma = Xi × Ya. A mapping checker C checks the
correctness of f with respect to P using Ma as follows:

C(Ma) =


Pass Ma ⊆ P
Fail Ma * P ∧ Ya ∩ {ȳ : (x̄, ȳ) ∈ P} = ∅
Unsure otherwise.

(7)

A mapping checker is unsure whenever an abstract mapping used together with
the function provides an output set which is neither compliant with P, nor falls
completely outside P. In that case, we call an abstraction inconclusive whenever
the checker returns “Unsure”. The abstract mapping must then be refined (as
described in Sec. 3.2) to determine compliance with the mapping specification.

Example 1 (Robustness Checker). Let f : Xn → Rm be a tree ensemble trained
to predict probabilities associated with a classifier that shall assign the label l to
samples in a set Xl, and Ma an abstract mapping of f according to Definition 8.
A mapping checker for this verification problem may then be implemented as

C(Ma) =


Pass {l} = La

Fail l 6∈ La

Unsure otherwise,

(8)

where La = {argmax ȳ : (x̄, ȳ) ∈Ma}.

3.2 Abstraction-Refinement Loop

Our formal verification approach may be described as an iterative process as
illustrated by Fig. 2. Starting with an initialization step, an initial input region



An Abstraction-Refinement Approach to Verification of Tree Ensembles 7

capturing the entire input domain is created. Next follows an abstraction step
that, given an input region Xi, produces an output approximation Ya from a
set of trees T , thus forming an abstract mapping (Xi, Ya). Next, the abstract
mapping is evaluated by a mapping checker. If the abstract mapping is conclu-
sive, the process is terminated and the final outcome is reported, i.e. “Pass” or
“Fail”.

If the abstract mapping is inconclusive, a refinement step removes an arbi-
trary tree t from T . The input region Xi is then split into k disjoint subsets
Xi1 , . . . , Xik according to the decision functions in t, where k is the number of
leaves in t. The succeeding iteration then produces abstract mappings from these
subsets, i.e. (Xi1 , Ya1

), . . . , (Xik , Yak
), which again are evaluated by the mapping

checker. When T = ∅, the abstraction-refinement loop is identical to the precise
technique mentioned in Sec. 2.6, and all abstract mappings capture exactly one
output tuple each (thus conclusive).

yes

no

Conclusive?

Xi

Refining

(Xi,	Ya)AbstractingXnStarting Terminating

Fig. 2. Flowchart of our abstraction-refinement loop.

3.3 Implementation

We realize the abstraction-refinement loop in the toolsuite VoTE by extend-
ing its previous pipeline architecture with alternating abstraction and refining
components, as illustrated by Fig. 3.

The first processing element in the pipeline constructs and initializes a hy-
perrectangle that captures the entire input domain. The final processing element
executes a post-processing algorithm that is specific to a particular model. In
the case of a random forest for example, the post-processing algorithm divides
the sum of all tree outputs with the number of trees in the random forest.

In between, there is an alternating sequence of abstraction and refinery el-
ements. An abstraction element takes as input a hyperrectangle capturing Xi,
and computes a hyperrectangle Ya (using the approximate technique mentioned
in Sec. 2.6) that captures all values from all possible path combinations in a
set of trees. The first abstraction element in the pipeline contains B − 1 trees,
while the succeeding one contains B − 2 trees, and so on. If the abstraction
(Xi, Ya) is conclusive, no further refinement is necessary, and the outcome from
the mapping checker is reported. If the abstraction is inconclusive, Xi is split
into smaller input hyperrectangles by the succeeding refinery, and each new input
hyperrectangle is transmitted to the succeeding abstraction element.



8 J. Törnblom and S. Nadjm-Tehrani

Initialize

Tree	2	→	B
Abstraction

Tree	2
Refinery ...

Finalize

VoTE	Core

Tree	3	→	B
Abstraction

Tree	1
Refinery

Input	Domain	(Xn)

Tree	B
Refinery

VoTE	Property
Checker

PASS/FAIL

Fig. 3. Design of the abstraction-refinement extension to VoTE.

4 Case Studies

In this section, we evaluate our abstraction-refinement approach by verifying
the robustness property in two case studies. Each case study defines a training
set and a test set, and we used scikit-learn [10] to train random forests, and
CatBoost [11] to train gradient boosting machines. Experiments were conducted
on a machine with an Intel Core i5 2500K CPU and 16GB RAM. We also used
a GeForce GTX 1050 GPU to speed up training of gradient boosting machines.
For both case studies, we compare the outcome of the evaluation with an earlier
method [13] as a baseline (VoTE without the abstraction-refinement loop).

4.1 Vehicle Collision Detection

In this case study, we verified tree ensembles trained to detect collisions be-
tween two moving vehicles traveling along curved trajectories. We used the same
dataset used in an earlier study [13], which contains 30,000 training samples and
3,000 test samples generated by a simulation tool from Ehlers [4]. All samples
are given in normalized form (position, speed, and direction are in the range
[0, 1], and rotation speed in the range [−1, 1]).

