Decentralized Firmware Attestation for In-Vehicle Networks

Mohammad Khodari, Abhimanyu Rawat, Mikael Asplund, Andrei Gurtov
Dept. of Computer and Information Science, Linkdping University, S-581 83
mohkh623@student.liu.se, {abhimanyu.rawat, andrei.gurtov, mikael.asplund} @liu.se

ABSTRACT

Today’s vehicles are equipped with a large number of electronic
control units (ECUs), which control everything from heating to
steering and braking. Due to the increasing complexity and inter-
dependency of these units, it has become essential for an ECU to
be able to ensure the integrity of the firmware running on other
ECU’s to guarantee its own correct operation. Existing solutions
for firmware attestation uses a centralized approach which means
a single point of failure. In this article, we propose and investigate
a decentralized firmware attestation scheme for the automotive
domain. The basic idea of this scheme is that each ECU can attest
the state of those ECU’s on which it depends. Two flavors of ECU
attestation i.e. parallel and serial solution were designed, imple-
mented and evaluated. The two variants were compared in terms
of both detection performance (i.e., the ability to identify unautho-
rized firmware modifications) and timing performance. Our results
show that the proposed scheme is feasible to implement and that
the parallel solution showed a significant improvement in timing
performance over the serial solution.

KEYWORDS

ECU, attestation, firmware, communication system security, in-
tegrity

ACM Reference Format:

Mohammad Khodari, Abhimanyu Rawat, Mikael Asplund, Andrei Gurtov,
Dept. of Computer and Information Science, Linkdping University, S-581 83
mohkh623@student.liu.se, {fabhimanyu.rawat, andrei.gurtov, mikael.asplund}
@liu.se . 2019. Decentralized Firmware Attestation for In-Vehicle Networks.
In 5th ACM Cyber-Physical System Security Workshop (CPSS °19), July 8,
2019, Auckland, New Zealand. ACM, New York, NY, USA, 10 pages. https:
//doi.org/lO.l145/3327961.3329529

1 INTRODUCTION

In the vehicle industry we have seen major advancements due to
the introduction of electronics and software. Vehicles are controlled
by a large number (up to 100 or more) of so called Electronic Con-
trol Units (ECUs). ECUs are specialized computers that perform
everything from critical tasks such as engine control to less critical
functionality such as window control. Many people see vehicles as

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CPSS 19, July 8, 2019, Auckland, New Zealand

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6787-5/19/07...$15.00
https://doi.org/10.1145/3327961.3329529

“computers on wheels” ! due to how dependent they are on ECUs.
A very prominent trend that can be observed today in relation to
vehicles is the emergence of self-driving capabilities, which puts
even more control of the vehicle in the ECUs. A malfunction of
critical components or manipulation of software or hardware in
ECUs can cost people their lives. Therefore, it is very important
that all ECUs in a vehicle are secure and that the software inside
them cannot be tampered with, without it being noticed. Moreover,
the ECUs in a vehicle are becoming increasingly more dependent
on each other, so that the correct operation of one ECU depends
on the correct operation of other ECUs.

An example of what the consequences of having insufficient
security can be is the recent hack on the Tesla model X performed
by a Chinese research team from Tencent?. Even though Tesla in-
troduced firmware code signing to prevent such malicious activity,
the team at Tencent managed to hack the vehicle remotely. By ex-
ploiting security holes in the car’s different ECUs, the researchers
managed to open its doors, blink the lights, control in-car display,
and surprisingly, engage the breaks whilst the car was in motion.
Once such security vulnerabilities have been found, it is very im-
portant that OEMs (Original Equipment Manufacturers) update the
firmware on their vehicles with a security patch.

ECUs in vehicles used to have the firmware placed in read only
memory (ROM), which therefore could not be updated. This is
no longer the case since the ECUs in today’s vehicles have flash
memory. Flash memory allows authorized entities to update or flash
a new version of the firmware. This enables fixing known bugs and
security holes in the software. By updating the vehicle’s firmware to
mitigate known vulnerabilities and exploits, the vehicle’s firmware
can maintain a higher level of security [12,19].

The ability to update the firmware can also have a negative effect.
It will increase the attack surface present for various malicious
actors. For example, a malicious actor can try to introduce new
malicious firmware on the vehicle or they can try to prevent a new
update (which patches some vulnerability) from being installed.
Most newer vehicles today have some sort of network connection
for receiving firmware updates and other functionalities which can
be exploited for this purpose.

In this article we investigate cryptographically secure distributed
solutions in order to determine if controllers in a vehicle are in a
consistent state. This means that each ECU connected to the vehicle
communication bus can attest that all other ECUs in the network are
in a consistent/expected state by initiating the proposed solution.
Previous solutions to this problem use a centralized approach where
a single node is responsible for attesting the state of all other ECUs.
This could prove problematic if this particular node is under attack

Lhttps://www.theglobeandmail.com/globe-drive/how-cars-have-become-rolling-
computers/article29008154/
2https://eu.usatoday.com/story/tech/2017/07/28/chinese-group-hacks-tesla-second-
year-row/518430001/

https://doi.org/10.1145/3327961.3329529
https://doi.org/10.1145/3327961.3329529
https://doi.org/10.1145/3327961.3329529

or simply fails by some other cause. We propose the use of a fully
decentralized solution where each ECU has the ability to attest the
firmware of all other ECUs. In practice, not all ECUs will attest
all other ECUs since that will result in a quadratic increase of
attestations as the ECUs grow. A more reasonable approach is to let
those ECUs on which a particular ECU is dependent be attested by
it. For example, the breaking system and lights in the vehicle has
direct relation, when we hit the break, tail lights should go. In this
case the ECU responsible for the breaks and vehicle lights should
attest themselves.

