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Abstract—Reconfigurable avionics systems can tolerate faults
by moving functionalities from failed components to another
available system component. This paper proposes a distributed
reconfigurable architecture for application migration from failed
modules to working ones. The feasible system reconfiguration
states are determined off-line to provide the expected configura-
tion in foreseen situations. Model Checking is used to determine
feasible configurations evaluating specific temporal properties.
A case study is used to show the application of the presented
approach as a proof of concept.
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I. INTRODUCTION

Reconfiguration of distributed real time embedded systems
consist of changing or modifying subsystems and/or subsystem
configurations in order to better serve a certain purpose [1]. In
an avionics system, mode changes are naturally used to adapt
to changing operational flight conditions. While modes are pre-
determined, their realization can be through reconfigurations.
Reconfiguration can be applied to tolerate faults which could
cause the loss of a certain critical function in response to an
external environmental change or under the request of a system
user or even to a timed event in an application. The survey by
Löfwenmark et al. [2] shows that fault-tolerant architectures
continue to be an important area of research, and combining
fault tolerance with timing guarantees is still unresolved, e.g.
in presence of multicore architectures.

When a system component fails, a reconfigurable avion-
ics platform moves the functionalities, which were allocated
previously in the failed component, into another available
system component. Such a reconfiguration scheme, in addition
to enhancing reliability, can also be beneficial in terms of
evolution capability throughout the aircraft life cycle.

The lifespan of commercial aircraft has been increasing
since the end of the 20th century to the present 21st century [3]
and has now reached stability. Additionally, the Maintenance,
Repair and Overhaul (MRO) market is expected to produce
a strong future demand as world wide military Air Forces
decide to upgrade legacy aircraft rather than procuring new
platforms [4], which gives military fleets an increased service
life. In Brazil, for instance, a recent overhaul has brought a

1Informatics Institute, Federal University of Rio Grande do Sul,
Brazil afontoura at inf.ufrgs.br, fanascimento at
inf.ufrgs.br, epfreitas at inf.ufrgs.br

2Department of Computer and Information Science, Linköping University,
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70s vintage fleet the ability to extend its service life beyond
2020 [5].

Aircraft projects, either new platforms or overhauled, have
increased the development time and thereby the costs sub-
stantially in recent years. Avionics technology obsolescence
occurring earlier than the aircraft airframe lifespan is also a
cause of the MRO market trend. The reconfiguration flexi-
bility can partially alleviate such problems. Early deliveries
with basic capabilities can be performed and more advanced
functionalities can be incorporated into the system by changing
the configuration.

Given the above-described landscape, this work proposes
a distributed reconfigurable architecture in which a global
agent and local agents cooperate to oversee that applications
transition from failed modules to working ones. The feasible
reconfigurations determined off-line are stored in the system
to be used by the agents, which then keep the computers in a
previously defined configuration in a foreseen situation.

The reconfiguration of one subsystem does not affect the
rest of the system in any way. In other words, the original
specified real-time constraints would still be satisfied. The
sequence of necessary steps for the completion of a reconfig-
uration must be atomic, in the sense that they should entirely
succeed or be discarded. In the case where a reconfiguration
is aborted, the avionics system operation must not be affected
in any way. In either case it is important to highlight that we
assume that the failures occur one at a time.

This paper proposes the use of model checking [6] to
determine the feasible reconfigurations, taking into account
all possible sequences of necessary steps. From a specifica-
tion, provided in Architecture Analysis and Design Language
(AADL) [7], the proposed approach generates a network of
automata [8], representing the timing aspects of an avionics
system, in order to perform schedulability analysis of each
possible reconfiguration. This is done by evaluating specific
temporal logic properties on the timed trace of the avionics
system tasks and observing their deadlines. This ensures
predictability of the system after each reconfiguration and
facilitates the airworthiness approval by the certification au-
thorities.

The main contributions of this work are:
• a modeling approach where fault models augmenting

the AADL specifications are combined with the recon-
figuration logic to formally represent fault tolerance by
transitions in a reconfiguration state space;

• a method to evaluate alternative reconfiguration strategies
through model checking, in order to find suitable config-
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urations that satisfy timing requirements and provide the
highest degree of fault tolerance in the considered space.

The structure of this paper is as follows. Section II presents
related work and Section III describes the proposed recon-
figurable system architecture. The proposed reconfiguration
approach is detailed in Section IV and Section V presents
its application in a representative avionics case study and
discusses the obtained results. The conclusions are reported
in Section VI, providing also directions for future work.

