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Abstract. Microarchitectural attacks such as Meltdown and Spectre
have attracted much attention recently. In this paper we study how effec-
tive these attacks are on the Genode microkernel framework using three
different kernels, Okl4, Nova, and Linux. We try to answer the question
whether the strict process separation provided by Genode combined with
security-oriented kernels such as Okl4 and Nova can mitigate microar-
chitectural attacks. We evaluate the attack effectiveness by measuring
the throughput of data transfer that violates the security properties of
the system. Our results show that the underlying side-channel attack
Flush+Reload used in both Meltdown and Spectre, is effective on all in-
vestigated platforms. We were also able to achieve high throughput using
the Spectre attack, but we were not able to show any effective Meltdown
attack on Okl4 or Nova.
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1 Introduction

It used to be the case that general-purpose operating systems were mostly found
in desktop computers and servers. However, as IoT devices are becoming in-
creasingly more sophisticated, they tend more and more to require a powerful
operating system such as Linux, since otherwise all basic services must be im-
plemented and maintained by the device developers. At the same time, security
has become a prime concern both in IoT and in the cloud domain. This is driven
both by increasing regulatory demands as well as end-user expectations in this
regard. Putting these two trends together we see that operating system security
is now more important than ever.

The principle of least privilege is a fundamental pillar in security engineer-
ing and dictates that any entity should only have access to the information
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and resources that it needs to fulfil its purpose. In the context of operating
systems, this principle supports the use of microkernels, or microvisors (i.e.,
minimal hypervisors operating on the same principle). There are many variants
of these, but the basic idea is to have as little of the operating system func-
tionalities implemented in the kernel/hypervisor itself. Services such as process
and memory management require the CPU to operate in privileged mode and
are therefore part of most microkernels, whereas much of the filesystems and
many device drivers can be implemented in user mode (given the right system
call interfaces). There are today a number of operating system components and
framework developed with security in mind. A prominent example is Genode
which is a framework for building secure OSs using a microkernel and provides
strong isolation guarantees and resource budgeting for individual components.
The basic idea is that Genode enforces a recursive and capability based struc-
ture, such that components have exact capabilites and may grant any subset of
those capabilites to its children. Genode has been developed to run on multiple
kernels, such as Nova, Okl4 and Linux.

The security property of such frameworks which guarantees process isolation
hinges on basic assumptions on the underlying hardware that have in recent
years been shown not to hold. Attacks such as Meltdown and Spectre and later
variants thereof rely on CPU optimisations where the processor performs activ-
ities that might be useful in future computations, but which are supposed to
be invisible to the processes if they are not used. However, by using some side-
channel attack (e.g., involving the cache), the microarchitectural state of these
tentative computations can leak to the outside.

It would be naive to assume that a microkernel architecture necessarily pro-
tects against microarchitectural attacks. On the other hand, strong isolation
properties could potentially mitigate some of the proposed attacks by making
some or other step in the attack impossible or less powerful. It has been sug-
gested4 that the impact should be smaller on Genode than on standard OSs, but
so far, there has not been any proper scientific studies on this topic. Schmidt
et al. [13] demonstrated ways to circumvent security policies for Genode’s IPC
and implemented a covert channel which abused a file system cache. However,
to the best of our knowledge, there has been no previous work demonstrating a
violation of Genode’s memory separation.

In this paper we ask the question of whether and if so to what extent a
microkernel framework together with state-of-the art secure microkernels such
as Okl4 and Nova protects against microarchitectural attacks such as Spectre
and Meltdown. Building on previous work (often only provided in blogs and
discussion forums) we describe how these attacks can be implemented on three
different kernels (Okl4, Nova and Linux), all on top of the Genode framework.
Since these attacks are inherently based on time-measurements, we discuss how
to tune the mechanisms to achieve the highest possible throughput, and also
what other measures must be taken to make the attacks work. We demonstrate

4 N. Feske. Side-channel attacks(Meltdown, Spectre). 2018. url: https : / /

sourceforge.net/p/genode/mailman/message/36178974/ (visited on 01/16/2019).
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that the underlying side-channel attack (Flush+Reload) of both Meltdown and
Spectre works well on all three platforms and that same holds for the Spec-
tre V1 attack. For Meltdown on the other hand, while running without prob-
lems on Genode+Linux, we have not been able to show a successful attack on
Genode+Okl4 or Genode+Nova. We discuss the reasons for this and potential
implications.