To the best of our knowledge, this paper is the first to propose
and evaluate a decentralized attestation scheme for automotive
systems. We analyze two flavors of the attestation scheme, one
where the attestations are performed in series and one where they
are parallelized. We implement and evaluate these protocols using
real ECUs connected over a Controller Area Network (CAN) bus.
Our attestation scheme also takes into account the management of
attestation information that needs to be present in all ECUs as well
as the firmware update process in which this information must also
be updated at each ECU.

To summarize, this paper describes two novel contributions:

i New consistency verification mechanisms: Two newly de-
veloped consistency verification mechanisms/solutions spe-
cially tailored for the automotive domain are presented, one
serial solution and one parallel solution.

ii Implementation and testing on real ECUs: The two pro-
posed consistency verification mechanisms are implemented
and tested on real ECUs. The detection and timing performance
of the implemented solutions are assessed.

The remainder of this paper is organized as follows. In Sec-
tion 2 we introduce ECU, CAN and security architecture. Section 3
presents related work on the subject of remote attestation with
a focus on the automotive domain. Our decentralized attestation
scheme is first presented for a single ECU pair in Section 4, and the
two variants for extending to multiple ECUs is described in Sec-
tion 5. Section 6 describes the evaluation of the attestation scheme,
including a comparison of the two multi-ECU flavors. Finally, Sec-
tion 7 concludes the paper.

2 BACKGROUND

In this section we provide a brief background on the ECU and
CAN concepts that are fundamental in the automotive domain, and
also briefly describe the Double ratchet key derivation protocol on
which the proposed protocols rely.

2.1 Electronic Control Unit

ECU? - Engine control Unit takes the sensor data and makes in-
formed decisions using those. ECUs control the units which per-
forms the essential functions such as engine control, break control,
air cooling, driver assistance. These days the modern in-vehicle
hardware uses multiple ECUs to control the different functions of
the vehicles and make it manageable through inter-ECU commu-
nication on a CAN bus mostly. Not all the ECUs have the same

Shttps://www.bosch-mobility- solutions.com/en/products-and-services/
passenger-cars-and-light-commercial-vehicles/steering-systems/
electric-power-steering- systems/electronic-control-unit/

functional level, they are modified by the nature of the task assigned
to the ECU unit.

2.2 Controller Area Network

CAN is the most commonly used communication protocol in ve-
hicles. This protocol lies on the physical and data link layers on
the OSI model. It allows message broadcasting between micro-
controllers. CAN was originally designed by Bosch to decrease the
complexity of wiring harnesses in vehicles and to enable real-time
applications. CAN can be seen as the bus which connects ECUs in
vehicles together, enabling cross ECU communication. Furthermore,
CAN also allows sharing of sensors between ECUs [4, 11]. Figure 1
represents a CAN bus with different ECUs used in Scania trucks.

CAN is a broadcast protocol, meaning that everything sent over
the CAN bus is readily accessible by all CAN connected devices.
Therefore, in order for nodes to only react on a specific message,
local message filtering is required. Moreover, some error-detection
measures exist. A so called Cyclic Redundancy Check (CRC) check-
sum is included in CAN messages. The checksum is used to ensure
the integrity of transmitted messages.

Diagnostic Bus j

O €00 Red bus
Cood
system | |

EMS | [ems »

Engine management Brake management

system system
cTS :"‘5 . .

uspension managemen

Clock and Timer System e
acc RTC \ .H
|Automatic Climate Road Traffic D)
Control Communicator

Figure 1: CAN bus architecture in Scania trucks.

2.3 Double Ratchet

Double ratchet* is a key derivation protocol that produces two
symmetric-key pairs for each communicating party, one for re-
ceiving messages and one for sending messages. The produced
symmetric-key pairs are used for encryption/decryption or au-
thentication of transmitted messages. For each sent and received
message, new sending and receiving symmetric-keys are generated.

What makes this algorithm special is its appealing characteris-
tics:

. Forward security: Earlier generated keys cannot be calcu-
lated from newer keys. In other words, if an attacker derives
a key used for encryption or signing, only that message is
compromised, earlier key still seem random to the attacker
even though the attacker knows the current key.

. Backward secrecy: Newer keys cannot be calculated from
earlier keys. In other words, if an attacker derives an pre-
viously used key, that key cannot be used to derive later
keys.

*https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf

https://www.bosch-mobility-solutions.com/en/products-and-services/passenger-cars-and-light-commercial-vehicles/steering-systems/electric-power-steering-systems/electronic-control-unit/
https://www.bosch-mobility-solutions.com/en/products-and-services/passenger-cars-and-light-commercial-vehicles/steering-systems/electric-power-steering-systems/electronic-control-unit/
https://www.bosch-mobility-solutions.com/en/products-and-services/passenger-cars-and-light-commercial-vehicles/steering-systems/electric-power-steering-systems/electronic-control-unit/
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf

. Replay-attack resistance: Because new symmetric key
pairs are generated continuously, a replay-attack will not be
possible since the key used by the replayed message is not
used anymore.

The Double ratchet key derivation protocol is used by the pro-
posed solutions presented in this paper for message authentication.
This is done by generating message authentication codes (MAC)
using symmetric keys provided by double-ratchet.

3 RELATED WORK

In the paper [7], several threats against the CAN network are show-
cased. They provide practical examples on how to manipulate the
CAN network for potentially malicious purposes, such as disabling
the airbag without triggering the airbag failure indicator on the
dashboard. It is thus imperative to be able to know when the in-
tegrity of the system has been compromised. This can be achieved
by utilizing cryptographicly secure methods such as firmware at-
testation. Kleberger [9] presented and analyzed several methods
for combating malicious activity in a vehicle’s communication bus,
including authorization protocols for diagnostics.