II. RELATED WORK

Housseyni et al. [9] propose a multi-agent reconfiguration
approach in a distributed real-time system with energy harvest-
ing constraints. The objective is to optimize global Quality
of Service (QoS) measured in terms of deadline success
ratio, the degree of criticality and the energy harvesting.
Three different strategies are applied for tasks adaptation
depending on the reconfiguration environment and the task
constraints: Decomposition, which decomposes software tasks
and migrates their branches from a faulty processor to a
non-faulty one; degradation, which modifies scheduling mode;
and removal, which deletes branches or tasks. However, the
proposed strategy of decomposing tasks is hard to achieve
due to the high demands from aerospace software certification
processes such as the DO-178C [10], especially in software
with the highest degree of criticality. Moreover, in an avionics
environment, all failure modes are usually identified in the de-
velopment stage and analyzed in the safety assessment process.
Therefore, all possible reconfigurations can be analyzed prior
to the system implementation, making the multi-agent solution
suitable for including fewer local agents as needed. The work
by Housseyni et al. [9] did not address how the reconfiguration
process affects time-critical tasks with hard deadlines as our
approach does.

Cui et al. [11] suggest a decentralized reconfiguration tech-
nique, applying a concept called backward reconfiguration.
A global component is responsible to assess the system
reconfiguration state. The decentralization causes the system
to adapt faster to the identified fault in a certain computer
module or communication bus, but it increases the complexity
of every node in the system. The avionics software develop-
ment process dictates that unnecessary complexity is to be
avoided. Moreover, a local reconfiguration can lead to effects
encountered in heuristic algorithms such as hill climbing [12].
Also, local maxima [12] could mean the system has recovered
from a component fault, but could end up in a failure state if
a less critical node fails, bringing the overall probability of
failure to an undesirable level.

Zhou et al. [13] propose a framework to support to the
reconfiguration of avionic applications that adopt the dis-
tributed Integrated Modular Avionics (IMA) architecture. In
the proposed framework, an action model conforming to the
Behavioral Annex of AADL [7] is built to represent the
sequence of all the steps required to perform a given applica-
tion reconfiguration, aiming at fault tolerance. This behavioral
model in AADL is then used to compute the total execution

time required for the completion of the reconfiguration, as
a sum of the execution times required for each step. The
work does not include further steps linking this computed total
time to application constraints or model checking. In addition,
the model assumes that all steps are performed in sequence,
when in fact, some steps can be executed in parallel. In our
proposed approach, model checking is used to determine the
feasible reconfigurations, considering all possible sequences
of necessary steps.

Fohler et al. [14] describe a similar approach for a recon-
figurable avionics system. Their work also includes more than
one agent: a global, called Global Resource Manager (GRM),
and a local, called local resource manager (LRM). The authors
provide an independent local reconfiguration with no changes
in other system units whatsoever. However, the paper does not
include an analysis showing that erroneous outcomes of any
reconfiguration attempt will not affect system timing.

Atitallah et al. [15] propose a converged unified environ-
ment for the simulation and test domains as well as the
verification and validation of an avionics system focusing on
reconfigurable architectures. Field programmable gate arrays
are used in the system under test and in the test benches
to accomplish a unified development environment with the
objective to reduce cost and time-to-market. Our approach
also targets system verification but in a more specific sense,
to assure the timeliness of a certain system.

Montano et al. [16] present an approach to solve the
complex combinatorial problem of IMA reconfiguration in
real-time whilst providing support for pilots involvement by
means of automatic generation of explanations of reconfigu-
ration actions. The approach is based on Explanation-based
Constraint Programming.

Porcarelli et al. [17] describe a framework providing fault
tolerance of component-based applications by detecting fail-
ures through monitoring and by recovering through system
reconfiguration. The framework is based on Lira, a distributed
agent infrastructure for remote control and reconfiguration, and
a decision maker for selecting suitable new configurations.
The proposed solution is based on run-time calculations.
This strategy is hard to employ in avionics contexts with
certification, without the sort of pre-analysis that we suggest
in this paper.

Hollow et al. [18] focus on the reallocation problem and
propose a fitness function to be applied in conjunction with a
search algorithm in order to find possible system states which
can still fulfill the system requirements. However, the proposed
solution does not include the means to confirm whether the
new system schedule is still feasible. Our work proposes model
checking of all possible end results to assure timeliness.

Finally, it is worth mentioning that the present work does
not focus on the original allocation and mapping problem.
There are relevant works that handle these problems, including
the work by Annighofer et al. [19], who use multi-objective
mathematical optimization to perform software and hardware
mapping within a distributed IMA architecture while designing
avionic systems.
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III. RECONFIGURABLE SYSTEM ARCHITECTURE

This section starts with the introduction of important terms
used throughout this paper. Function is defined as an intended
behavior of a product based on a defined set of requirements
regardless of implementation; Item as a hardware or software
element having bounded and well-defined interfaces; and,
System as a combination of inter-related items arranged to
perform specific function(s).

Following the D-178 standard [20], software development
terms are used: Parameter Data Item (PDI) as a set of
data that, when in the form of a Parameter Data Item File,
influences the behavior of the software without modifying the
Executable Object Code and that is managed as a separate
configuration item (examples include databases and configura-
tion tables); Partitioning as a technique for providing isolation
between software components to contain and/or isolate faults;
and, Software Partition as the process of separating software
components, usually with the express purpose of isolating
one or more attributes of the software, to prevent specific
interactions and cross-coupling interference.