The contributions of the paper can be summarised as follows.

– Demonstration of how the Flush+Reload side-channel attack and Spectre
V1 attack can be successfully performed on Genode using three different
kernels.

– An experimental evaluation of the throughput of Flush+Reload and Spectre
achieved under different parameter settings.

– Partial results on the effectiveness of the Meltdown attack.

2 Background and Related Work

In this section, we first give a brief introduction to the two main microarchi-
tectural attacks studied in this paper, Meltdown and Spectre, followed by a
description of related work.

2.1 Meltdown and Spectre

Meltdown is a microarchitectural attack which exploits the fact that some mod-
ern CPUs may execute instructions out of order [9]. Specifically, Meltdown can
read memory from an addressable memory space which it should not be able
to read from. Lipp et al. [9] used a Meltdown exploit to read memory from the
kernel and other user processes in Linux. This was possible as the Linux ker-
nel’s memory was mapped into the address space of each user process. Genode’s
founder Feske has stated that some in-kernel data structures in Genode are likely
vulnerable to the Meltdown attack (see footnote 3).

Spectre relies on the fact that some modern CPUs may speculatively execute
instructions [6]. There are different versions of the Spectre attack (e.g., [6, 11]),
we will be looking at Spectre version 1. Spectre version 1 exploits speculative ex-
ecution to bypass boundary checks. An attacker could use this attack to execute
code which bypasses a boundary check and leaks information to the attacker.

Both Meltdown and Spectre rely on an attacker being able to transmit gath-
ered data to and from the cache. Flush+Reload is a Side-Channel Attack (SCA)
which abuses the time difference of fetching uncached and cached data [17]. This
channel can be used in the context of Meltdown and Spectre to first read ker-
nel memory into a cache exploiting their respective CPU optimisations. If the
address which is cached is carefully crafted, the time with which a process can
access this address can be measured to retrieve information.

SCAs extract information from another system or user by abusing some as-
pects of the system which are not supposed to transmit information. A side
channel can also be used as a covert channel, i.e., a channel in which two col-
luding actors communicate via a side channel.
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2.2 Related Work

There has been work on Genode related to security, such as Constable et al. [3]
who worked on extending formal Sel4 verification to Virtual Machine Monitor
(VMM) running on Genode. Other works have focused on using Genode as a
means to achieve a secure OS. Brito et al. [1] used Genode as a secure kernel base
to process images securely on an ARM TrustZone cloud environment. However,
Genode has seen little work related to microarchitectural attacks and side chan-
nels. Schmidt et al. [13] constructed a covert channel in Genode which exploited
a software cache to construct a timing channel. However, to the best knowledge
of the authors, there has been no other work relating to SCAs in Genode.

Side Channels Xiao et al. [16] demonstrate a covert channel using execution time
for write accesses to shared memory pages. They leverage the Copy-On-Write
(COW) technique, which is commonly used for shared memory implementations.
They also demonstrate, using this technique, examples of a covert channel trans-
mitting 50-90 bps for practical applications.

Pessl et al. [12] present a covert cross CPU channel utilising varying access
times of memory banks in DRAM. They demonstrated a channel with a capacity
of 2.1 Mbps with an error probability of 1.8% and across VM channel with a
capacity of 596 kbps with an error probability of 0.4%

Microarchitectural attacks Mcilroy et al. [11] examined the deep seated impli-
cations of how Spectre and incorrect hardware models affect confidentiality-
enforcing programming languages. The authors show that that these confiden-
tiality guarantees are completely compromised by Spectre. Koruyeh et al. [7]
show that the Return Stack Buffer (RSB) could be exploited instead of the
BPU, thus introducing a class of SpectreRSB attacks. Koruyeh et al. were not
successful in demonstrating these attacks on ARM and AMD CPUs. However,
ARM and AMD CPUs also utilise an RSB and should therefore be vulnerable.

