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Summary
Blockchains are becoming mainstream and new applications of blockchains are continuously
being presented. Permissioned blockchains promise to remove some of the downsides of the first
generation of blockchains and provide more efficient and faster operation. But can they match
traditional large-scale databases? In this work we take a pure performance-oriented approach
and compare two popular frameworks, Hyperledger Fabric and Apache Cassandra as repre-
sentatives of permissioned blockchains and distributed databases respectively. We compare
their latency for varying workloads and network sizes. The results show that for small sys-
tems, blockchains can start to compete with traditional databases, but also that the difference in
consistencymodels anddifferences in setup canhavea large impacton the resultingperformance.
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1 INTRODUCTION
Thebenefits of building futuredistributed systemson topof blockchains
are being explored among a much wider range of applications than the
original cryptocurrency application in which they were promoted 1. The
recent propositions of adopting blockchains in diverse domains with
widely varying requirements, include insurance, land registry, journal-
ism, supply-chain management, food safety, and have made it obvious
that a one-size-fits-all approach for accessing and updating information
in a distributed manner where trust cannot be fully assumed does not
make sense.
A major diversion from the public (permissionless) blockchains has

recently been proposed 2 where the arguments for a permissioned
blockchain are presented. These are blockchains where a mere reliance
on the identity of the peers will exist, but the transactions are not
trusted to be recorded by a centralised authority.
As an example, a distributed ledger, Hyperledger Fabric (from now

on called simply Fabric), is proposed as an open source platform where
various parties can initiate transactions and validate them in a transpar-
ent manner. Among others, a platform for implementing permissioned
blockchains with pluggable components makes the adapatability of the
platform plausible. The basic services that Fabric provides range over

an identity provision with cryptographic membership service, an order-
ing service, an isolated execution environment for various contracts,
and a dissemination service. Compared to classical replicated databases
where transactions are ordered at each node and then subjected to
local execution, Fabric has been built around an execute-order-validate
architecture. The claim is that this will provide a means of combin-
ing the security, performance, and consistency requirements in such
distributed applications.
On the other hand, critics of the blockchain idea claim that it is

a hype with no real technical improvement over existing techniques.
Blockchains have been criticized of being slow 3, potentially insecure 4,
or just that inmost cases it is simply notworth the trouble 5. The alterna-
tive, for example to add a cryptographic layer for non-repudiation on an
existing distributed database would perhaps meet all the requirements
but with better performance.
This paper focuses on the performance aspect of the permissioned

blockchains. Specifically, we address the question: what is the benefit
that a permissioned blockchain brings, simply in terms of performance,
if we compare with a distributed database architectures that have been
subject tomany years of optimisation?
The paper adopts an experimental approach to perform a controlled

benchmarking on two selected platforms. This is done by building a
common synthetic application that creates and accesses transaction
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outcomes in a distributedmanner. Among several considered platforms,
Cassandra and Fabric were selected for exposure to similar loads and
transaction characteristics. The latency of read and write operations is
studied under varying network size and load. To the best of our knowl-
edge this is the first published comparison of permissioned blockchains
and distributed databases in terms of performance.
The contribution of the paper are as follows:
• A brief comparison of five blockchain implementation frame-
works and four database frameworks before selecting the two
candidate platforms for experimentation.

• Studying the insert and read latencies of the two platforms for
similar system sizes andworkloads

• Comparing the scalability of the platforms (in a restrained envi-
ronment with similar resources) as the load mix and volume
changes, for up to 20 participating nodes.

Our work indicates that each of the selected frameworks have ben-
efits in some setting. In particular, we found that since Fabric is built to
run isolated contracts inside the implementation mechanism Docker it
is optimized to utilize Docker in amore effectiveway. Because of this its
overhead is smaller for Fabric.
When it comes to read and insert latencies Cassandra performs bet-

ter than Fabric if the Docker overhead is factored out. However, for
small networks and moderate loads, the difference between the two
systems is quite small.
The rest of the paper is organized as follows. Section 2 provides

a short overview of some existing permissioned blockchains and dis-
tributed databases, and explains the rationale for choosing Fabric and
Cassandra as representatives in this performance study. Section 3 con-
tains a background on the Hyperledger Fabric and Cassandra frame-
works which is needed to understand the experimental design and
results. The experiment design is described in Section 4, followed by the
results in Section 5. Section 6 describes relatedwork and finally, the dis-
cussion and conclusion are contained in sections 7 and 8 respectively.

2 REVIEWOFAVAILABLE FRAMEWORKS
As a pre-study to the performance comparison presented in this paper,
we provide an overview of available permissioned blockchains and dis-
tributed databases, and select one representative in each category. The
purpose if this study is two-fold. First, by carefully and systematically
selecting two frameworks that match the chosen criteria, we provide
a stronger foundation for understanding what this comparison can say
about permissioned blockchains and distributed databases in general.
Second, there are many variations of deployment and potential use-
case requirements which can be tuned and adjusted so that a particular
framework outperforms the others. In this paper we are interested in
the intersection of requirementswhere both types of frameworks could
be used. Therefore, we select two frameworks that are as comparable

as possible with regards to potential use-cases and architectural style.
Since blockchains can be considered more specialized than distributed
databses at large, we first select a framework from this category, and
then find a distributed database that can be configured tomatch it.
We start the section by describing the selection criteriawe have con-

sidered, followed by one subsection for blockchain frameworks and one
for distributed databases.

2.1 Criteria
To determine appropriate selection criteria we started from two basic
requirements. It shouldbepossible todeploy andconfigurea solutionon
current platforms with reasonable effort, meaning that there should be
documentation, and active development of the project. Moreover, the
study should be meaningful and to the largest extent possible founded
on existing research. Therefore, we defined the following criteria to be
used both for the blockchain and database frameworks. The criteria
were evaluated duringMay 2018.

• There is publicly available documentation of the framework. This
criterion was chosen to ensure that the framework could be
deployed and configured.

• Updates to the framework have been released during 2018. This cri-
terion was chosen to ensure that the framework is compatible
with current software environmnents (e.g., libraries, operating
system etc).