In the work by Stephan et al. [19], four security classes are
defined related to ECU firmware updates. The purpose of these
classes is to provide primitive methods of combating firmware
manipulation and transmission errors during firmware updates.
Methods such as message authentication code (MAC) and hash-value
authentication are presented.

There is some work related to firmware attestation in the auto-
motive domain, but it is clearly an area in need of more study. The
papers by [17] and [22] both present centralized solutions for ECU
attestation where one master ECU verifies the other ECUs.

In a paper by Gui et al. [5], whitelisting, blacklisting and a thresh-
old mechanism are used. The complexity of maintaining the states
and conditional aspects of the protocol makes it compute-heavy
for an IoT device specially where the power could be a constraint.
The update mechanism is missing which is highly valuable when a
vulnerability is uncovered and OEM patches it through updates.

Tsudik et al. [8] proposed a decentralized approach where not
only the detection but also the healing/recovery technique of the
infected devices is discussed. The approach works best for the
devices loosely connected in a network i.e. non real-time systems
where the critical infrastructure and time sensitivity is not involved.

Moroson et al. [14] designed a machine learning model which
takes different traffic characteristics to identify the malicious traffic
between the devices. This could help in eradicating sources which
are putting malicious traffic over the wire and consume network
resources.

Open Charge Point Protocol (OCPP) [1] for charging of Electrical
Vehicles brings its own potential security challenges. Man-in-the-
middle attacks can abuse resource reservation, energy theft or
power overloading of charging infrastructure. It could be also a
potential entry point for attacks on vehicle’s ECUs.

Koscher et al. [10] showcased how to hack a car. Using the OBD-
II interface and a segment code, the authors hijacked the most
essential components such as breaking system and speedometer.
They also tempered with in car accessories such as air conditioning,
music system, and, even locking the door while the driver is inside.

Reading the CAN bus messages and manipulating them, clearly
poses a serious threat to in-vehicle systems.

Miller et al. [13] demonstrated how a car 100 miles away can be
hacked by tempering with the ECU’s ROM remotely, thus control-
ling the car’s Windows, speedometer, doors.

Regarding the update and ECU memory verification, work by
Nilsson et al. [16] discusses how to securely transfer the updated
firmware to an ECU and securing the flashing procedure where the
attacker can manipulate the update received. The best way to detect
it is after the update has been flashed onto the ECU to verify the
content of the memory based on a verification code transferred to
the vehicle during the update transmission, using a self-verification
technique.

Several interesting articles were also found outside the auto-
motive domain [15, 18,20, 21]. Essentially all the found solutions
functioned in the same way with slight differences in the way they
tackle the problem. These solutions either have one node dedicated
for firmware attestation also known as a verification node [18,20,21]
or each ECU attests itself using self-attestation capabilities such as
a secure boot [15,20]. However, both of these solutions are indeed
problematic. In the case where the system uses one node for attes-
tation, a single point of failure issue is present. If the verification
node is compromised or deactivated, the entire attestation process
will stop functioning as intended. In the case of self-attestation,
no entity takes the responsibility to verify the integrity of the en-
tire vehicle state. That is, to ensure that each node in the vehicle
consists of the right firmware for that particular configuration, indi-
cating that all ECUs will function correctly together. Furthermore,
no external communication is used for the attestation process. This
means that if the self attestation process is somehow disabled, it
will go unnoticed by other nodes.

Thus, a new and more robust solution is needed to be devel-
oped which is specially tailored for the automotive domain. The
two solutions presented in this article resolve the issues presented
above. Each ECU in the communication bus can attest the state of
the whole vehicle (or parts of it) independently, thus mitigating
the single point of failure. Furthermore, self-attestation without
external communication is not used.

4 PROPOSED FIRMWARE ATTESTATION
SCHEME(FAS)

In this section, we present the main components of our decentral-
ized firmware attestation scheme. The purpose of the firmware
attestation scheme is to measure and verify the state of all inter-
connected ECUs in a vehicle. By attesting the state of each ECU in
the vehicle, it can be determined if the state of the entire vehicle is
in a correct/consistent state.

We first provide an overview of how the attestation protocol
operates, and in the following subsections we discuss storing attes-
tation information and how to manage initialization and updates
of the ECU firmware.

Respondent

Trusted HW + SW

expected == current state

Expected_state Equal?—N2—> Inconsistent state 3§

Yes

Consistent state €7

Figure 2: ECU state verification

4.1 Protocol Overview

The firmware attestation scheme is a challenge and response type of
protocol. Two main entities are involved in the attestation process, a
challenger (the attester) and a respondent (the ECU being attested).

A fundamental assumption in this scheme is the inclusion of a
trusted hardware and software extension in each ECU. The reason
why a trusted extension is included is to achieve trust between
ECUs in a decentralized network. The trusted extension provides
secure storage of cryptographic keys and message authentication
code (MAC) generation. Furthermore, the trusted extension allows
for secure hashing of the ECU’s flash-memory in order to provide
the current state of the ECU. The attestation process can take place
in vehicle in motion or at boot time. Some ECUs such as rain wipers
can be turned on by the controlling sensor ECU when it detects rain
while the vehicle is still running. Please note that letting the trusted
component verify the firmware of its own ECU does not provide
sufficient protection since there is no external communication. If
the self-attestation process is disabled, it will go unnoticed by other
nodes.