Figure 1 illustrates the proposed reconfigurable architecture,
where C1, C2, and C3 represent processing units. They are the
basic units in which faults are modeled. A basic unit is called
System Item, or just Item.

Fig. 1. Reconfigurable System Architecture

In order to perform the reconfiguration, three main compo-
nents are proposed in the reconfigurable architecture:

• Resource Manager Unit (RMU): acts upon system items
failure and triggers system reconfiguration according to
a previously offline determined reconfiguration mapping;

• Resource Manager Client (RMC): assess reconfiguration
request in relation to erroneous item failure detection by
the RMU and manages each processing unit reconfigura-
tion state. It is present on every processor on the platform
throughout the system as part of our reconfiguration
approach;

• PDI Resource Manager (PDIRM): contains the informa-
tion about all processing unit schedules in every system
state possible during successive reconfiguration and item
failures.

The proposed reconfigurable architecture takes into consid-
eration single core computers (for instance, C1 and C2 in
Figure 1) and Asymmetric Multi-Processing (AMP) computers
(for instance, C3 in Figure 1). For the AMP solution, every

single core has an RMC to provide health monitoring and the
reconfiguration execution.

The need for the RMC is to prevent the loss of a critical
system function due to an erroneous RMU reconfiguration.
With the absence of the RMC, the RMU would be an evident
system single point of failure.

In order to decrease the reconfiguration complexity, it is
assumed that all processing units in the system involved in
critical functions are synchronized at each partition. In case
of reconfiguration, the new system schedule is activated syn-
chronously throughout the modules, avoiding communication
mismatches.

The proposed architecture follows the basic DO-297 prin-
ciples such as space and temporal isolation. The partition
within each computer or core is bounded to its resource by the
ARINC 653 compliant operating system. The OS guarantees
a certain partition in a certain computer to be run in a
predefined time slot with no preemption even though there is
no process assigned to it. All the processes inside the partition,
on the other hand, are subject to a preemptive policy, the rate
monotonic in this study.

Memory is not a critical resource in modern computers. On
the other hand, memory access time management can pose a
challenge in system timing analysis. The communication bus
is a time-constrained resource and should be well managed as
it is shared between several processing units.

In a reconfiguration scenario, transmitting big blocks of
data to be loaded in a remote module at runtime saturates
the communication bus and eventually affects functionalities
which were not directly affected by the triggering failure.
Therefore, in the proposed system architecture, all software
items (for instance, executable object code) planned to be
allocated to a certain computer in any of the possible feasible
reconfigurations previously determined are stored in the target
memory in advance, instead of being transferred at runtime as
usually proposed in earlier works [21]. In a typical ARINC 653
software this is implemented by defining different schedules
for each processing unit.

The RMC manages the schedule selection. When a new
reconfiguration is triggered, the RMU sends the schedule that
every processing unit must be configured to. Every RMC im-
pacted by the reconfiguration must first confirm the trigger and
request the health status of the failed component directly from
the client associated with it, with no RMU intervention. If the
failure is not confirmed, the schedule change is aborted, and
the RMC keeps the processing unit in the latest state. However,
if the failure is confirmed, a new schedule is configured to be
active in the next processing unit major cycle absorbing the
functionalities from failed components.

The applications must be designed to tolerate the worst
case in which its function will remain in failure until it is
reconfigured to a new processing unit.

The RMU responsibility is then to monitor the platform
overall health status. The failure modes identified in runtime
are mapped to a certain transition in the reconfiguration state
diagram stored in the PDIRM. The database gives the exact
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state to which the system must be reconfigured and keep
running as expected. The new indicated configuration is sent
to all involved processing units.

The communication bus is a deterministic Ethernet and a
realization of the ARINC 664 part 7. The end systems include
a dedicated hardware to handle A664 traffic and the network
topology is set to comply with the latency requirements of each
application. Annighofer et al. [22] propose an algorithm to
generate aircraft data and communication network topologies,
taking into account message flows and network component
characteristics. The algorithm presented there could be used
to complement, in terms of data communication efficiency, the
work presented here.

IV. RECONFIGURATION APPROACH

In the next subsections, the proposed reconfiguration ap-
proach is detailed, by presenting the design flow, the meta-
models to capture the avionics system specification, as well
as, the implementation and deployment information for the
feasible reconfigurations. The adopted algorithms are also
described and illustrated.

A. Design Flow

Figure 2 shows the design flow of the proposed approach to
system reconfiguration, which starts by modeling the platform,
the application to be deployed on the platform, and the
properties, as design constraints to be satisfied by any valid
implementation of the specified system. The main focus of
this paper is the reconfiguration (highlighted in Figure 2).

Fig. 2. Design Flow Overview

For the platform, application, and properties modeling,
AADL [7] is adopted since it is already a well-studied format
for the specification of avionics systems [23]. Next, it is shown
how AADL resources are used in the modeling process, which
includes processors with partitions, representing a virtual
processor with a specific fixed time slack to perform some
action, memories, buses and devices for the platform mod-
eling; intercommunicating processes with threads inside and

interconnected by means of ports for application modeling;
and, property sets for the design constraints modeling.