• The performance of framework have been studied and reported in sci-
entific literature. This criterion was chosen to be able to validate
ourmeasurements with what has been previously reported.

• The underlying architecture is peer-to-peer. This criterion was cho-
sen to limit the scope of the study to systems that emphasize a
distributed deployment (in the spirit of blockchains).

In addition to these criteria we have two criteria that are specific for
the blockchain frameworks:

• The permission property is be permissioned or permissionable. This
criterion was chosen to limit the scope of the study to frame-
works that can support a permissioned operation.

• The blockchain scope is private or possible to configure to private.
This criterion was chosen to limit the scope of the study to
frameworks that support private operation.

2.2 Permissioned Blockchain Frameworks
We selected five major open source blockchain frameworks to analyze
further.
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MultiChain
MultiChain is a framework for private and permissionable blockchains
presented in a white paper by Greenspan 6. The source codewas forked
fromBitcoin andwas then extended.MultiChain is configurable inmany
ways, for example the permission property and level of consensus. One
of the key features presented by Greenspan is the mining diversity, a
round robin schedule which selects the validator of each block. In ver-
sion 2.0, which is still in development as of August 2018 but available
as a preview,MultiChainwill support applications other than cryptocur-
rency. It is primarily intended as a framework for private blockchain
within or between organizations according to Greenspan.

Hyperledger Fabric
Hyperledger is a collection of open-source blockchain frameworks
developed in the context of an initiative from the Linux Foundation. In
the Hyperledger family there are several frameworks for blockchains
and the project called Fabric is highly modular and permissioned. An
instance of the Fabric blockchain framework consists of a peer-to-peer
network, which contains nodes, a membership service provider (MSP),
an ordering service, smart contracts or chaincode, and the ledger 2.

OpenChain
OpenChain is an open-source framework for distributed ledgers which
leverages blockchain technology.OpenChain is a framework for permis-
sioned distributed ledgers which runs on a client-server architecture
with configurable blockchain scope. According to OpenChain docu-
mentation OpenChain is not strictly a blockchain but rather it crypto-
graphically links each transaction to the previous transaction instead of
bundling transactions into blocks that are linked1. OpenChain supports
running smart contracts and is therefore not specific to cryptocurrency.

HydraChain
HydraChain is a framework for permissioned and private blockchains,
and it is an extension of Ethereum. It is fully compatible with Ethereum
protocols and smart contracts. Developers can also write their own
smart contracts in Python. HydraChain requires a quorum of the valida-
tors to sign each block as its consensusmechanism 2.

Hyperledger Sawtooth
Sawtooth is another open-source project under the Hyperledger
umbrella. It is a framework for running permissionable distributed
ledgers. Since it is permissionable it can be configured to be either
permissioned or permissionless. Sawtooth provides a clear separation

1https://docs.openchain.org/en/latest/general/overview.html#what-is-
openchain

2https://github.com/HydraChain/hydrachain

between the platform onwhich the application is running and the appli-
cation, the smart contracts, itself 3. Smart contracts can be written by
the developer in Python, JavaScript, Go, C++, Java, or Rust. Sawtooth
also enables transactions to be executed in parallel and is compatible
with Ethereum.

Choosing a Permissioned Blockchain Framework
Table 1 lists the chosen blockchain frameworks together with their
compatibility with the desired properties.
OpenChain has the wrong architecture and HydraChain isn’t an active
project which makes both of them disqualified. As can be seen in table
1, bothMultiChain and Sawtoothmatch all criteria, except being bench-
marked in published literature. Fabric matches all requirements and is
featured in several published papers. The latency of Fabric is bench-
marked in papers by both Androulaki et al. 2 and Dinh et al. 7. The
consensus process is also benchmarked by Sukhwani et al. 8. For these
reasonsHyperledgerFabricwas chosenas thepermissionedblockchain.

2.3 Distributed Database Frameworks
We selected four major open source distributed database frameworks
to analyze further.

MongoDB
MongoDB is a distributed NoSQL database which stores data in JSON-
like documents, not in tables4. This database uses replica set as a way of
categorizing their replicas. A replica set is a group of nodes that main-
tain the samedataset5. In a replica set there are oneprimary nodewhich
receives all the writes and the other nodes are secondary. MongoDB is
open-source and supports over 10 programming languages.

HadoopDistributed File System
The Hadoop Distributed File System (HDFS) is an open-source dis-
tributed file system under the Apache Hadoop project. HDFS is tuned
to support large datasets and is optimal for batch processing rather
than interactive sessions 6. HDFShas amaster-slave architecturewhere
master nodes control the namespace and file access and the slave nodes
manage storage.

HBase
Base is an open-source NoSQL distributed database from The Apache
Software Foundation. This database is tuned for very large data sets,
preferably over hundreds of millions of rows7. HBase is an extension of
HDFS and therefore also runs of amaster-slave architecture.

3https ://sawtooth.hyperledger.org/docs/core/releases/latest /introduc-
tion.html

4https://www.mongodb.com/what-is-mongodb
5https://docs.mongodb.com/v3.4/replication/
6https://hadoop.apache.org
7http://hbase.apache.org/book.html7B%5C#%7Darch.overview
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TABLE 1Overview of blockchain frameworks

Name Permission properties Benchmarked Blockchain scope Architecture Documentation Active project
MultiChain Permissionable No Configurable P2P Limited Yes
Fabric Permissioned Yes Private P2P Yes Yes
OpenChain Permissioned No Configurable Client - Server Yes No
HydraChain Permissioned No Private P2P Limited No
Sawtooth Permissionable No Private P2P Yes Yes

Apache Cassandra
ApacheCassandra is aNoSQLdistributeddatabaseoriginally developed
by Facebook to accommodate its growing storage need 9. Every node
is identical in Cassandra and it is a full distributed system running on a
peer to peer network.