In order for one ECU to attest the state of another ECU in the
network, four steps are taken as described below. Figure 2 shows a
schematic view of these steps.

i The challenger sends an attestation request to the respondent
in order to attest the respondent’s state.

ii The respondent’s trusted hardware and software extension
will then transmit to the challenger the current state hash-
value of the corresponding ECU’s flash-memory, accompanied
by its corresponding message authentication code (MAC). The
MAC provides message integrity and data origin assurance.
Moreover, the current state hash-value is the output produced
by hashing the respondent’s flash-memory. The current state
calculation is completely handled and executed by the respon-
dent’s trusted extension.

iii The challenger verifies the received MAC. If the MAC is not
genuine, then the respondent is said to be in an inconsistent

state. If the MAC is genuine, the challenger will proceed to
step 4. Furthermore, a genuine MAC indicates to the chal-
lenger that it can trust the current-state hash-value that was
received. This is because the challenger has now verified that
the message originated from the trusted hardware and soft-
ware extension of the respondent.

iv The challenger compares the current state hash-value received
to a pre-calculated hash-value, representing the expected state
of the respondents ECU. If the current state hash-value is equal
to the expected state hash-value the respondent is said to be
in a consistent state and if they are not equal the respondent
is said to be in a inconsistent state. If the certain set of ECUs
can’t trust each other in this case the user or driver of the
vehicle can be well notified with the corresponding ECUs
functional levels so that user can take manual control.

4.2 Storing attestation information

Recall from section 4.1 that in order to determine if the ECU in
question is in a consistent or inconsistent state the current state
hash-value and expected state hash-value need to be compared. The
challenger obtains the current state from a message transmitted
by the respondent’s trusted extension. The way ECUs obtain the
expected state of other ECUs is by storing them in a local database,
stored inside each ECU. Database could reside in a secure hardware
space or can be secured via any other mechanism as per the OEMs,
hence securing the database is out of the scope of this paper. This
is to provide every ECU the ability to gain access to the expected
state and therefore the ability to attest other ECUs.

Database

ECUID Address Counter Expected_state (hash-valt

1 Ox4A 4 >fa3d18cdl 9bd

2 0x78 3 7252¢1 dec53calad3f4b657dd

Figure 3: Information stored in the database

The database in each ECU stores five different fields, ECU_ID,
Address, Counter, Expected_state and Signature, as illustrated in
Figure 3 and further elaborated below.

e ECU_ID: The ECU_ID is the primary key of the database
and it is a unique ID used to uniquely identify to which
ECU the corresponding row containing the expected state
corresponds to. The ECU_IDs are only unique within the
same vehicle. Each ECU has a global ID meant to be used by
the OEM to identify the device globally, meaning that two
ECU of the same type, in two different vehicles, have the
same ECU_ID.

o Address: The network address of the ECU belonging to cor-
responding row. The network address enables transmission
of diagnostic attestation requests to the ECU of the corre-
sponding network address.

e Counter: The counter is used for replay protection when
the update, containing the expected value signed by the
OEM, is broadcast. The counter is increased for each received
firmware update.

o Expected_state: The Expected_state is the expected hash-
value of the flash memory. It indirectly depicts what state
the ECU flash-memory, containing the application, should
be in.

e Signature: The Signature is a cryptographic signature of the
concatenation of all the previous fields. This is to ensure each
ECU that the expected_state and its meta-data are genuine,
not altered and provided by a trusted source, the OEM.

The total required storage space will be dominated by the size
of the hash and signature values (2 - 32 bytes) multiplied with the
number of ECUs. This number will not exceed a few kilobytes at
most, making it a lightweight solution.

4.3 ECU Initialization and firmware updates

So far we have described how the protocol operates during normal
operation. However, it is just as important to consider how to ini-
tialize the states and how to update the firmware of the ECUs while
maintaining the proper functionality of the attestation scheme.

4.3.1 Initialization. When ECUs are replaced the database is ini-
tialized by sending a database retrieving request to the Update agent
ECU. The Update agent is the gateway between a vehicle’s internal
communication bus and the OEM’s back-end services over cellular
data. Once the Update agent has received the database retrieving
request it will then respond with the contents of its own database.
The request and response messages are signed and authenticated.
This operation requires a secure key exchange mechanism such as
Double ratchet.

If the Update agent itself is replaced, the database content is
retrieved from the cloud, since the Update agent is the only ECU
that has an Internet connection. If in case that the Update agent is
not reachable when a new node joins the in-vehicle ECUs, then the
database from the existing ECUs can be queried as they maintain
the initial database state. The newly joined ECU can validate the
update as it has been signed with the OEM key. Its design can be
OEM implementation specific as any simple timeout-based solution
can be used.

4.3.2 Firmware updates. When updating an ECU’s firmware, its
expected state will also change. In order for the attestation pro-
cess to still function properly after an ECU firmware update, the
expected state (hash-value) of the corresponding ECU must be up-
dated in each ECU’s database. This means that when the update is
received from the cloud or from a physical diagnostic session in a
repair-shop, the new expected state of the intended ECU, signed by
the OEM, must be broadcast in order for all ECUs to update their
databases.

Figure 4 shows a visual representation of the update process of
the expected state stored in each database. The details of each step
are described below.

OEM Cloud

Broadcast {UPDATE} 0EM_Signed

T I
Update Agent ECUs

Figure 4: ECU firmware update

i The update is sent from the cloud to the Update agent containing
the actual update, new expected_state and its corresponding
meta-data signed by the OEM, see figure 4. The Update agent is
the gateway between the internal CAN network and the cellular
networks. Update, {ECU_ID, Address, Counter,
Expected_state, signature}sign OEM

The new expected value and its corresponding meta-data are
broadcast from the Update agent to all connected ECUs publicly.
{ECU_ID, Address, Counter,

Expected_state, signature}signioEM

Upon receiving the broadcast message containing the new ex-
pected state of the ECU being updated, the ECU receiving that
message stores the message arguments including the signature
in their database. The received message is only stored in the
database if the Counter argument in the update message is larger
than the corresponding value in the database. This is to prevent
replay attacks of the broadcast message. Furthermore, the mes-
sage is signed by the OEM such that all ECUs can be assured
that its genuine.