There has also been work examining SCAs targeting ARM Trustzone. Lapid
and Wool [8] mounted a side-channel cache attack against the ARM32 AES
implementation used by the Keymaster trustlet. Another work by Bukasa et al.
[2] demonstrate the ineffectiveness of Trustzone to prevent power analysis SCAs.

Microarchitectural attacks are also a quickly progressing field. A recent work
by Schwarz et al. demonstrated the ZombieLoad attack, a new type of microar-
chitectural attack which exploits a fill buffer to read data from other processes
[14]. This fill buffer is a type of load queue which is shared between hyper threads.
This buffer can under certain circumstances trigger a load which has been ini-
tially issued on another core and thereby can leak data from loads issued by
other processes [14].

Security by virtualisation Using a small kernel is not the only way to potentially
enhance the security of a system. Another feasible option is to use different
virtual systems to separate processes. The virtual systems need to be running
on a hypervisor, which may be attacked. Thongthua and Ngamsuriyaroj [15]



Can Microkernels Mitigate Microarchitectural Attacks? 5

discusses some weaknesses they found in popular hypervisor software. However,
the abstraction of virtualisation does not prevent microarchitectural attacks such
as Meltdown or Spectre [9, 6]. Irazoqui et al. [5] recovered an AES key in a cross-
virtual machine setup using a SCA that abused the Last-Level Cache (LLC).
The attack is not dependent on the virtual machine running on the same core
since the LLC cache was used. Virtualisation also adds to overhead by handling
multiple OSs running on the hardware.

3 Methodology Overview

In this section we provide an overview of the methodology used in the paper.
First, we elaborate on the problem statement by asking three questions regard-
ing the feasibility of performing microarchitectural attacks on the Genode frame-
work. We then proceed to explain our choices of platforms (i.e., what kernels we
investigate) and metric (how the attacks have been evaluated).

3.1 Problem Statement

This paper aims to study the impact of microarchitectural attacks on micro-
kernels. In particular, we investigate effectiveness of Meltdown and Spectre on
microkernels. Our investigation can be summarised with the following three re-
search questions.

1. Can Flush+Reload be used to create a covert channel between two processes
in Genode, measured as the throughput of demonstrated channel?

2. Are Remote Procedure Call (RPC) mechanisms in the microkernels Nova
and Okl4 vulnerable to the Spectre Version 1 (Spectre V1) attack, measured
as throughput of demonstrated attack?

3. Can the Meltdown attack be executed on Genode?

We try to answer these questions by implementing these attacks on the Gen-
ode framwork using three different kernels as explained below.

3.2 Choice of Platforms

The overall goal of this paper is to study how well a microkernel architecture
can withstand the new class of microarchitectural attacks such as Meltdown
and Spectre. There is of course a large number of microkernels available and we
have opted to study two of them, Okl4 and Nova. Moreover, we decided to use
the Genode framework as a common base for both these kernels as well as in
combination with Linux. Genode was chosen since it provides the surrounding
services needed to run several different microkernels. Moreover, its strict process
separation, adherence to a minimal kernel and open-source code nature make it
interesting as a basis for secure operating system design.

We chose two microkernels/microvisors Okl4 and Nova that are designed with
security in mind and therefore could potentially provide some protection against
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the studied attacks. We also tried to use the Sel4 microkernel as it has been
formally verified against its specification. Unfortunately, Sel4 on Genode was at
the time of our study not well-supported and we did not manage to perform any
tests using this kernel.

The Nova kernel, which is a microvisor, is a research project aimed at secure
virtualisation. Similar to a microkernel, it provides essential functionality for
virtualisation like communication, scheduling and resource management5.

Okl4 is an open-source microkernel based on the L4 microkernel. It can be
used as a hypervisor or as a real-time OS and has been used practically by
General Dynamics6.

3.3 Measuring attack effectiveness

To measure the channel’s or the attacks’ throughput, a fixed string message m
of length n was transmitted. Throughput T was then calculated as the number
of correctly transmitted bytes per second (Bps) of transmission. This definition
of throughput has been used to measure other microarchitectural attacks [9, 7].
A byte in position i was considered correctly transmitted if the received byte ri
had the same value as the message byte mi. The throughput of the channel, T ,
was calculated as

T =

∑n
i=0 C(mi, ri)

tn
, (1)

where tn is the total execution time in seconds, and C(m, r) = 1 if m = r and 0
otherwise. An array of size 2048 bytes was used to measure throughput. Every
leaked byte was forwarded via serial communication to the measuring system.