Choosing a Distributed Database Framework
The investigated frameworks and their compatibility to the require-
ments are listed in table 2.
Both HBase and HDFS are tuned for very large datasets and better
for batch processing, whereas we focus on smaller datasets with more
strict requirements on consistency in presence of concurrent writes.
MongoDB matches all the given criteria, however the replication and
consistencymodel aremore easily tuned inCassandra. This is important
since the distributed database needs to be configurable to work as sim-
ilarly to Fabric as possible. For this reason and since it matches all given
criteria and had a well-known consensus protocol, Paxos, Cassandra
was chosen as the distributed database.

3 OVERVIEWOF THECHOSEN FRAMEWORKS
This section covers the basics about the architecture and operations of
Fabric and Cassandra. This information will be needed to understand
the choicesmade in the experiment design aswell as someof the results.

3.1 Hyperledger Fabric
The nodes which form the Fabric network can have one of three differ-
ent roles, described by Androulaki et al. 2:

• Client - Clients submit transaction proposals to the endorser and
broadcast the transaction proposal to the orderer.

• Peers - Peers validate transactions from the ordering service
and maintain both the state and a copy of the ledger. Peers can
also take the special role of endorsement peer. The number of
endorsement peers is determined by the endorsement policy,
which is set by the developer.

• Orderer - All the orderer nodes collectively run the ordering ser-
vice and uses a shared communication channel between clients

and peers. The number of ordering nodes is small compared to
the number of peers. The ordering service ensures that trans-
actions are totally ordered on the blockchain 2. The ordering
service enforces the consensus mechanism of Fabric and can
be implemented in different ways. With version 1.1.0 of Fab-
ric two types of ordering services are provided by Hyperledger.
The first is SOLO which is a centralized ordering service, which
is not intended for production and should therefor not be used
when benchmarking. The second is an ordering service which
uses ApacheKafka andApache Zookeeper and is built to be used
in production.

3.1.1 Transaction Flow
The operations of Fabric follow a paradigm for the transaction flow
called execute-order-validate paradigm. This is a new type of transac-
tion flow for blockchain frameworks and it consists of three phases: the
execution phase, the ordering phase and the validation phase 2. Com-
mitting a transaction can be seen as either an insert operation if new
values are beingwritten to the systemor anupdate operation if an exist-
ing value is updated. The transaction flow is described in detail both in
the documentation for Fabric and by Androulaki et al. 2, the developers
of Fabric.
The first phase is the execution phase, which comprises of three

steps. Firstly the client sends a transaction proposal to a set of endorse-
ment peers. Once an endorsement peer receives a transaction proposal
it will simulate the transaction against its own ledger and state. The
endorsement peer does not update its own ledger or state but only
return an endorsement message to the client consisting of all the state
updates the transaction proposal caused. The client collects endorse-
ments until it has enough to satisfy the endorsement policy. When
the client has successfully collected enough correct endorsements, it
creates a transaction which it sends to the ordering service.
This step is the start of the next phase, the ordering phase, in which

the ordering service places all the incoming transactions from clients in
a total order. The transactions are then bundled into blocks which are
appended to each other in a hash chain. The number of transaction in a
block is decidedbyoneof two factors; either the number of transactions
that arrive before the batch timeout or the number of transactions
that is equivalent to the batchSize. The ordering service then broad-
casts the hash chain of blocks to all peers, including the endorsement
peers.
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TABLE 2Overview of frameworks for distributed databases

Name Evaluated in literature Architecture Documentation Active
MongoDB Yes P2P Yes Yes
HDFS Yes Master-slave Yes Yes
HBase Yes Master-slave Yes Yes
Cassandra Yes P2P Yes Yes

The last part of the transaction flow is the validation phase. All peers
receive the hash chain of blocks from the ordering service. Each block
is subject to validation on the peer, since there might be faulty transac-
tions on the blocks. The first step is to evaluate the endorsement policy.
If the endorsement policy is not fulfilled, the transaction is considered
invalid. The next step of validation is to check if the version of the state
changes in the endorsements compared to the peers’ local state. If the
versions don’tmatch the transaction is considered invalid. All the effects
of an invalid transaction are ignored but the transaction isn’t removed
from the block. The last step is to append the block to the peers’ local
ledger and update the state by writing the state changes to the peers’
local state.

3.1.2 Reading data
Reading data, or querying the ledger, is much simpler than adding a new
transaction. Queries can be invoked by a client using chaincode, which
is the program code which implements the application logic 2, and the
chaincode communicates with the peer over a secure channel. The peer
in turn queries the local state and returns the response to the chain-
code. Then the chaincode executes the chaincode logic and returns the
answer to the client via the peer.

3.2 Cassandra
Cassandra is a fully distributed system where every node in the system
is identical, meaning there is no notion of server or client. Cassandra is
built to run on a peer-to-peer network consisting of numerous nodes
in several data centers 9. Cassandra has its own querying language, cql,
which is the only way to interact with the system.

3.2.1 Lightweight Transactions
Cassandra uses an extended version of Paxos to supports lineariz-
able consistency for a type of operations called lightweight transac-
tions (LWT)8. These transactions are applicable to INSERT andUPDATE
operations. LWT should be used whenever linearizable consistency is
required but is not considered to be needed for most transactions.
Paxos is a consensus algorithm which solves the problem of agree-

ment in a distributed system, explained by Lamport 10. The algorithm

8https://www.datastax.com/dev/blog/lightweight-transactions-in-
cassandra-2-0

consists of three types of actors and two phases. The actors are the pro-
posers, the acceptors and the learners. Original Paxos has two phases,
the prepare phase and the accept phase. In the first phase the first step
is that a proposer sends a request with a number n to a set of accep-
tors. If an acceptor receives this request and it has not seen a request
with a higher number than n it will accept the proposal and answer the
proposer with 1) a promise to never accept any request with a number
lower than n and 2) if it has seen any request with a number smaller
thann, return theproposalwith thehighest number. In the secondphase
the proposer waits until it receives a response from a majority of the
acceptors. If it gets enough responses, the proposer will send an accept
message to all acceptors.
In Cassandra’s modified version of Paxos any node can take the role

of the proposer and the acceptors are all the participating replicas. The
number of acceptors is specified by the serial consistency. Serial con-
sistency has only two levels, LOCAL and and SERIAL_LOCAL. LOCAL
requires a quorum of all replicas in the same data center as the coordi-
nator to respond. SERIAL_LOCAL requires a quorumof all replica nodes
across all data centers must respond.
Cassandra’s modified Paxos consists of four phases. The first phase is

the same prepare-phase as original Paxos but the second is a newphase,
called the read phase . In this phase the proposer sends a read-request
to the acceptors which reads the value of the row which is the target
and returns it to the proposer. The third phase is the accept phase of the
original Paxos algorithm. The last phase of Cassandra’smodified version
of Paxos is the commit phase, in which the accepted value is committed
to Cassandra storage. These additions to Paxos costs two extra round-
trips, resulting in four round-trips instead of two. It is important to note
that all of the steps of Cassandra’smodified version of Paxos takes place
"under the hood". A lightweight transaction is invoked in the sameman-
ner as any other operation in Cassandra, it is simply the syntax of the
operation that differs to the application.