To keep comparability with the baseline, we defined input regions surround-
ing each sample in the test set with the robustness margin ε = 0.05, which
amounts to a 5% change since the data is normalized. Table 1 lists random
forests (RF) and gradient boosting machines (GB) included in the experiment
with their maximum tree depth d, number of trees B, accuracy on the test set
(Accuracy), the percentage of samples from the test set where there were no
misclassifications within the robustness region (Robustness), the elapsed time
during verification (Time), and the elapsed time when using the baseline (Base-
line).



An Abstraction-Refinement Approach to Verification of Tree Ensembles 9

Table 1. Performance impact of our abstraction-refinement approach in the vehicle
collision detection case study.

Parameters Accuracy (%) Robustness (%) Time (s) Baseline (s)

d B GB RF GB RF GB RF GB RF

5 20 93.4 85.8 44.5 65.6 1 1 1 2
5 25 93.8 85.7 40.4 65.5 1 1 3 4
10 20 95.5 90.4 34.4 48.9 1 1 23 56
10 25 95.6 90.0 34.0 50.3 1 1 64 285
15 20 95.6 93.0 34.0 34.1 2 1 213 271
15 25 96.0 92.9 34.0 35.1 5 2 576 1637

When the tree depth was increased, accuracy increased, but robustness de-
creased. This suggests that the models were over-fitted with noiseless examples
during training, and thus adding noisy examples to the training set may improve
robustness. Compared to the baseline setup, our approach is several orders of
magnitude faster.

4.2 Digit Recognition

The MNIST dataset [8] is a collection of hand-written digits commonly used to
evaluate machine learning algorithms. The dataset contains 70,000 gray scale
images with a resolution of 28x28 pixels at 8bpp. Each image is encoded as a
tuple of 784 pixels, and the dataset was randomized and split into two subsets;
a 85% training set, and a 15% test set.

We defined input regions surrounding each sample in the test set with the
robustness margin ε = 1, which amounts to a 0.5% lightning change per pixel
in a 8bpp gray-scaled image. Due to scalability issues with the baseline setup,
earlier work [13] had reduced the complexity of the high-dimensional problem
by only considering all possible perturbations within a sliding window of 5x5
pixels. We apply the same complexity reduction technique in this case study to
obtain comparable results.

Table 2 lists random forests (RF) and gradient boosting machines (GB) in-
cluded in the experiment with their maximum tree depth d, number of trees
B, accuracy of the test set (Accuracy), the percentage of samples from the test
set where there were no misclassifications within the robustness region (Robust-
ness), the elapsed time during verification (Time), and the elapsed time in our
baseline setup (Baseline).

Our abstraction-refinement approach was particularly effective on random
forests, demonstrating a speedup by several orders of magnitude. The baseline
setup was unable to compute the robustness of large random forests within
a reasonable amount of time, so we aborted long-running experiments after 7
hours (denoted by “-” entries in the table). With gradient boosting machines,
the abstraction-refinement approach was consistently faster than the baseline
setup, demonstrating speedup factors between 1.4–4.9 that increased with the
size of the tree ensembles.



10 J. Törnblom and S. Nadjm-Tehrani

Table 2. Performance impact of our abstraction-refinement approach in the digit recog-
nition case study where perturbations across a sliding window were considered.

Parameters Accuracy (%) Robustness (%) Time (s) Baseline (s)

d B GB RF GB RF GB RF GB RF

5 25 92.5 84.5 48.2 43.0 58 46 66 236
5 50 94.2 86.1 60.2 50.2 90 91 122 21041
5 75 94.4 85.9 60.8 54.7 127 137 191 -
10 25 94.7 94.2 66.0 74.8 63 55 107 1118
10 50 95.7 94.7 71.0 80.8 105 88 287 -
10 75 95.9 94.6 75.1 82.2 183 141 689 -

To explore the limitations of our approach, we reran the experiments without
the baseline setup, and considered perturbations across the entire input domain
(instead of sliding windows of 5x5 pixels). Table 3 lists the results in the same
format as before.

Table 3. Accuracy, robustness, and elapsed verification time when using the
abstraction-refinement approach in the digit recognition case study and considering
perturbations across the entire input domain.

Parameters Accuracy (%) Robustness (%) Time (s)

d B GB RF GB RF GB RF

5 25 92.5 84.5 8.5 13.6 70 7
5 50 94.2 86.1 12.1 14.2 316 851
5 75 94.4 85.9 9.7 - 13239 -
10 25 94.7 94.2 16.1 25.7 293 12
10 50 95.7 94.7 16.0 31.4 23292 7636
10 75 95.9 94.6 - - - -

We note that the robustness of the learned system with respect to the larger
set of possible perturbations is much lower (between 8–31%), which is some-
what expected. What is positive in the context is the fact that performing such
analyses is at all possible considering the large search space (2784 possible per-
turbations).

During these experiments, we noticed that some images are harder to verify
than others. In one of the more time consuming experiments, a single image
accounted for 34% of the elapsed time. This suggests that evaluations of meth-
ods that verify robustness against perturbations need a significant amount of
test samples to reveal the expected performance when collecting evidence for
industrial-sized safety arguments.