Genode’s timer object was used in Nova and Linux to measure the total
execution time, tn, with millisecond accuracy. The timer object was not used
on Okl4; instead, a timer at the measuring system was used to measure tn.
On Okl4, a start-timer command was transmitted via the serial port before
the first transmission byte and an end-timer command after the last byte. The
timer on the measuring system was started and stopped by these commands.
The execution time, tn was transmitted after transmitting all bytes if Genode’s
timer object was used.

4 Attack Implementation

In this section, we first describe how the Flush+Reload channel was imple-
mented, followed by a description of the Meltdown and Spectre implementations.

4.1 Implementing the Flush+Reload Channel

We implemented a Flush+Reload channel on all three platforms. Some adap-
tations were required such as using the rdtsc instruction rather than rdtscp for
time measurements on Nova.
5 NOVA Microhypervisor. url: http://hypervisor.org/ (visited on 03/19/2019).
6 https://gdmissionsystems.com/en/products/secure-mobile/hypervisor
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To setup the Flush+Reload channel, we allocated shared memory to a size of
(256 + 2) ∗ Padding. There were 256 addresses to distinguish addresses as dif-
ferent values. These addresses were offset using a padding to prevent prefetching
between values (another CPU optimisation). Padding was also used at the be-
ginning and at the end of the array to prevent prefetching of shared memory
addresses from accesses outside of the array. By performing memory accesses on
this array at a given location the memory location is cached and therefore this
is indirectly transmitted. The receiver can then measure access times to each
address in the array and conclude which corresponding value was transmitted.

Measuring Cache Hits A threshold was used to decide whether a value was
cached or not cached. This threshold was determined by profiling the time it
took for the CPU to access cached and uncached values [17]. The Level 1 (L1)
cache or LLC was used depending on the attack design. Therefore, two thresholds
were defined. One threshold above the L1 cache and one above the LLC.

We assume a memory model of access times as shown in Figure 1. In this
figure, tLLC is the upper bound for the LLC and tL1 is the upper bound to access
the L1 cache. The thresholds tLLC and tL1 are chosen as the upper bound of
the measurements for the LLC and L1 cache respectively. This choice was made
arbitrarily, with the intent of minimizing false positives while preserving true
positives.

DRAMLLC

tLLC

L1

tL1

Access Time →

Fig. 1: A model of memory access times for different memory levels.

The time of accessing uncached values was measured by first removing the
array from the cache, and then measuring the time for accessing each address. A
similar method was used to measure the timings for the L1 cache. Two processes
were used to measure the access times to the LLC, one process which cached
the values and one process which timed the access time. If the two processes get
scheduled on the same core, the values may be cached in either the L1 cache or
the LLC.

Preventing Data Prefetching If a program accesses some sequential data from
memory, the CPU will prefetch the coming data items to reduce waiting times.
However, since the goal of a Flush+Reload channel is to detect cache hits, this
prefetching interferes with these measurements. By adding space between the
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accessed data items (padding), we can avoid prefecthing. However, too large
padding results in excessive memory footprint and slower performance. There-
fore, we adopt the use of Strided Read Generator (SRG) [10], which effectively
reduces the padding size, while still preventing prefetching. The acces pattern is
then xsi = ai + b mod m, where a ≡ 1 (mod p) for all prime factors p in m.

The SRGs were evaluated for the padding sizes 4096, 2048, 1024, 512, 256
and 128. The limits 4096 and 128 were used as they are the page size and cache
line size on the tested system. Consequently, the CPU does not prefetch for
padding sizes over 4096 bytes and padding below 128 bytes does not guarantee
separation between values.