=

i

=

ii

Countermessage > Counterpp

5 MULTI-ECU ATTESTATION

The attestation scheme presented in the previous section relates
a pair of ECUs, one challenger and one respondent. Now we con-
sider the problem how to attest the firmware for multiple ECUs
in the vehicle. We discuss two solutions to this problem, one basic
serial version, and one optimized version that performs requests in

parallel.

5.1 Serial Attestation

In the serial solution a unique attention request is sent from the
attesting ECU (i.e., the ECU that has a need to verify the state of
other ECU’s) to each and every ECU in the network. The attesta-
tion requests are sent serially, one after the other. That is, first an
attention request is sent to ECU 1, thereafter ECU 2 and so on. The
steps involved in the attestation process are the following:

i The challenger sends an attestation request, indicating that
it wants to attest the receiving node, authenticated with a
symmetric-key. This is done for every entry in the database.

{attestation_reque‘St}MAcChallenger,Respondent

ii The respondent responds with the current state hash-value of
the flash memory provided by the trusted extension of the ECU,
authenticated with a symmetric key.

{Current_state(hash-value)}MACcpalienger,Respondent

iii The challenger compares the received current state to the ex-
pected state stored in the database. If the current and expected
states are equal then the ECU in question is in expected state.

Expected_state == Current_state

In several of the steps above, we assume the existence of a shared
symmetric key. There are several ways in which such a key can be
established (see e.g., the double ratchet method 5 which provides
key-establishment and protection from replay attacks), and it is out
of scope for this paper to evaluate these mechanisms.

The attester ECU performs the same attestation process for each
entry in its database in order to attest that all ECUs in the network
are in a consistent state and therefore verifying that the state of
the whole vehicle is consistent.

5.2 Parallel Attestation

In the parallel solution a single attestation request is broadcast
to all connected ECUs. That is, only one attestation message is
sent/broadcast to all connected ECUs. The steps involved in the
parallel attestation process are the following:

i The challenger broadcasts an attestation request, indicating that
it wants to attest all the connected ECUs. The attestation re-
quest is sent openly without any cryptographic authentication.

attestation_request

=%

ii The respondents, when the broadcast attestation message is
received, respond to the challenger with the current state hash-
value of their flash memory provided by the trusted extension

of the ECU, authenticated with a symmetric key.

{Current_state(hash-value)}MACchalienger, Respondent

=

iii The challenger buffers all the received responses and starts
to process the responses one by one. For each response the
received current state hash-value is compared to the expected
state stored in its database. If the current and expected states

are equal then the ECU in question is in expected state.
Expected_state == Current_state

Serial and parallel approaches can also be taken as synchronous
and asynchronous solutions. In serial approach, the ECU waits until
the current attestation ether completes or fails and then subsequent
request is made which is a synchronous nature. On the other hand,
in parallel approach the ECU can simultaneously make many re-
quests and collect their responses and act accordingly, therefore
behaving like an asynchronous activity. While as some OEMs might
want to opt for a hybrid approach for different types of CAN buses
and nature of the ECUs based on their function level.

Shttps://signal.org/docs/specifications/doubleratchet/

6 EVALUATION

The purpose of this section is to explain how the attestation scheme
(including the two multi-ECU variants) was tested, how the test
results were assessed and what the outcome of the tests were.

6.1 Metrics

In order to assess the effectiveness of the proposed solutions, two
tests were performed: one test to assess detection performance and
the second to assess timing performance. In both tests the num-
ber of ECUs was gradually increased until four. The inclusion of
four ECUs means that there are one challenger and three respon-
dents. Unfortunately, larger scale tests were not possible due to
limited number of ECUs available and high overhead of manual
configuration.

6.1.1 Detection performance. The detection performance test is a
test that verifies that the consistency verification mechanism actually
detects tampering of the flash-memory in ECUs/nodes and also
detects ECUs with stale firmware.

To assess the detection performance we used the FI metric [2].
The F1 metric takes into account true positives, false positives
and false negatives in order to produce a value that describes the
accuracy of the system under test. The F1 score produces a value
scaled between 0 and 1, where 1 corresponds to a perfect result (i.e.,
no false positives and no false negatives).

6.1.2 Timing performance. The timing performance test is a test
that analyzes two different aspects related to the response-time of
the attestation process, scalability and predictability. The response-
time is the time it takes for the entire attestation process to be
performed in its entirety, starting from the moment that the attester
engages the attestation process.

e Scalability: The purpose of the scalability is to assess if the
attestation process is completed within a reasonable time
when the number of ECUs are increased. This is done by
analyzing the response time of the consistency verification
mechanism provided by the timing performance test.

Predictability: The purpose of the predictability test is to
evaluate the variation of the response-time of the proposed
solution. This is done by calculating the standard deviation
of the response-times provided by the timing performance
test. By analyzing the degree of deviation from the mean
response-time, it can be determined how close the data set’s
different data point are to the mean value. The smaller the
standard deviation is, the more predictable is the proposed
solution’s response-time.

6.2 Experimental Setup

This section presents the setting in which attestation solution was
tested. Furthermore, the cryptographic functions and key man-
agement methods used for the proof-of-concept application are
presented.