An Abstraction-Refinement Approach to Verification of Tree Ensembles 11

5 Related Works

As mentioned earlier, this work is related to the work by Törnblom and Nadjm-
Tehrani [13]. Specifically, in this paper we extend the tool VoTE with an abstraction-
refinement scheme, and we use results from that paper as baselines in our eval-
uations.

Chen et al. [3] study the problem of training tree-based ensembles that are
robust against adversarial attacks, and propose a technique to address the issue.
They evaluate their technique by quantifying robustness against perturbations
by means of testing, and demonstrate that their technique significantly improves
robustness. In this paper, we take a formal approach that aims for a conclusive
outcome compared to informal testing.

Recently, several researchers have pursued a formal approach to the verifi-
cation of gradient boosting machines. Einziger et al. [5] verify the robustness
of gradient boosting machines using an SMT solver. Similarly, Sato et al. [12]
leverage an SMT solver, but address a regression problem in their case study,
namely gradient boosting machines trained to predict continuous outputs. Due
to significant differences in benchmarks and implementations of tree ensembles,
we leave a systematic comparison between these three approaches for future
works.

6 Conclusions and Future Works

Recent advances in machine learning are now being considered for integration in
safety-critical systems. However, there is currently a lack of verification methods
which yield convincing arguments that such systems are safe enough to operate.

In this paper, we presented an abstraction-refinement based approach to for-
mal verification of tree-based machine learning models. We combined two verifi-
cation techniques from related works [13], a conservative and fast approximation
technique, and a precise and exhaustive technique. We realized the abstraction-
refinement approach as an extension to the earlier toolsuite VoTE, and evaluated
its performance impact on two case studies; a collision detection problem, and
a digit recognition problem. Compared to previous work, our approach demon-
strated speedups by several orders of magnitude.

In case studies addressed by this paper, we verified the robustness property
using incomplete specifications. For example, the dataset in our digit recogni-
tion case study only contains 70,000 images, while the actual number of images
that resemble a digit is enormous. The lack of complete formal specifications in
applications where machine learning is useful is still an open research question,
an issue we intend to address in future works.

As mentioned before, earlier work by Einziger et al. [5] and current work by
Sato et al. [12] suggests that SMT solvers can verify gradient boosting machines.
However, there are significant differences between test benches and implementa-
tions of tree ensembles used in their case studies, thus making a direct compari-
son difficult. Consequently, there is a need for plug-n-play benchmarks that can



12 J. Törnblom and S. Nadjm-Tehrani

point towards fruitful future lines of research. Other potential lines of research
based on this paper include a more strict formalization to enable formulating the
decision procedure with soundness and completeness proofs, and a systematic
analysis of abstraction and refinement criteria, e.g. the order in which to choose
trees in the refinement steps.

Acknowledgements. This work was partially supported by the Wallenberg
AI, Autonomous Systems and Software Program (WASP) funded by the Knut
and Alice Wallenberg Foundation.

References

1. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001)
2. Bruneau, M., Chang, S.E., Eguchi, R.T., Lee, G.C., O’Rourke, T.D., Reinhorn,

A.M., Shinozuka, M., Tierney, K., Wallace, W.A., Von Winterfeldt, D.: A frame-
work to quantitatively assess and enhance the seismic resilience of communities.
Earthquake spectra 19(4), 733–752 (2003)

3. Chen, H., Zhang, H., Boning, D., Hsieh, C.J.: Adversarial defense for tree-based
models. Safe Machine Learning workshop at ICLR (2019)

4. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In:
International Symposium on Automated Technology for Verification and Analysis
(ATVA). Springer (2017)

5. Einziger, G., Goldstein, M., Sa’ar, Y., Segall, I.: Verifying robustness of gradient
boosted models. In: AAAI Conference on Artificial Intelligence (2019)

6. Friedman, J.H.: Greedy function approximation: a gradient boosting machine. An-
nals of statistics pp. 1189–1232 (2001)

7. Irsoy, O., Yildiz, O.T., Alpaydin, E.: Soft decision trees. In: International Confer-
ence on Pattern Recognition (ICPR). IEEE (2012)

8. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

9. Liu, C., Arnon, T., Lazarus, C., Barrett, C., Kochenderfer, M.J.: Algorithms for
verifying deep neural networks. arXiv preprint arXiv:1903.06758 (2019)

10. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine
learning in Python. Journal of machine learning research 12, 2825–2830 (2011)

11. Prokhorenkova, L., Gusev, G., Vorobev, A., Dorogush, A.V., Gulin, A.: Catboost:
unbiased boosting with categorical features. In: Advances in Neural Information
Processing Systems (NIPS) (2018)

12. Sato, N., Kuruma, H., Nakagawa, Y., Ogawa, H.: Formal verification of decision-
tree ensemble model and detection of its violating-input-value ranges. arXiv
preprint arXiv:1904.11753 (2019)

13. Törnblom, J., Nadjm-Tehrani, S.: Formal verification of input-output mappings of
tree ensembles. arXiv preprint arXiv:1905.04194 (2019)

14. Wang, F., Wang, Q., Nie, F., Yu, W., Wang, R.: Efficient tree classifiers for large
scale datasets. Neurocomputing 284 (2018)