By means of model transformations, an AADL specification
is transformed into models conforming to the proposed meta-
models, described in the next subsections. On these models,
a mapping, allocation and scheduling algorithm is applied,
which determines which software items will be mapped into
each hardware item from the platform, allocated to each
available partition and scheduled at specific time steps. All the
information generated by the design algorithms is annotated in
the implementation, verification, and design constraint models
in order to be used by the reconfiguration algorithms, which
produces a deployment model with the necessary data to
perform the system reconfigurations at runtime.

B. Avionics System Specification

In this proposal, an avionics system is specified by means
of Platform and Application models, conforming to the meta-
models described in the following. The meta-models were
created by using the EMF (Eclipse Modeling Framework)
based modeling tool, available in the Eclipse version 4.3.7a
Oxygen [24]. The AADL models were created using the
OSATE, version 2.3.5, modeling tool from CMU-SEI [25].

1) Platform: consists of hardware and software compo-
nents, as well as, communication buses (see Figure 3). A
hardware component has one or more computers (mono or
multi-cores), and each computer can have many partitions.

Fig. 3. Platform Meta-model

A software component can be an RMU or an RMC, which
are responsible for the reconfiguration actions in the avionics
system. A software component can also be an Operating
System (OS), a reusable library, a driver, or the source code
for the implementation of a given system function.

A communication bus can be modeled in AADL as a shared
memory, when the communication occurs inside the same par-
tition of a computer; as an inter-virtual processor messaging,
when the communication is between two different partitions at
the same processor; or as an interprocessor messaging, when
the communication involves two different computers in the
platform. Figure 4 shows an example of Platform in AADL
containing four processors C1, C2, C3, and C4, each one with
three, one, two, and four partitions, respectively.
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Fig. 4. A Platform in AADL

Figure 4 shows an ARINC 664 compliant bus with six
virtual links to implement the communication between the
computers, and memory components. Table I presents the
specified properties for the processing units in the example
presented in Figure 4.

TABLE I
PARTITION DURATIONS (IN MS)

C1 C2 C3 C4
M. frame: 20 ms M. frame: 10 ms M. frame: 10 ms M. frame: 20 ms
RAM: 256 Kb RAM: 256 Kb RAM: 256 Kb RAM: 256 Kb
Flash: 1 Mb Flash: 1 Mb Flash: 1 Mb Flash: 1 Mb

VP1 VP2 VP3 VP1 VP1 VP2 VP1 VP2 VP3 VP4
5 5 10 10 5 5 4 6 6 4

As shown in Table I, each computer has a major frame (in
milliseconds), indicating how much time all partition execu-
tions take, memory capacities, and the time slot of each virtual
processor (also in milliseconds). Other design properties can
also be specified in the AADL model, such as the latency of
the virtual links, which were set as 1 ms in this example, the
size and width of the memory components, etc.

2) Application: consists of functions that will be performed
by the considered application. An application function can
have sub-functions and software items.

A software item can be a process, a thread, or a device,
where a process is a group of threads. For each thread it
is possible to have the source code of the program to be
executed. These concepts in the Application meta-model allow
specifying an application in a hierarchical way. Figure 5 shows
an example of an application in AADL, in which there are
three processes P1, P2, and P3, which have three, two, and
five threads, respectively.

The data flow between the devices, processes, and threads

Fig. 5. An Application in AADL

are specified by means of ports and connections between
them and determines the dependencies between the software
items. Thus, in the example in Figure 5, the process P1 has
threads P1T1, P1T2, and P1T3, which have no dependencies
between them and therefore can run concurrently. Unlike the
P3 process, where there are dependencies between the P3T3,
P3T4, and P3T5, which requires their sequential execution.

These dependencies are captured by a Directed Acyclic
Graph [12] that is called Hierarchical Dependency Graph
(HDG), where the nodes represent the software items and the
edges represent data flow and also control flow dependencies
between the nodes. Figure 6 presents the HDG corresponding
to the application in Figure 5.

Fig. 6. Example of Hierarchical Dependency Graph

In the HDG in Figure 6, there are three nodes in the higher
level representing the processes in the application and ten
nodes in the lower level of the hierarchy for the threads.
In the properties model, for each thread, the following is
captured: the specified period, deadline, worst-case execution
time (WCET), and necessary memory, given by the designer
in the AADL modeling. Table II shows the specified properties
for the application in Figure 5.

As shown in Table II, thread T1 of process P1 has specified
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TABLE II
THREADS PROPERTIES FOR APPLICATION

Prop. P1 P2 P3
T1 T2 T3 T1 T2 T1 T2 T3 T4 T5

Period (ms) 20 20 20 20 20 30 30 40 40 40
Deadline (ms) 20 20 20 20 20 30 30 40 40 40
WCET (ms) 4 4 4 2 2 4 4 4 4 4
Memory (Kb) 90 50 30 40 70 90 80 60 50 95

period, deadline, WCET, and demanded memory given by
20ms, 20ms, 4 ms, and 90Kb, respectively.