6.2.1 Proof-of-concept application. To prove that the two serial
and parallel solutions actually function as expected, a proof of con-
cept application was developed. This proof of concept application

was implemented on real ECUs. The two proposed solutions were
implemented on four ECUs with 700 MHz ARM processors. The
ECUs in which the solution was implemented on run a Linux based
operating system, meaning that regular Linux based programming
libraries could be used. The programming language in which the
firmware containing the solution was C++. tECU The firmware was
installed on ECUs using a USB interface which was connected to the
ECU in question and the laptop used for programming and testing.
The attestation protocol was implemented over the CAN bus at
the UDS protocol level. The Unified Diagnostic Services (UDS) is a
protocol used for diagnostics of ECUs, it also allows the diagnos-
tic tester (client) to control diagnostic functions in ECUs (servers).
This protocol is independent of the physical layer so the application
could also operate over an automotive Ethernet network.

The solution was implemented on the UDS protocol level. The
reason why it was implemented on such a high level layer, was
mainly for two reasons. The first reason was that it is easier to
explain the implementation of the solution on a more high level
point of view. The second reason is that when OEMs move to using
Ethernet instead of CAN, the UDS implementation would still func-
tion. The reason why this is the case, is due to the utilization of the
UDS protocol for diagnostics over both communication mediums.
Furthermore, UDS protocol messages only consist of limited num-
ber of elements that are easy to understand. This makes it easier
for readers without automotive experience to understand how it
all functions and fits together.

6.2.2 Test environment. The test environment was built on a so
called plugboard which connects all the ECUs together with a CAN
bus. Each ECU’s CAN high and low wires were connected to this
plugboard. Furthermore, a power-supply was also connected to
distribute the electrical power needed.

In order to monitor the CAN messages sent over the CAN bus
between ECUs, a USB interface provided by Vector® was used. This
USB interface converts logical CAN messages transmitted over the
CAN bus into a digital format that a computer can understand.
Moreover, this USB interface can also transmit new messages cre-
ated on a computer to the CAN bus.

For logging, debugging and testing, a program called CANa-
lyzer was used, which as the name suggests analyzes transmitted
CAN messages. The program can log CAN messages and will also
segment the messages captured into the parameters that a CAN
message consists of. As an example, it can highlight the payload of
each message.

6.2.3 UDS protocol. The solutions described in section 5, were im-
plemented using the UDS protocol by utilizing a diagnostic service
called ReadDataByldentifier. The ReadDataByldentifier service was
used to send attestation requests and receive attestation responses.

6.24 Key management. For the timing and detection performance
tests we use a simple pre-distributed key. The tests we performed
do not include the key distribution phase, so they are not affected
by this limitation. Implementing and evaluating the performance
of cryptographic mechanisms for key distribution such as Double
ratchet on real ECUs is left to future work.

Chttps://vector.com

F1-Score

| S | P

0 — — — —
13 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61
#Tests

eeee#ECU = #Tampered F1 Score

Figure 5: Result of the correctness test.

The reason for this is because double-ratchet is a rather complex
protocol to implement and test. Furthermore, the implementation
that can be found on the Double-ratchet homepage utilizes special
libraries that are not available on the ECU used for the implementa-
tion. Therefore, the only logical outcome was to skip Double-ratchet
and only have a pre-distributed key used for authentication that
does not change.

In each ECU’s database, the pre-shared key is also stored. Fur-
thermore, the signatures provided by the OEM that were supposed
to be stored inside each ECU’s database, were not used.

The reason for this is because for proof-of-concept, testing pur-
poses, the use of signatures inside the database will not change the
outcome of the test. The signatures are only used to prove that the
content of the database originated from a trusted source, the OEM
and are not used in the attestation process. In real life the signature
would only be verified at the start, once the database content is
loaded into the program and during firmware updates. The use of
signature inside the database would not change the response time
nor the accuracy of the attestation process.

6.2.5 Cryptographic functions. The cryptographic function used
for message authentication was HMAC-SHAZ256.

6.3 Detection Performance

In this section, the results of the detection performance test is
presented. The two implemented solutions produced the same de-
tection performance results. The reason for this is due to using
the same method for detection in both solution by comparing the
current state to the expected state.

Figure 5 shows the results of the F1 score for each iteration of
the test, as well as the correlation between the F1 score, number
of ECUs and number of tampered ECUs in the test. As it can be
seen in figure 5 the F1 score stays at a constant value of 1 during all
iterations of the test. The F1 score of 1 indicates perfect accuracy
meaning that it can detect tampering of software, parameters and
configurations as expected.

In other words, the solution always detects tampering of soft-
ware, parameters and configurations during testing. Furthermore,
the change in number of ECUs included in the test and number
of tampered ECUs, do not affect the F1 score. Hence, there is no

correlation between the F1 score, number of ECU and number of
tampered ECUs.

6.4 Timing Performance

The timing performance test measures the response time between
the start and end of the attestation process. Two different properties
are analyzed Scalability and Predictability.

6.4.1 Scalability. Figure 6 presents a visual representation of the
scalability test result.

Response-time

\

y=0,01x + 2,49

Response-Time (s)

o Rk N W B U O

~
w
IS

#ECU

® Serial solution Parallel solution

Figure 6: Result of the scalability test.

o Serial Solution: It is clear from the figure that the response
time of the serial solution increases linearly with the number
of ECUs, with a slope of 1.82. Meaning that the response-time
increases with approximately 1.8s each time the number of
ECUs included in the test is increased. If we consider that
today’s vehicles can have around 40 ECUs installed, we can
estimate how much time it would take to complete the serial
attestation process at that scale. As can be seen in figure 6,
the following linear equation represents the approximate
response-time for each number of ECUs included in the test
depicted by variable x.

y=1.82(x—-1) (1)

By replacing variable x with 40 we get the approximate
response-time of the attestation process of 40 ECUs. As it
turns out, the time it takes to attest 40 ECUs is approximately
71s, more than one minute.