3.2.2 Writing data to Cassandra
The path ofwriting data to persistentmemory inCassandra is four steps
long. The first step is when the client invokes an insert or update opera-
tion using cql. This data is then written to a commit log, an append-only
log on disk. The same data is also written to the memtable, which is
a memory cache stored in memory. There is one memtable per node
and table of data. When the data is written to the commit log and the
memtable the client gets confirmation that the insert or update is com-
plete. The final destination of data is the SSTable which are the actual
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datafilesondisk. Thedata iswritten to theSSTablesbyperiodical flushes
from thememtables to the SSTables.

3.2.3 Reading data fromCassandra
Reading data from Cassandra is more complicated than writing. Data
can reside in three places, the memtable, the row cache, which is a spe-
cial cache in Cassandra which contains a subsection of the data in the
SSTable, or the SSTable. First the memtable in memory is consulted, if
the data is present in the memtable, it is read and merged with data
from the SSTable. If the data isn’t in the memtable the row cache is
read, the row cache keeps themost frequently requested data and if the
requesteddata of a query is present here it yields the fastest reads. Both
the memtable and the row cache is kept in memory, which makes the
faster compared to fetching data from the SSTable on disk. If the data
is not in the row cache nor the memtable, Cassandra needs to look it
up in the correct SSTable. This requires several steps to locate the cor-
rect table combined with the fact that the SSTables resides on disk, this
option yields much lower latency.

4 EXPERIMENTDESIGN
In this section we describe the design and methodology of the per-
formance comparison experiments. First, we provide a description and
rationale for choice of the cloud platform, followed by a description of
how the respective frameworkwere configured to ensure a fair compar-
ison. The test application used in the experiments is also described as
well as the evaluation metrics. Finally, we give a brief overview of the
five experiments performed.

4.1 Cloud Platform
Previous work in the area has successfully utilized cloud solutions to
deploy Fabric and Cassandra networks. For example, Sukhwani et al. 8
used IBM Bluemix to deploy Fabric and Androulaki et al. 2 used the
IBM Cloud. In some papers the authors have chosen to build their own
infrastructureusing servers for setting upvirtualmachines, for example,
Sousa et al. built their own ordering service 11. For Cassandra, Amazon
EC2 has been used by Kuhlenkamp et al. 12. There are also examples
of when the authors built their own solution, for example the work by
Cooper et al. 13.
For the evaluation in this work we analyzed the suitability of four

major cloud solutions on the market, Amazon EC2, Microsoft Azure,
IBM Cloud and Google Cloud. Each cloud solution was evaluated based
on the range of out-of-the-box support for Fabric and Cassandra.
Microsoft Azurewas chosen based on the available support for the cho-
sen platforms and the ability to run up to 20 logical nodes on a single
machine. Table 3 shows the specification of the machine on which the
tests were run. Both frameworks are setup using Docker with one node
per container and all tests are run in the Docker-environment.

TABLE 3 Specification of machine running the tests

Azure instance D4s_v3
Processor (CPU) 4 vCPUs

Systemmemory (RAM) 16GB
Storage 32GBManaged Premium SSD disk

Operating system Ubuntu Server 18.04 LTS
Azure region West US

4.2 Configuration
We now proceed to describe how both Fabric and Cassandra are con-
figured in the experiments. This information is provided for the purpose
of reproducability. As we describe below, the configuration choices are
made for both frameworks to resemble each other as much as possible.

4.2.1 Hyperledger Fabric
All experiments with a blockchain framework use version 1.1.0 of
Hyperledger Fabric,whichwas the latest version available at the start of
our experiments. Each organization has one peer, one CA client and one
MSP, meaning that in a network of N peers, there are N organizations.
All organizations are connected using a single channel. The policy for
endorsement of transactions is a quorum of the organization, in order
to mimic the consistency level of Cassandra. The chaincode used for
the experiments is written in Golang and it is a key-value store with
functions for querying the ledger and committing transactions.
There are two different ordering services implemented in Fabric ver-

sion 1.1.0, SOLO and a Kafka-based ordering service. SOLO is only
meant for testing and not built for a production environment, so we
use Kafka in our experiments. This ordering service consists of a vari-
able number of Kafka servers and Zookeeper nodes. There needs to be
an odd number of Zookeeper nodes to avoid split-head-decisions. Four
Kafka servers is the recommended minimum in order to have fault tol-
erance. In this work four Kafka servers were used together with three
Zookeeper nodes. Unless otherwise stated the batchSize is set to 1
message and the batch timeout to 1 second.

4.2.2 Cassandra
All experiments with a distributed databse use Cassandra version 3.11
and cql version 3.4.4. Cassandra has a tunable replication factor and we
configured it to use N as replication factor, where N is the number of
nodes. This is themaximumnumber of replicas andmight seemextreme.
However Fabric always uses one replica per peer and setting the repli-
cation factor to N configures Cassandra to resemble Fabric as much as
possible. Cassandra consumes a lot of RAMby default to allow for large
amounts of data to be efficiently processed, but our test application is
very lightweight, so each node is restricted to only 64MB of RAM.
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WeuseLWTtransactions inorder toenable thePaxos consensuspro-

tocol, which provides the same level of fault tolerance as inHyperledger
Fabric. The serial consistency is set to SERIAL, which means that (N/2
+ 1) of the replicas must respond to each proposal. The choice of serial
consistency level is only between SERIAL and LOCAL_SERIAL, which
both are the same if theCassandra nodes are all in the same data center.
The serial consistency is used for all LWT operations and overrides the
ordinary consistency level.