All SRGs where m = 256, a ∈ [1, 255] and b = 0 were evaluated. The offset
b = 0 was chosen as a constant offset should not affect prefetching and to limit
the number of SRGs to evaluate. Two SRGs are presented, the one with the
best performance in Equation (2) and an arbitrarily chosen worse SRG in Equa-
tion (3). The second is used to illustrate the characteristics of a poor performance
SRG.

xi = 49i + 0 mod 256 (2)

xi = 33i + 0 mod 256 (3)

Reducing Noise To obtain a reliable Flush+Reload channel it may be necessary
to make multiple measurements, as done by others [9, 7]. R different measure-
ments, mij , were taken for any value i with the purpose of increasing the accu-
racy. A cache hit detection function fc was used with a threshold of tc to build a
histogram H of recorded cache hits where each entry hi is the count of detected
cache hits for value i. The estimation v̂ of the transmitted value v was calculated
as v̂ = maxi hi where,

hi =

R∑
j=0

fc(mij)

and,

fc(x) =

{
1 if x < tc

0 otherwise

In addition, synchronising was needed to increase the probability of a successful
transmission. Locking was used in order to synchronise the transmitter with the
receiver.

4.2 Implementing Meltdown

The methodology for Meltdown was based on the proof-of-concept by Lipp et
al. [9]. Specifically, Meltdown required methodologies for recovering from a seg-
mentation fault, identifying a target address, obtaining an observable result via
a Flush+Reload channel and synchronising the transmitter with the receiver.
On the Linux kernel, we disabled the KPTI patch for the attack to work since
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the purpose was not to evaluate whether Linux was vulnerable to the attack,
but to have it as a baseline implementation.

Recovering from Segmentation Fault Since Genode does not provide support
for segmentation fault handlers [4], another method was needed. One possible
method is to start a new child process for each read which leads to a segmentation
fault [9]. This method allows for transmitting a single byte with each started
child. Another method is to use Intel TSX to suppress the fault [9]. Both methods
were evaluated, Intel TSX was chosen due to a more straightforward attack
design and fewer resource requirements. If Intel TSX is used, no inter-process
synchronisation is needed. A process will continue its execution even if non-
accessible memory was accessed during a transaction. The attacker can therefore
run Flush+Reload directly after the Meltdown attack.

Choosing a Target Address Two target addresses were used, the Linux version
banner and a victim process. Previous work has had success with these variants
7 8. Furthermore, they were chosen due to the ease of confirming success using
an existing working attack.

In the first alternative, the attacker targets a location for a version string
defined in the Linux kernel. Confirmation of correct data was done by reading a
file using root privileges.

For the second alternative, a victim process was set up to allocate a secret
array of 2048 bytes. The array was cached cached by the victim. Thereby, the
address and value of the target addresses are known, and the addresses along
with its values are cached.

4.3 Implementing Spectre

The design of the Spectre V1 attack consisted of an overall design based on
previous work 9 10. Specifically methodologies for ensuring speculative execution,
training the branch predictor and increasing accuracy by tuning parameters was
used.

The attack setup consisted of a victim process and an attacker which shared
a common output buffer. The victim was a vulnerable RPC which accessed an
array based on an input index and a bounds check, see Listing 1.1. The attacker
exploits this by issuing Ta−1 training requests to a victim function. After Ta−1
requests the attacker issues a malicious request malicious = target address with
an index targeting an address beyond the bounds of the array. For the attack
to work, the vulnerable RPC needs to be speculatively executed and the branch
predictor needs to be trained.

7 https://github.com/paboldin/meltdown-exploit
8 https://github.com/IAIK/meltdown
9 https://gist.github.com/anonymous/99a72c9c1003f8ae0707b4927ec1bd8a

10 https://github.com/crozone/SpectrePoC
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Listing 1.1: Victim Function which is Vulnerable to Spectre V1

1 void v ict im ( s i z e t idx ) {
2 i f ( idx < a r r a y s i z e ) {
3 int f oo = array [ idx ] ; // May s p e c u l a t i v e l y e x e c u t e
4 do something ( foo ) ; // a r r a y s i z e i s not in cache
5 }
6 }

Ensuring Speculative Execution Speculative execution, according to documents
from Intel, is highly dependant on microarchitectural implementation and may
vary across different processor families. Kocher et al. [6] state that one trigger
for speculative execution is a cache-miss prior to or during branch condition
evaluation. Therefore, the boundary check values needs to be removed from the
cache. This is done with a heuristic flush of the cache by performing a large
amount of memory accesses.