3) Properties: allows capturing the design constraints spec-
ified by the designer that must be satisfied by any valid imple-
mentation for the system. A Property can represent criticality,
priority, period, deadline (soft and hard), and dissimilarity
characteristics of elements in the models, conforming to the
proposed meta-models.

C. Implementation Modeling

The Implementation meta-model defines how to model the
design decisions that are taken during the execution of the
design algorithms and by the designer. It captures the mapping,
allocation, and scheduling information that is produced by the
design tools.

D. Design Constraints

The Design Constraint meta-model defines how to associate
the properties of the system specification to the properties in
the implementation model, which is generated by the design
process. A Design Constraint associates a property to a given
design item or multiple items. For instance, it is possible
to pre-allocate a specific software item to a specific virtual
processor and to specify WCET of each thread.

E. Formal Verification

In order to perform model checking of some specific
properties, specified as temporal logic expressions, a net-
work of timed automata must be generated from the system
specification. The Verification meta-model defines how to
model such network of timed automata as a Labeled Timed
Automata (LTA) System [6], which can then be expressed as
concepts introduced by the UPPAAL model checking tool [8].
An LTA System consists of Declarations and one or more
LTA Templates, which represent the automata. The states are
modeled as LTA locations and the state transitions as LTA tran-
sitions, which are represented by LTA edge sources and LTA
edges targets. Each transition can be annotated with guard,
update, selection, and synchronization expressions. The guard
expression must be satisfied in order for the transition to be
enabled. When an enabled transition occurs the corresponding
update expression is executed, which can modify the values
of some specified variables. The synchronization expression
allows two automata to synchronize and the transitions at both
automata are simultaneously triggered.

From the platform, application, and property models and the
corresponding HDG, the network of automata is automatically
generated, based on the framework for schedulability analysis

proposed by David et al. [26]. According to this framework,
a resource automaton for each processor partition and a task
automaton for each of the process threads is instantiated.

Each one of the task automata starts in an initial state
where it keeps waiting until all other tasks that it depends on
finish their execution and then send a request to the resource
automaton, corresponding to the processor partition in which
the task was allocated. The resource automaton models some
specified scheduling policy, that can be Earliest Deadline First
(EDF), Fixed Priority Scheduling (FPS), or First In First Out
(FIFO), by managing a tasks queue. When the task execution
is concluded, the corresponding resource automaton notifies it
by a finished signal.

At each task automaton, there is a transition from the Ready
state to an Error state when the elapsed time is greater than
the task deadline, which means that the specified design con-
straint was not satisfied. Thus, to perform the schedulability
analysis of the system, the following temporal logic expression
is checked on the generated network of automata, using
the UPPAAL model checker: A[] for all (i : t_id)
not Task(i).Error. This expression means that, for all
possible execution paths, no task automaton reaches the Error
state.

When the model checker concludes that this property is
valid, all the specified deadline constraints are satisfied, i. e.,
it has found a feasible mapping, allocation, and scheduling
reconfiguration for the application on the given platform.

F. Reconfiguration States Diagram

The Reconfiguration States Diagram (RSD) represents the
possible feasible reconfigurations as states, and the state tran-
sitions as the valid transformation from a currently feasible
reconfiguration to a next feasible reconfiguration, which can
tolerate some fault in each system component, indicated as a
label at the corresponding state transition. Figure 7 shows an
example of a reconfiguration states diagram.

Fig. 7. An Example of Reconfiguration States Diagram

At the initial state S0, the system is operating normally,
according to an initial mapping, allocation, and scheduling
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algorithm, which considers the specified properties of the sys-
tem. The state transition from S0 to S1, labeled C1, indicates
that when the component C1 fails, the system has a feasible
reconfiguration, represented by S1 state, which tolerates the
fault. When at state S1 and component C2 fails, the system
can be reconfigured according to the state S3. The system has
no feasible reconfiguration from state S3 when component C3
fails, which is represented by state transition from S3 to F
(Fail state), labeled with C3. The transitions from S0 to S2
and from S2 to F indicate that after component C2 fails a
fault in C1 cannot be tolerated by the system. Note that the
appearance of two component failures on one transition is a
way of abbreviating the graph. Failures happen one at a time
and dealt through one reconfiguration, as stated in Section I.

G. Deployment Model

The Deployment meta-model defines how to capture the
necessary information to perform the reconfigurations of the
system. Each configuration determines how each design item
will be deployed, associating elements of the system specifica-
tion to elements of the platform, as well as, all the necessary
design information.

H. Design Automation Algorithms

The design automation process for the proposed reconfigu-
ration approach includes algorithms to build the Reconfigura-
tion Diagram, to perform mapping, allocation, and scheduling,
to generate the network of timed automata for the schedulabil-
ity analysis, and to generate the Deployment Model for each
given reconfiguration. The next subsections describe each of
these algorithms.