4.3 Test Application
The application used for the experiments is a key-value store. The key-
value pairs consists of the keywhich is a string and the value which is an
integer. There are only two operations available in the application:

• insert(key, value) - inserts a new key-value pair to storage

• read(key) - reads a value given a key from storage

The insert operation starts a new transactionflow in Fabric andwhen
executed the key-value pair resides in the ledger of each peer. The insert
operation in Cassandra uses LWT andwhen executed the key-value pair
resides in all replicas e.g. all nodes of Cassandra given the replication
factor chosen. The readoperation inFabric reads avalue fromthe ledger
and the read operation in Cassandra follows the read flow outlined in
Section 3.2. If the application tries to read a key which isn’t in storage
an errorwill be returned, however the experiments are designed so that
this never happens since these operations have higher latency.
In Figure 1 it can be seen how the tests work on a component-level

for Cassandra. The application, written in bash, uses the docker exec

command to access one Cassandra node. Note that the application has
to go throughDocker and that each node runs in their own container on
Docker. The docker exec takes the cql-command as an argument. The
cql-command is either an INSERT for inserting or SELECT for reading.

FIGURE 1Overview of the test setup of Cassandra

In figure 2 it can be seen how tests for Fabric work on a component-
level. Each node, e.g. both the peers and ordering service nodes, run

within their own container on Docker. The tests are different from Cas-
sandra in the way that the application, written in bash, can directly
access the chaincode installed on the peers. The application invokes the
chaincode on all endorsing peers, illustrated in figure 2 as peer 1 and
peer 2.

FIGURE 2Overview of the test setup of Fabric

4.4 EvaluationMetrics
This section covers the choice of the evaluation metrics and how they
aremeasured in the experiments.

Choice of LatencyMetric
The latency of a distributed system can be both measured and defined
in a number of ways. The most direct would be to measure the time
it takes for the client to send a request to the system or the time it
takes for a system to answer the client. However, in distributed sys-
tems this is problematic since nodes use different clocks.With different
clocks there is always a risk of clock skew, which is hard to estimate and
therefore any metric which relies on the time of two different clocks is
unreliable.
Amore black-box oriented approach is to measure how fast an oper-

ation has an effect on the system. For example, Wada et al. 14 measure
the eventual consistency of NoSQL databases from a consumer’s per-
spective. The eventual consistency is measured in two ways, 1), as the
time it takes for a client to read fresh data after an insert and 2), as the
probability of reading fresh data as a function of the elapsed time since
the insert. This estimates how long time the client is expected to have to
wait for fresh data. The expected waiting time can be interpreted as the
latency.
In this work we measure the round-trip time of an operation. The

benefit of this approach is that only the clock at the client end is needed
so clock synchronization will not be an issue. The potential drawback
of the approach is that some effects in the target system might not
have taken place by the time the response is received at the client end.
Another problem is the round-trip time is also affected by many other
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factors such as the network and system software, which we discuss
below.

Adjusting for theOverhead
To account for the latency which is not caused by Cassandra or Fabric
wemodel the roundtrip timeTrt as the sumof theactual timeof anoper-
ation within the system Top, and the overhead time Toh which accounts
for all the remaining time.

Trt = Top + Toh (1)
In order to arrive at the value of Top, we must therefore first esti-

mate the overhead time and then subtract this value from themeasured
round-trip time.
Note that the work done when receiving an insert request before

sending confirmation to the client, Top, is different on Cassandra and
Fabric. When using LWT in Cassandra, the modified Paxos with four
phases needs to finalized before sending confirmation. This means that
the value is committed to a number of nodes, how many depends on
the consistency level, when the insert operation is finalized. For Fabric
all three phases of the transaction flow make up the insert operation,
meaning that the value is committed to all peers.

Estimating theOverhead
Since the invocation mechanism for the two frameworks differ (recall
Figures 1 and 2), the value of Toh will also differ. We also need to use
different methods to estimate Toh for the two frameworks.
In Fabric it is possible to take timestamps in the chaincode and derive

the overhead imposed by Docker. The tests were repeated 50 times for
each network size. The timestamps in the chaincode were subtracted
from the one in the test script to get an estimation of the overhead.
For Cassandra, the situation is more complicated. As can be seen in

figure 1 the only way to execute a cql-command, for example an INSERT
or SELECT statement, is to go through Docker. In this work we use the
docker exec command to run a script or command from inside the
Docker container. The docker exec command connects to the speci-
fied node and opens the cql shell, in which it runs a script or command if
specified. It isn’t possible to take timestamps or use any type of control
structure in the querying language cql. For this reason the test scripts
are written in bash and the docker exec command is used to run cql-
scripts on Cassandra, an overview can be seen in figure 3. This means
that there is a significant overhead from connecting to the Docker con-
tainer which needs to be measured and accounted for. The test to
measure the overhead consisted of measuring the time of executing an
empty cql-script. The test was repeated 50 times for each network size.