Configuring Variables for Spectre Three parameters are needed to execute the
Spectre attack: number of attacks per measurement Na, the attack period Ta

and the number of memory accesses used to flush the cache Hs. Attacks per
measurement Na and Ta were chosen by testing all integers Na ∈ [1, 10] and
Ta ∈ [2, 10] to find which combination gave the highest throughput in reading
2048 bytes from the vulnerable process. To determine values for Na and Ta, Hs

was initially chosen to 4096 · 32, it was then tested using an exponential sample
between 64 and the size of the CPU’s cache to find a local optimum. It should be
noted that the purpose of these local optimisations is not to achieve an optimum,
but rather to gauge the possible throughput of this attack.

5 Evaluating Attack Effectiveness

In this section we describe the setup and results of evaluating the effectiveness
of the Flush+Reload, Spectre, and Meltdown attacks on the three investigated
platforms.

5.1 Setting up System Under Test

The System Under Test (SUT) is composed of Genode with a microkernel core,
an attack implementation and an output channel. This setup was executed on
an Intel Core i5-7500 CPU.

We used Genode’s build tools and documentation to build our implemen-
tation for each kernel 11. These build tools were available at Genode’s Github
page 12. To run a build, Genode requires an init-component which is assigned all

11 https://genode.org/documentation/developer-resources/index
12 https://github.com/genodelabs/genode/tree/18.11
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system resources. Genode then delegates the task of assigning resources to this
init-component. We build our implementation by assigning an initial resource
budget to our process, thus enabling it to execute, use RPC and allocate mem-
ory. Genode’s build tools will from our configuration create files which are used
to boot the kernel with our implementation. These files can be used by Grub2
to multi-boot the tested SUT.

5.2 Flush+Reload

Since Flush+Reload is a necessary component both in Meltdown and Spectre,
and in itself an interesting subject of study in the context of microkernels we
show some results both on how to tune this channel for maximum throughput
as well as the final performance achieved.

Choosing Cache-Hit Thresholds Table 1 shows the choices of tLLC and tL1 for
each kernel along with a valid interval for the choices. The valid interval describes
the interval in which there are no measurements from the cache level above and
all from the desired one. For example, there are no measurements from LLC
below 73 cycles on Okl4. Thus, the valid interval for tL1 on Okl4 is [56, 72]. The
choice of tLLC and tL1 was chosen as the lowest value in the valid interval.

Kernel Chosen tLLC Valid interval for tLLC Chosen tL1 Valid interval fortL1

Okl4 81 [81, 239] 56 [56, 72]
Nova 80 [80, 219] 42 [42, 64]
Linux 139 [139, 239] 54 [54, 78]

Table 1: The Cache-hit thresholds measured in CPU cycles for each kernel.

Preventing Data Prefetching Figure 2a shows the number of detected cache hits
from the array reads using the SRGs from Equations (2) and (3) and different
sizes of the internal padding. For each padding size the kernels are denoted using
O for Okl4, N for Nova and L for Linux. The SRG 49i mod 256 is preventing
prefetching at the smallest internal padding and thus results in the smallest
memory footprint of the Flush+Reload channel. In Figure 2b, it can also be
seen that the SRG idx = 49i mod 256 results in memory access times of almost
300 CPU cycles which is comparable to DRAM access times. Therefore, the
SRG in Equation (2) and the internal padding of length 256 was used to obtain
further results.

Measuring Throughput Figure 3 shows the throughput of the Flush+Reload
channel in six different configurations. For each kernel the transfer was performed
within a single process as well as between two different processes. On the x-axis
the number of read attempts are shown. Note the logarithmic scale on the x
axis.
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Clearly, the Flush+Reload channel is effective on all three platforms. In four
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cesses on Okl4 and Nova the throughput is less than 100Bps and reduces to
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5.3 Meltdown

We were only able to get Meltdown working on the Genode+Linux platform
(after disabling the KPTI mitigation). The resulting throughput when read 2048
bytes from another process is shown in Figure 4. The result shows a fluctuating
throughput, ranging from 63 to 11070 Bps. This result demonstrates that the
Genode framework in itself does not prevent Meltdown (even if we had to adapt
the attack as described in Section 4.2)
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Fig. 4: Throughput from reading 2048 bytes from another process in Genode
using Meltdown on Genode+Linux.