The reason why the serial solution’s attestation pro-
cess takes so much time to complete is because of how di-
agnostic requests are implemented in the chosen ECU. The
UDS protocol is implemented in such a way that several UDS
messages cannot be sent at the same time. Every time the
attester sends out an attestation request, it needs to wait for
the response before sending the next attestation message.
The inability to send several diagnostic requests at the same
time is a significant bottleneck. If several diagnostic request
could be sent directly after each other, which can be done
by tweaking the UDS implementation, the increase of the
response time for each new ECU would most probably be
more similar to the response time of the parallel solution
presented in the following section.

200 W Serial
approach
I Parallel
approach
150
2
<
8
k3 100
@
E
E
50
0 _I-—J
0 20 40 60 80 100

Number of ECUs

Figure 7: Time comparison of the proposed solutions.

Standard Deviation

007 0,0636
0,06
20,05
80,04
= 0,0289 0,0278
£0,03 @.
£ 1 0p 0020 o
go, 0,023
001 00123
0
2 3 4
#ECU

—e— Serial Solution Parallel solution

Figure 8: Result of the predictability test.

e Parallel solution: The difference in response time when
adding one ECU for the parallel solution is approximately
0.01s compared to 1.8s for the serial solution. As can be
observed from the diagram, the equation for the trend-line
is the following:

y =0.01x + 2.49 (2)

If as the serial solution consider that today’s vehicles
consist of 40 ECUs, we can approximate how much time
it would take to attest every ECU in a modern vehicle. By
replacing variable x in the equation with 40, we get the
response-time 2.9s which is a reduction of 96% compared to
the serial solution.

The graph in Figure 7 depicts the timing performance of the
serial and parallel solutions. We can clearly see that as the number
of ECUs increases, the timing performance gap in serial and paral-
lel approach increases. Parallel approach takes less time and thus
should be used in certain scenarios where parallel requests are well
suited.

6.4.2 Predictability. Figure 8 shows a visual representation of the
predictability/standard deviation test result.

From Figure 8 it can be observed that the standard deviation in
relation to the serial solution seems to be increasing when the num-
ber ECUs is increasing. On the other hand, the standard deviation
of the parallel solution is actually decreasing when the number of
ECUs included in the test is increasing. Even if the absolute num-
bers are small, the standard deviation of the serial solution is more
than 5 times as high than the parallel solution in case of 4 ECUs.

6.5 Discussion and Future work

By defining the decentralized attestation protocol for in-vehicle
network and conducting experiments with real ECU nodes, we see
that our proposed architecture successfully works and verifies the
protocol functioning. Our experiment deals with four ECUs, which
can be considered a small number, but in general a vehicle may
contain up to 100 ECUs which is once again not a number where
scalability of the solution can be a problem.

We are aware of the fact that some internal implementations are
OEM specific, one of which is the update mechanism and ECUs
memory management. OEMs use different techniques to update
the devices depending upon a number of factors such as, type of
memory used on device, implementation related trade-offs, auto-
matic over-the-air(OTA) or manual physical updates. In this paper,
we have described an update framework of which the internals
can be chosen accordingly, most of the companies try and keep the
internals to themselves for security related purposes.

The security mechanism between the ECUs may be further im-
proved with the Host Identity Protocol (HIP) [6]. The future net-
work connectivity of the ECUs with the mainframe provider can be
tightened with HIP, which will not only open up faster and more
accountable ways to configure the ECUs but also protect against
attacks on the update process.

For in-vehicle communication, CAN is widely used in implemen-
tations including our paper. CANs use the broadcasting mecha-
nism which is not safe and multiple attacks can be devised easily
chocking-up the in-vehicle communication [3]. In future, there can
be more robust measures to isolate the current broadcast system
to a novel end-to-end or a private network for defined groups of
ECUs.

In the attestation protocol described in Section 4.1, upon receiv-
ing the attestation request the respondent is sending the hash of the
flash memory present on the ECU accompanied by it’s MAC. Send-
ing MAC only can very well be used to figure out that whether or
not the ECU is being tempered with and then not to communicate
with the tempered ECU and report this issue to the user. Sending
the original hash can be used to figure out to which part of the
ECU is being tempered with by sending multiple hashes of different
memory regions. We leave its implementation to the specific OEM
providers as they can design this specific mechanism considering
their security constraints accordingly.

The attestation protocol works in a Challenger and Responder
mode, however during the time of the challenger’s request, chal-
lenger can attach its hash and MAC to identify itself beforehand
so that one cycle of message transmission can be saved and both
sides can attest each other in a single RTT. It will also increase the
size of the request packet for which the current CAN architecture
needs to be modified.

In the proposed solution an attacker can try to exploit the pro-
gram by manipulating the code working inside the RAM present in
the ECU.

So far we have not described the events when an ECU incon-
sistency is detected. This depends on how critical ECU-controlled
system is. For auxiliary subsystems, such as air-conditioning or
infotainment, a warning light on the driver’s dashboard may suffice.
For critical subsystems such as steering or breaks, the vehicle should
initiate an automatic graceful showdown, such as slowing down
and stopping safely. If the vehicle is in a parked state, it should not
naturally even move unless a diagnostic mode is enabled by the car
service company.

7 CONCLUSION

Attestation of ECUs is important to prevent accidents to malicious
or accidental modification of firmware in vehicles. All existing
solutions had only one node designated for the attestation process,
also known as the verification node. If the verification node fails, the
entire consistency verification or attestation process would stop
functioning. This fundamental flaw called for a new attestation
protocol to be developed. Hence, we designed an attestation process
that is more robust, where all connected ECUs in the vehicle can
by themselves attest the state of the whole vehicle.