4.5 Experiment Overview
The results presented in this paper are based on five distinct experi-
ments, listed below.

1. Estimating the latency overhead caused by Docker

FIGURE 3 Schematic overview of timingmeasurements for Cassandra

2. Insert latency as a function of network size
3. Read latency as a function of network size
4. Insert latency as a function of increasing load
5. Latency for different mixes of insert and read operations

Each experiment was conducted on both Fabric and Cassandra, con-
figured according to Section 4.2.1 and 4.2.2 respectively. Unless other-
wise stated, each run of the experiments contained50 samples and each
experiment was run twice. Networks were brought down between runs
to ensure independence between runs. This resulted in 100 measure-
ments for each experiment.
Experiment 1, 2 and 3 uses 6 different network sizes; 2, 4, 8, 12, 16,

20 logical nodes or logical peers. Henceforth in this paper the logical
nodes and logical peers will be called nodes or peer, even though they
are not different physical nodes or peers. The decision for these specific
network sizes is both based on related work in the area and on limi-
tations imposed by co-locating all nodes on one machine. For example
Cooper et al. presents YCSB and in their benchmarking they used 2, 4, 6,
8, 10 and 12 nodes 13. Dinh et al. presents the benchmarking tool Block-
bench for permissioned blockchain and they use networks of sizes; 1, 2,
4, 8, 12, 16, 20, 24, 28, 32 nodes for their experiments 7. Abramova et
al. measures the scalability of Cassandra with YCSB, and they use 1, 3
and 6 nodes for the experiments 15. Androulaki et al. presents the archi-
tecture of Hyperledger Fabric for their experiments they use up to 110
peers 2. Since Cassandra requires a lot of RAM and the experiments are
conducted on the samemachine, only 20 nodes could be run at the same
time.

5 RESULTS
We structure this section in accordance to the experiment design with
one subsection for each experiment, followed by a summary.
In several cases, the results are presented using box plots. Each box

represents all data points between the lower and higher quartile. The
whiskers represent 95% of all data points.
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5.1 Estimating the LatencyOverhead Caused by
Docker
The overhead, called Toh, of using the docker exec command to run
cql-scripts on Cassandra can be found in graph 4 (note the logarithmic
scale). As can be seen there is a significant overhead imposed byDocker
onCassandra, from500ms for smaller network to almost 800ms for 20
nodes. The graph also shows the overhead of Dockerwhen using Fabric,
which is around 20ms for all network sizes.
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FIGURE 4 The overhead caused by network and system software when
using Cassandra and Fabric respectively (log scale).

The overhead of Docker is large for Cassandra because the com-
mands have to be issued from inside the container. This means that the
command docker exec has to be used to start a cqlsh shell. This is not
a fundamental feature of Cassandra, but a consequence of implementa-
tion choices in the setup. ForFabric theoverhead is very small compared
to the insert latency but very large compared to the read latency. Even
though Fabric also uses Docker it is structured differently and issuing
operations on the blockchain doesn’t require docker exec to start any
new shells. Since Fabric is built to run inside of Docker it is optimized to
utilize Docker in amore effective way.

5.2 Insert Latency as a Function of Network Size
The purpose of this experiment is to identify how the insert latency
is affected by the size of the system. To measure the round-trip time,
Trt, of the insert operation a timestamp was created when the opera-
tionwas initialized andanother timestampwhen theoperationfinalized.
The difference between these timestamps was recorded. The experi-
ments consisted of inserting 50 new objects in the blockchain, or in the
database. These operations were made with 10 second intervals. Since
the preliminary tests showed latencies over 3 seconds 10 seconds was
considered sufficiently large to avoid interference between consecutive
operations.
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FIGURE 5 The insert latency

The effect of network size on the insert latency for Cassandra and
Fabric can be seen in figure 5. Note that these results are still the raw
round-trip time measurements that have not been adjusted for the dif-
ference in overhead between the platforms. There are some differences
worth pointing out. First of all, Cassandra seems tohave ahigher latency
compared to Fabric. However, as we shall later see, this is mostly due to
the difference in overhead. Both system are affected by the increasing
number of nodes. In particular, the extreme values for Fabric are much
higher for 16 and 20 nodes.

5.3 Read Latency as a Function of Network Size
The purpose of this experiment is to identify the read latency and how it
is affected by the size of the system. Since both systems useN replicas in
a system ofN nodes or peer, ideally the time consumption should not be
heavily affected by an increase of network size. To measure the round-
trip time of a read operation, Toh a timestamp was created when the
read command was issued and another timestamp when the read oper-
ation finalized, the difference between these timestampswas recorded.
The experiments consisted of making 50 consecutive reads from one
node or peer in the network and record the time. The reads were con-
ducted once every 10 seconds for the same reason as stated in the
previous section. This was repeated for all nodes or peers in the system.
Figure 6 shows the full round-trip time measurements for both Fab-

ric and Cassandra. Fabric has much lower latency than Cassandra (still
results are not adjusted for the overhead). The round-trip times for read
operations in Cassandra is similar to the insert operations. In Fabric the
median read latency is around 40 ms for smaller networks of 2, 4 and 8
peers and around 50 ms for larger networks of 12, 16 and 20 nodes. All
the data points for Fabric are in a close range. There was no difference
in read latency between which node or peer the data was read from, as
expected with the given replication factor.
Given the difference in overhead between the two deployments, it

is relevant to reconsider these measurements, trying to adjust for the
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FIGURE 6 The read latency of Cassandra and Fabric

difference in overhead. Note that this is not necessarily a straightfor-
ward operation. A new potential source of error is introduced, since
subtracting the estimated time Toh from the round-trip time might
be overcompensating. Therefore, these results should be interpreted
cautiously.
Figure7 shows theestimatedoperation time,Top in for both readand

insert operations. This value is derived by taking the average round-trip
time subtracted with the average estimated overhead from experiment
1. Each case is shown for 2 and 20 nodes respectively.
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FIGURE 7Read and insert latencies adjusted for overhead

Interestingly, Cassandra, which seemed to perform so much worse
compared to Fabric now outperforms Fabric in all cases except for read
operations in very small networks. However, the differences are small
formost cases except for insert operations in large networks (20 nodes).
Clearly, Fabric does not scale verywell, at least not for insert operations.
The read operation performs better for Fabric since all peers always

have the samecopyof theworld state andonly the statedatabase is con-
sulted. This can also be seen in how the outliers are not so far from the
other data points.