Also interesting is the fact that we were not able to make this attack successful
on the Genode+Okl4 or Genode+Nova platforms. Genode makes this attack
more difficult to execute by for example not supporting control over which core
a process should execute on. However, the main reason we were not able to
launch the Meltdown attack on Okl4 or Nova is the lack of mappable address
space from another process that can be used in the attack.

5.4 Spectre

We now turn to the Spectre attack. First we show how the parameters were
tuned to optimise throughput and then go on to show the resulting throughput.

Attack period, Ta, and number of attacks per measurement, Na, were tested
for 2 ≤ Ta ≤ 10 and 1 ≤ Na ≤ 10 on Okl4, Nova and Linux. The result from the
tests are shown in Figures 5a to 5c. The results shows that all the kernels have
the highest throughput at Na = 1 and Ta = 3. Furthermore, the throughput
tends to be lower when Na or Ta approaches higher values.

We also performed an experiment where Hs was varied to find the value that
maximised the throughput. The results indicated that the Spectre V1 attack on
Okl4, Nova and Linux had its highest through puts at Hs = 215, 217 and 220

respectively. Note that the difference in Hs varies a factor of 25 between kernels,
thus, choosing a single value for all kernels is likely not suitable.
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The result from trying to read 2048 bytes from an array containing random
values with our Spectre V1 implementation is presented in Table 2. The results
shows the highest throughput for Nova at 1760 Bps.

Kernel Retries Na Ta Hs Throughput (Bps)

Okl4 1 1 3 215 1029
Nova 1 1 3 217 1760
Linux 2 1 3 220 525

Table 2: Result of reading 2048 bytes with Spectre V1 with chosen parameters.

Clearly, the Spectre V1 attack is effective on all three platforms and with
even better performance on the microkernels compared to Linux.

6 Conclusions

In this paper we have examined the vulnerability of microkernels with respect to
the microarchitectural attacks Meltdown and Spectre V1. The targeted micro-
kernels were Okl4, Nova and Linux. These kernels were run within the Genode
OS framework for evaluation. Relating back to the problem formulation in Sec-
tion 3.1 we draw the following conclusions.

– A covert Flush+Reload channel was demonstrated in Genode with a through-
put of 36 Bps on Okl4, 44 Bps on Nova and 13409 Bps on Linux. The large
discrepancy between Linux and microkernels deemed likely to stem from
scheduling differences.

– The investigated microkernels are vulnerable to Spectre V1 and a proof-of-
concept was produced with a throughput 1029 Bps on Okl4, 1760 Bps on
Nova and 525 Bps on Linux.
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– Results regarding microkernels vulnerability to Meltdown are inconclusive.
However, an attack reading the secret of another process in Genode running
on Linux was demonstrated with a throughput of 11070 Bps.

Clearly, microkernels and Genode are not secure by design against microar-
chitectural attacks. Microkernels do have some benefits with regards to mitigat-
ing Meltdown as several kernels do not map kernel space into user space and
are consequently only affected by Meltdown in a limited way. In addition, Gen-
ode does not support for custom segmentation fault handlers. Consequently, the
Meltdown attack requires another recovery tool, one such viable option is Intel
TSX.

One might ask whether these attacks should be dealt with in software at all
or if we should simply wait for chip manufacturers to come up with new chip
designs. Intel and AMD have announced fixes to some of the known attacks, but
at the same time new ones such as Zombieload and Fallout are being discovered.
This does not seem to be a problem that will go away by itself. Moreover,
given the huge amount of vulnerable processors already out there, often running
critical applications, we cannot just sit back and wait. Perhaps future software
systems must fundamentally distrust the hardware on which is running, calling
for a completely new security model.

For future work, it would be interesting to find an appropriate target for the
Meltdown attack against microkernels in Genode and rigorously attack these
targeted addresses. It can also be interesting to pursue another segmentation
fault recovery design; this is interesting as Intel TSX is only present on some
Intel CPUs. With respect to Spectre V1, it may be interesting to target existing
Genode components which expose vulnerable RPCs or implement other Spectre
variants which use different techniques, such as variants 2, 3 or SpectreRSB [6,
7]. Trying these different variants can further establish the scope of Spectre’s
impact on microkernels.
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