1) Mapping, Allocation, and Scheduling: algorithms that
build the implementation model and the deployed model given
a current platform, system, and properties model as follows.

First, a list of tasks with their properties, for example the
period, the deadline, and the WCET are created. Then, the
hierarchical dependencies graph is generated from the AADL
application model. A list of available computers and their
virtual processors with corresponding properties are created
from the platform and properties models.

By means of a depth first traversal in the hierarchical
dependency graph, starting from the begin node, each task is
visited and mapped into an available computer, and allocated
into one of their virtual processors, that should satisfy the
specified design constraints. This step produces an allocation
matrix, containing the information to be used by the algo-
rithm for the generation of the network of automata. It also
instantiates a corresponding deployment model to be used
when building the reconfiguration states diagram, described
in the next subsection. Table III shows the allocation matrix
produced from the platform and the application models, shown
in Figures 4 and 5, respectively, and platform and application
properties listed in Tables I and II, respectively.

As shown in Table III, when no computer fails, threads
T1, T2, T3 of process P1, threads T1 and T2 of process P2,
and thread T3 of process P2 are mapped to the computer C1

TABLE III
ALLOCATION MATRIX (PARTIAL)

C1 C2 C3 C4
VPs VP1 VP2 VP3 VP1 VP1 VP2 VP1 VP2 VP3 VP4
None P1T1 P1T2 P1T3 P3T1 - - - - - -
fails P2T1 P3T2

P2T2 P3T4
P3T3 P3T5

C1 X X X P1T1 P1T3 P3T3 - - - -
fails P1T2 P2T1

P3T1 P2T2
P3T2 P3T5
P3T4

C2 P1T1 P1T2 P1T3 X P3T2 P3T1 - - - -
fails P2T1 P3T5 P3T4

P2T2
P3T3

C1, X X X X P2T1 P1T3 P1T1 P1T2 P3T2 P3T1
C2 P2T2 P3T3
fail P3T5 P3T4

C1, X X X P1T1 X X P1T3 P3T5 P2T1 P3T3
C3 P1T2 P2T2
fail P3T1

P3T2
P3T4

C2, X X X X P3T2 P3T1 P1T1 P1T2 P1T3 P2T1
C1 P3T3 P3T5 P3T4 P2T2
fail
... ... ... ... ... ... ... ... ... ... ...

and allocated on its virtual processors VP1, VP2, VP3, which
are the first ones available with enough time slot and memory
resources to execute the corresponding threads. When C1 fails,
the threads from C1 can migrate to C2 and C3, which has
available virtual processors with enough time and resources.
After that, if C2 fails, its threads can further migrate to C3
and C4. However, when C3 fails, the threads P3T3, P3T4, and
P3T5 in VP2 of C3 cannot be mapped into any computer, and
so there is no feasible reconfiguration that could tolerate this
fault in C3 at this point. Figure 7 shows the Reconfigurable
States Diagram that will be generated based on this allocation
matrix.

2) Build the Reconfiguration States Diagram: represents
all possible feasible reconfigurations, starting from the initial
valid implementation of a system and going to each possi-
ble feasible reconfiguration that can mask the fault in each
system component. The corresponding algorithm is shown in
Algorithm 1:

• At line 1, the generation of the initial deployment model
consists of, for each element from the application model,
a mapping to an element from the platform model deter-
mined by the design tool or by the system designer. This
step will produce the initial state S0 in the Reconfigura-
tion States Diagram.

• At line 2, the algorithm starts from a source state (Ss)
as initial state S0.

• The entire algorithm (lines 3-38) will repeat until all
existing states are marked, and this occurs when all the
created states were considered by the algorithm.

• At each iteration of the Algorithm 1, the possible failure
of some computers Ci is considered (lines 5-32) and
for each possible feasible reconfiguration (schedulable,
according to the model checking verification), a new
target state (St) is created and a transition from Ss to
St is created (lines 20-25), or
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Data: Platform, Application, and Properties models
Result: Reconfiguration States Diagram

1 S0 = generate initial Deployment;
2 Ss = S0;
3 repeat
4 repeat
5 for each Ci in the current Deployment and Ci failed do
6 for each SwItem p not yet mapped do
7 for each Cj in the current Deployment and Cj 6= Ci do
8 if (is compatible(Cj) or has free partition(Cj) ) then
9 SwItemp is mapped to Cj;

10 end
11 if there is SwItemq in Cj which is not critical or it was

affected by the fault at Ci then
12 unmap SwItemq from Cj;
13 map SwItemp to Cj;
14 end
15 end
16 end
17 if there is no unmapped critical SwItemp then
18 build Verification model based on current mappings;
19 perform Model Checking on Verification model;
20 if schedulable then
21 St = generate new Deployment model from current mappings;
22 create transition from Ss to St with label Ci;
23 if there is unmapped non critical SwItemp then
24 Mark St as Degraded
25 Ss = St;
26 else
27 create transition from Ss to Serror with label Ci;
28 end
29 else
30 create transition from Ss to Serror with label Ci;
31 end
32 end
33 until no new state St was created;
34 mark Ss as done;
35 if (there is any non-marked state Snm) then
36 Ss = Snm;
37 end
38 until all states are marked;

Algorithm 1: Build Reconfiguration States Diagram

• If there is no feasible reconfiguration a transition from Ss
to an error state (Serror) is created (lines 27 and 30).