5.4 Insert Latency as a Function of Load
The purpose of the next experiment is to measure the effect on insert
latency when the system size is constant but the load varies. The net-
work in these tests has constant size 20 nodes or peers. The experiment
consists of making 1, 5, 10, 15 and 20 concurrent insert operations to
the system, repeating each burst of inserts 50 times. Each insert opera-
tion is executed on its own thread. The experiment was repeated twice,
resulting in 100, 500, 1 000, 1 500 and 2 000 reads respectively.
For Fabric the ordering service is configured differently for this

experiment compared to the others. The batchSize is set to 10 mes-
sages and the batch timeout to 2 second, which are the recommended
values. The reason for the different setup in the different experiments is
that for the previous experiments only one transaction is performed at a
time. Thismakes setting the batchSize to 1message themost favorable
for the ordering service. However, for the load experiment 10messages
correspond to the median number of concurrent transactions and set-
ting the batchSize to 10 messages will show howmuch this parameter
affects the overall latency.
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FIGURE 8 The insert latency of Fabric and Cassandra under increasing
load

The resulting round-trip times for Fabric and Cassandra can both be
seen in figure 8. Clearly increasing the load has a major impact on the
round-trip time for both systems. Cassandra seems be badly affected by
increasing load. However, similar to previous results around 90% of the
round-trip time for Cassandra is caused by the Docker overhead.
The results for Fabric is interesting since the latency drops signifi-

cantly between 5 and 10 inserts per second. This behavior can be seen
even more clearly in figure 9 which contains more data points. In this
figure it is clear that at 10 writes and 20 writes per second the latency
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drops suddenly, and then increase again. There could be seen a similar,
but smaller, drop at 20writes per second.
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FIGURE 9 The insert latency of Fabric under increasing load - extended

This behaviour can be attributed to how the ordering service of
Fabric works in the ordering phase of the transaction flow. If several
transactions arrive in within a small enough time interval, called batch
timeout, they are clustered together in the sameblock.Unless the block
is full, e.g. the batchSize is reached, then the block is sent to the peers
immediately and the next transactions have to "wait" until the order-
ing service creates the next block. This goes the other way around too,
if the batchSize isn’t reached the ordering service will wait for the
batch timeout. For this application one block can hold 10 transac-
tions, but this is specific for this application and both the batchSize and
batch timeout can be adjusted per channel. Adjusting the batchSize
and batch timeout is what causes the difference in latency between
experiment 2 and this experiment, this was done intentional to better
optimize the latency for each test scenario.
Recall that the batch timeout was set to 2 seconds in this exper-

iment and the batchSize to 10 transactions.This explains the latency
drops at 10 inserts per second. For all the other loads before the order-
ing service waits for the batch timeout before sending the block. The
fact that the 90th percentile is a lot higher for loads of 10 inserts per
second and higher can also be explained by this. The 90th percentile is
the latency of the transactions that had to wait for the ordering service
because the first 10 transactions filled up the batchSize. For 20 inserts
per second all transactions fit into 2 blocks exactly and the 90th per-
centile is therefore low for only this load variation. The linear increaseof
the median latency is the increase of the execution and validation steps
in the transaction flow, which is expected.

5.5 Latency for DifferentMixes of Insert and Read
Operations
The purpose of this experiment is to see how both of the system per-
forms under different mixes (workloads) of insert and read operations.
Three different workloads were used in this test, which can be seen
in table 4. The network in these tests has constant size 20 nodes or
peers. All workloads were run with 100 operations of the least fre-
quently performed operation and were repeated twice. For example
in the first row of table 4 the read-intense workload is specified, it is
made up of 95% read operations and 5% insert operations. For the read-
intenseworkload 100 insert operations were performed and 1900 read
operations.

TABLE 4Workloads for experiment 5

Name Fraction read ops. Fraction insert ops
Read-intense workload 95% 5%
Balancedworkload 50% 50%

Insert-intense workload 5% 95%

Figure 10 shows the results for the three different workloads. Each
bar represents the weighted average latency that correspond to the
latency (excluding overhead) for that workload. The weighted average
takes account of the latency for read and insert operations and the pro-
portion of each. For example, if Tr is the latency of read operations, and
Ti is the latency of insert operations, then the result is calculated as
T = rTr + (1− r)Ti, where r is the fraction of read operations.
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In light of the previous experiments, these results are as we expect.
Fabric does not perform as well for larger networks, and in particu-
lar insert operations are expensive. Cassandra shows a considerable
improvement when the workload is dominated by reads. But differ-
ently from Fabric, there is very little difference between the balanced
workload and the insert-intensive workload.

5.6 Summary
The results in this section provide some important insights, but does
perhaps not point to a clear winner. It all very much depends on how
much the Docker overhead can be reduced for Cassandra. The raw
round-trip timemeasurements shows Fabric havingmuch lower latency
(especially for read operations). However, trying to adjust for the over-
head and removing this factor points to Cassandra being the faster
framework. In particular for large networks with many insert opera-
tions.
It is important to note here that the transaction flow of Fabric

includes the executionphase inwhich each transactionproposal gathers
endorsements to be eligible to change the state of the system. Cas-
sandra does not include a similar step, which means that the latency
of Cassandra would likely be closer to that of Fabric if both systems
included the same steps.
For inserting, the insert latency of Cassandra scales better with the

size of the network than the insert latency of Fabric. This gives us a
hint that for larger systems, Cassandra will outperform Fabric and pro-
vide lower insert latencies.However, for the small systemsboth systems
have almost the same latency.
When it comes to overhead of using Docker, as expected it is clear

that Fabric is better optimized than Cassandra.

6 RELATEDWORK
This section lists and discusses related research in the field. To the best
of our knowledge there has been no comparison between the latency of
permissioned blockchains and distributed databases yet.
We divide this section in four parts. First we briefly present perfor-

mance studies on permissioned blockchains and distributed databases
respectively. Then we discuss how our results compare to what others
have reported and how any differences can be understood. Finally, we
briefly discuss hybrid solutions.

6.1 Permissioned Blockchains
Dinh et al. 7 construct a framework for benchmarking private
blockchains, called Blockbench. They evaluate three different private
blockchains, Ethereum, Parity and Hyperledger Fabric. One of the met-
rics is latency as the response time per transaction. They also evaluated
scalability with respect to changes in throughput and latency. So far
no standard for benchmarking permissioned blockchains has emerged,

but this is an attempt to create a standardized benchmarking tool for
permissioned blockchains.
Androulaki et al. 2 present the Hyperledger Fabric architecture and

perform some benchmarking. The experiments presented measure six
different aspects of Fabric to see how they affected the performance in
terms of throughput and end-to-end latency.