We proposed and evaluated two different solutions: a parallel
solution and a serial solution. By empirical evaluation of the two
proposed solutions, it could be concluded that the parallel solution
is more robust and significantly faster than the serial solution. The
response time of the serial solution increased by 1.8 sec with each
new ECU added to the test, while the parallel solution increased
with 0.01 sec. An estimation of the attestation response-time of a
network consisting of 40 ECUs based on the trend-line was con-
ducted. It was shown that for the serial solution the response time
is approximately 71 sec while for the serial solution the response
time would be around 3 sec. That is, a 68 sec difference between
the serial and parallel solutions.

The reason for this significant difference in performance is due
to implementation restrictions. Moreover, from the F1 score it could
be established that both the parallel and serial solutions always
functioned as expected by providing the correct ECU state assess-
ment.

ACKNOWLEDGEMENTS

A. Gurtov and A. Rawat were supported by the Center for Industrial
Informatics (CENIIT) project 17.01. M. Asplund was supported by
RICS: the research centre on Resilient Information and Control
Systems (www.rics.se) financed by Swedish Civil Contingencies
Agency (MSB).

REFERENCES

[1] C. Alcaraz, J. Lopez, and S. Wolthusen. OCPP protocol: Security threats and
challenges. IEEE Transactions on Smart Grid, 8(5):2452-2459, Sep. 2017.

[2] S. M. Beitzel. On understanding and classifying web queries. Illinois Institute of
Technology Chicago, IL, 2006.

[3] P. Carsten, T. R. Andel, M. Yampolskiy, and J. T. McDonald. In-vehicle networks:
Attacks, vulnerabilities, and proposed solutions. In Proceedings of the 10th Annual
Cyber and Information Security Research Conference, CISR ’15, pages 1:1-1:8, New
York, NY, USA, 2015. ACM.

[4] R. I Davis, A. Burns, R. J. Bril, and J. J. Lukkien. Controller area network

(CAN) schedulability analysis: Refuted, revisited and revised. Real-Time Systems,
35(3):239-272, 2007.

Y. Gui, A. S. Siddiqui, and F. Sagib. Hardware based root of trust for electronic
control units. In SoutheastCon 2018, pages 1-7, April 2018.

A. Gurtov. Host identity protocol (HIP): towards the secure mobile internet. John
Wiley & Sons, 2008.

T. Hoppe, S. Kiltz, and J. Dittmann. Security threats to automotive can networks—
practical examples and selected short-term countermeasures. Reliability Engi-
neering & System Safety, 96(1):11-25, 2011.

A. ITbrahim, A.-R. Sadeghi, and G. Tsudik. Healed: Healing & attestation for low-
end embedded devices. In 23rd International Conference Financial Cryptography
and Data Security (FC 2019), 2019, February 2019.

[15] D. K. Nilsson, L. Sun, and T. Nakajima. A framework for self-verification of

firmware updates over the air in vehicle ECUs. In GLOBECOM Workshops, 2008
IEEE, pages 1-5. IEEE.

D. K. Nilsson, L. Sun, and T. Nakajima. A framework for self-verification of
firmware updates over the air in vehicle ecus. In 2008 IEEE Globecom Workshops,
pages 1-5, Nov 2008.

H. Oguma, A. Yoshioka, M. Nishikawa, R. Shigetomi, A. Otsuka, and H. Imai. New
attestation based security architecture for in-vehicle communication. In Global
Telecommunications Conference, 2008. IEEE GLOBECOM 2008. IEEE, pages 1-6.
IEEE.

E. Shi, A. Perrig, and L. Van Doorn. Bind: A fine-grained attestation service for
secure distributed systems. In Security and Privacy, 2005 IEEE Symposium on,
pages 154-168. IEEE.

[9] P.Kleberger. On Securing the Connected Car. PhD thesis, 2015. [19] W. Stephan, S. Richter, and M. Muller. Aspects of secure vehicle software flashing,
[10] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, pages 17-26. Springer, 2006.
B. Kantor, D. Anderson, H. Shacham, and S. Savage. Experimental security anal- [20] H. Uppal. Enabling trusted distributed control with remote attestation. Under-
ysis of a modern automobile. In 2010 IEEE Symposium on Security and Privacy, graduate Thesis, 2010.
pages 447-462, May 2010. [21] X. Yang, X. He, W. Yu, J. Lin, R. Li, Q. Yang, and H. Song. Towards a low-cost
[11] W. Lawrenz and W. Lawrenz. CAN System Engineering: From Theory to Practical remote memory attestation for the smart grid. Sensors, 15(8):20799-20824, 2015.
Applications. Springer-Verlag London, 2 edition, 2013. [22] Q. Zhou, L. Fei, W. Yi-Huai, and W. Chao. New ECU attestation and encryption

[12] K. Lemke, C. Paar, and M. Wolf. Embedded security in cars. Springer, 2006.

[13] V. C. Miller C. A survey of remote automotive attack surfaces. BlackHat USA,
2014.

[14] A.G. Morosan and F. Pop. Ocpp security - neural network for detecting malicious
traffic. In Proceedings of the International Conference on Research in Adaptive and
Convergent Systems, RACS ’17, pages 190-195, New York, NY, USA, 2017. ACM.

mechanism for in-vehicle communication. DEStech Transactions on Engineering
and Technology Research, (ssme-ist), 2016.

	Abstract
	1 Introduction
	2 background
	2.1 Electronic Control Unit
	2.2 Controller Area Network
	2.3 Double Ratchet

	3 Related Work
	4 Proposed Firmware attestation scheme(FAS)
	4.1 Protocol Overview
	4.2 Storing attestation information
	4.3 ECU Initialization and firmware updates

	5 Multi-ECU attestation
	5.1 Serial Attestation
	5.2 Parallel Attestation

	6 Evaluation
	6.1 Metrics
	6.2 Experimental Setup
	6.3 Detection Performance
	6.4 Timing Performance
	6.5 Discussion and Future work

	7 Conclusion