• A new Deployment model is built for each newly created
target state (line 21), according to the current mappings.

• At lines 8-10, a SwItemp is mapped into Cj if it is
compatible with Cj, i.e., if there is no SwItemq already
mapped to Cj, which would conflict with SwItemp. The
conflict between software items can be specified in the
Properties model by the designer. A SwItemp can also
be mapped into Cj if there is a free partition available
in Cj.

This algorithm produces a Reconfiguration States Diagram,
where each state represents a feasible reconfiguration and each
transition, labeled Ci, from a state Ss to St indicates that
if the system is currently configured as determined by the
Deployment model associated to state Ss and the computer
Ci fails then the system tolerates the fault, and goes to a new
configuration given by the Deployment model associated to
state St. In the case where St is at a failure state, the entire
system fails since the fault could not be tolerated.

V. CASE STUDY

In order to evaluate the proposed approach for avionics
systems development, an illustrative case study from the
avionics domain will be used. A top-down approach is chosen
as recommended by [27], defining at first the system functions
and subsystem functions (Table IV). The system functions
are the highest-level definitions in a system and specify its
basic functionalities. From this definition, the break down is
performed for the system realization.

In order to determine the criticality and therefore the certi-
fication efforts of the bottom level system items, the Function

TABLE IV
FUNCTIONS

Flight Control Navigation
Fuel Management Guidance
Flight Control Route Control

Provide Map
HMI Provide Charts
Display Symbology
System Control System Monitoring
Flight Control Inputs Fuel Monitoring

Enginer Monitoring
Auto Pilot

Hazard Analysis (FHA) is performed. It identifies top-level
failure conditions, effect, and their severity. The loss of, or
undetected erroneous flight control, for instance, can cause
the loss of the aircraft giving the severity classification as
catastrophic. On the other hand, the loss of the Map provider
functionality causes a slight increase in crew workload which
gives a Minor in the classification. According to SAE guide-
lines [28], all the developed functions related to catastrophic
events must comply to the highest design assurance level (A),
while the ones related to minor events must comply at least
to the level D which is the second lowest in a scale from E
to A.

In parallel the top-level system architecture with the cor-
responding software item can be created. At this point the
architecture is still independent of the platform and should
be tied only to the top-level system functions. Figure 8 illus-
trates what is supposed to be the created items dependencies
which can generate the HDG described in Section IV-B2.
The real dependency diagram was created in AADL using
annex ARINC653 and is not included in this paper due to
its complexity and size. The complete model can be found
in the project repository in Github1. Each node identified in
Table V is modeled in AADL as a thread which includes
besides the item interface, the descriptions of its properties.
For the dependency diagram, a system implementation model
was created including all the threads encapsulated in processes
and their connections.

Figure 8 also partially shows how the system functions
are realized by the software items. The flight control for
instance is realized by FuelConsuptionMgr, Va Control and
Vz Control. These two components were based on an Open-
Source Avionics and Control Engineering case-study [29]. The
other items and their properties were created according to
previous experiences of the authors and interactions in the
industry.

From the presented relation, together with the FHA, it is
possible to infer the item design assurance level (IDAL) as it
can be seen in Table V. For the flight control subsystem, it
is possible to see the assurance levels in the table as nodes
(column 1) 12, 13, 14, 15, 16 and 17.

In the AADL model, the IDAL becomes an item property
as described in Section IV-B3. This particular property carries

1https://github.com/aafontoura/reconfigurationAvionicsCaseStudy.git
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TABLE V
SOFTWARE ITEMS PROPERTIES FOR CASE STUDY

Node # Software Item Per. WCET IDAL Redund.
0 SystemInputHandler 20 5 A Simple
1 MapServer 40 15 D None
2 Charts 640 12 D None
3 RouteCtrl 40 2 C Simple
4 EngineMon 20 1 B Simple
5 Guidance 20 4 B Simple
6 FuelMon 40 1 B Simple
7 AP Monitor 20 2 A Simple
8 AP 20 5 C Simple
9 FlightStickHandler 20 1 A Voter

10 DisplayMgr 20 6 A Simple
11 Altitude Hold 20 1 A Simple
12 FuelConsumptionMgr 80 8 A None
13, Vz Control 20 1 A Dissimilar,
14 Voter
15, Va Control 20 1 A Dissimilar,
16 Voter
17 Flight Control Mgr 20 2 A Simple

18,19 DisplayX Server 30 10 B Simple
20,21 ActuatorXControl 10 0.5 A Simple

an important design constraint for the allocation algorithm
mentioned in Sections IV-D and IV-H. The computer of
the platform that will accommodate a set of items must be
developed following the assurance level of the most critical
item chosen to be allocated on that specific computer. Which
means if a certain computer is developed to IDAL C, it will be
ineligible to accommodate software items developed to IDAL
A. In addition, partitions can only hold items with the same
design assurance level. The Provide Map function demands
a lower functional design assurance level (FDAL) therefore a
lower IDAL as shown in Table V (node 01 in the first column).

Table V also presents other important item properties that
need to be taken into consideration by the allocation algorithm,
i.e., the Worst case execution time (WCET), the period, the
IDAL and the general redundancy policy. The flight control
items, Va Control and Vz Control are to be implemented in a
voter system, which brings the constraint of having two nodes
for each of them. Dissimilarity is also a requirement due to
the criticality of their system function and implies that the
pair must run in different types of computers. The values for
WCET and period are synthetic but consistent with values used
in real avionics systems projects, which cannot be explicitly
mentioned here due to non-disclosure agreements.

Figure 9 presents the platform node hardware in which
all the previously described software items will be allocated.
Certain computers such as the ones placed in the back of the
aircraft are specialized, being able to interface with actuators
(e.g. Rudder control) and sensors besides the ability to com-
municate through the airplane data bus. The different types
of computer specializations also are taken into consideration
during the allocation process.

The computers will accommodate processing software
items, such as the FuelConsuptionMgr, which is a software

Fig. 8. Initial System Dependencies

Fig. 9. Allocation of functions to nodes within the platform

item responsible for running algorithms to enhance the fuel
consumption performance by the flight control. The special-
ized computer C5, for instance, is attached to the main displays
in the cockpit which have rendering engines and are able to
present critical information for the pilot. Therefore it is eligible
to accommodate the item DisplayX Server which interprets
commands from other computers and translates them into
drawing commands for the rendering engine, generating the
image. Such restrictions are evaluated during the allocation
algorithm at the compatibility check (line 8 of Algorithm 1).
Table VI specifies the computers properties of the platform
shown in Figure 9. The RMU and RMCs are embedded within
the computers in this platform as presented in Figure 1.

As previously presented in Section IV, the HDG is gener-
ated from the dependency diagram created in AADL, shown
in Figure 10. Here, the number on each node refers to the
node # in Table V. The HDG is used as one of the inputs for
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TABLE VI
CASE STUDY PLATFORM PROPERTIES

C1
MF: 20 ms

C2
MF: 10 ms

C3
MF: 10 ms

C4
MF: 20 ms

VP1 VP2 VP3 VP4 VP1 VP2 VP1 VP2 VP3 VP1 VP2 VP3 VP4
5 5 5 5 7 3 5 4 1 4 6 8 2

Fig. 10. HDG for case study

the UPPAAL model. Figure 11 shows the obtained diagram
for the case study, after the execution of Algorithm 1, where
the timing constraints for the reconfiguration associated with
each state in the RSD is verified by applying the UPPAAL
model checker. Each node is a location in the UPPAAL where
a reconfiguration state is represented. The transitions are the
failure triggers and here they represent a complete failure of
the computer.

Fig. 11. RSD for case study

To verify if the initial allocation, corresponding to state
S0 in the RSD, was schedulable, UPPAAL consumed 13,503
seconds (i.e., 225.05 minutes) running in Mac OS X system

on an Intel i7 2,2GHz with 16Gb RAM. We used the option
over approximation, available in UPPAAL (by means of
parameter -A for the command verifyta), which reduces
the number of explored states by applying a convex-hull based
approximation technique [26]. Even so, in this case, UPPAAL
reached more than 62 million states.

VI. CONCLUSION

In this paper, a reconfiguration approach to deal with fault
management and its associated timing analysis with model
checking is presented. This checking guarantees that all fore-
seen situations are evaluated in determining that the design
time timing constraints are effectively satisfied.

The proposed approach was illustrated using a synthetic
example to explain its algorithms. Then it was further applied
in an avionic system case study to show that reasonable
problem sizes in terms of the number of nodes, dependencies,
criticality constraints, and software/hardware mappings can be
dealt with. The proof of concept shows that the proposed
methodology provides a feasible design flow for avionics
systems to be further evaluated in industrial settings.

The state explosion problem in the model checker execution
was an expected concern, but it can be minimized considering
the hierarchical and modular nature of AADL-modeled appli-
cations. Applying model checking in a modular way on each
process separately, then using the HDG to perform a global
analysis based on the analysis of the processes is a feasible
strategy to handle this issue.

A further source of complexity in the analysis is the order
in which the components can fail. Currently, the quantity of
possible combinations is factorial in the number of compo-
nents. So, it is important to develop heuristics to minimize
the size of this design space in order to be able to deal with
larger applications. Regarding this aspect, the hierarchical and
modular nature of the AADL models and application-specific
or domain-specific knowledge can be explored.

An interesting subject to be investigated in future works is
the development of algorithms that improve the current solu-
tion by a) considering optimization techniques and avoiding
the local minima, and b) making the timing analysis more
efficient, leading to faster analyses of each strategy.
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