6.2 Distributed Databases
When it comes to distributed databases several studies on benchmark-
ing them have been conducted. Below is a list of some studies on
benchmarking or evaluating the latency of distributed databases.

• Cooper et al. 13 introduce the The Yahoo! Cloud Serving Bench-
mark, YCSB, which includes several workloads. This benchmark
is often used in research.

• Kuhlenkamp et al. 12 compare Cassandra and Hbase based on
YSCB.

• Abramova et al. 16 compare Cassandra and MongoDB by using
workloads from YCSB.

• Abramova et al. 15 evaluate the scalability of Cassandra using
YCSB.

• Wada et al. 14 evaluate the eventual consistency of 4 different
NoSQL databases, including Cassandra

We consider two of these inmore detail.
Cooper et al. 13 introduces the YCSB with some experiments on per-

formance and scaling on four different database systems, Cassandra,
HBase, PNUTS and sharded MySQL. One of the scaling tests measures
the latency of a workload which only consists of read operations when
increasing the number of nodes. They have used clusters up to 12 nodes
for their work.
Kuhlenkamp et al. 12 compares scalability and elasticity of Cassandra

andHBase. The authors base their test on theYCSBbenchmarking tools
and replicated the workloads. The authors used three different cluster
sizes in all their tests, 4, 8 and 12 nodes. One of the workloads are read
intense and the result was the latency of performing read operations.
Anotherworkloadusedwaswrite intense and the resultwas the latency
of performing write operations.

6.3 Comparison of results
Dinh et al. 7 found that Fabric did not scale beyond 16 nodes. As for
latency, their findings are similar to those of this paper. For loads under
200 requests per second the latency started at 1 seconds to increase
only a little with more peers. For higher loads the latency increased
to over 10 seconds. While we have not investigated loads of the same
magnitude, the trends are consistent with the ones found by Dinh et al.
Androulaki et al. 2 found higher insert latency in their benchmarking

of Fabric, on average the latency in their work was 542 ms. Most likely
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this discrepancy comes from the different setting of the ordering ser-
vice, as different setting can greatly effect the latency. The difference
can also come from the fact that we run mulitple logical nodes on one
physical machine for the entire network which means that the network
cost of inter-peer communication is much smaller than if all peers are
located on different machines. Androulaki et al. usemore dedicated vir-
tualmachines and run the peers on separatemachines, but they also use
more CPU-power. The endorsement policy is not specified either which
may lead to different conclusions. Since the transaction flow of Fabric
includes a simulation of the chaincode function used, it can be hard to
compare results with different chaincode applications.
Kuhlenkamp et al. 12 measure the latency of performing write oper-

ations for write-intense workloads. The average write latency for the 4
node cluster is approximately 20ms, anddecreases to10–15ms for the
8 and 12 node clusters. The numbers are lower thanwhat we found, but
still close to the numbers where the overhead is removed. A difference
to our work is that we use LWT instead of the standard inserts, LWT is a
lot more time-consuming because it establishes linear consistency.
Cooper et al. 13 measure the latency of Cassandra using a workload

which only consists of read operations, when increasing the number of
nodes. They have only used clusters up to 12 nodes but the increase of
latency is similar to the one found in our work. However, the latency
is again lower in their work than what we found. They disabled all
replication and did not use LWT, which is probably what caused the
biggest difference. Another reason for this is that they used six physi-
cal machines, instead of one, and allocated 3GB of heap instead of the
65MB.

6.4 Hybrid Solutions
Since permissioned blockchains still comes with some limitations
in terms of performance and maturity new hybrid solutions have
emerged. Postchain is what the company ChromaWay calls a consor-
tium database9. Postchain is said to combine the benefits of blockchains
with the maturity of distributed databases by leveraging on the desired
blockchain properties like linked timestamping and being decentralized
yetworking togetherwith existing relational database and using SQL 17.
Another example of a similar product is BigchainDB which is a dis-
tributed databasewith added blockchain characteristics like immutabil-
ity, decentralization and the option to chose permission property per
transaction 10. This shows that the lines are getting blurred between
databases and blockchains and that some companies prefer to cherry-
pick the desired features of both technologies. Since neither a strict
blockchain-solution nor a strict database-solution is the best option for
all problems this is goodnews. It also illustrates the current gapbetween
how popular the blockchain technology is and how far the technology
has actually come.

9https://chromaway.com/products/postchain/
10https://www.bigchaindb.com/

7 DISCUSSION
The CAP-theorem, originally coined by Eric Brewer in 2000 18, states
that is is not possible for a distributed system which shares data, to
have consistency (C), availability (A) and partition tolerance (P) simul-
taneously. All three aspects are desirable, and users of distributed sys-
tem have come to expect all of them. The CAP-theorem provides a
way of categorizing distributed systems into CA, AP and CP systems.
Cassandra is typically classified as an AP-system but with our chosen
replication factor and by using QUORUM, a high consistency level, it
is more tuned to be a CP-system. Although the classic definition of the
CAP-theorem does not declare any connection to latency, they are still
connected 19. It may be unfair towards Cassandra to enforce the chosen
replication factor.On theotherhand this iswhatmost closely resembled
the Fabric setup.
The choice of co-locating all the nodes in one single virtual machine

might have affected the results negatively. Co-locating means that all
the resources are shared which could lead to bottlenecks, for example
theCPUor theRAM.However, themachine used in thiswork had16GB
of RAMand 4 vCPUs and neither workedwith full utilization during any
test. The use of Docker is also a good infrastructure since it simulates a
network between the containers, which helps to cancel out the effect of
co-locating to some extent.
Using relatively small networks of up to 20 nodes/peers is a direct

consequenceof using only onemachine. This is small compared to actual
network used in the real world. However, as described in Section 6, pre-
vious work benchmarking both distributed databases and blockchains
use networks of similar size.

8 CONCLUSION
To thebest of our knowledge this paper is the firstworkwhich compares
the latency of permissioned blockchains and distributed databases.
When comparing permissioned blockchains to distributed databases

it is clear that distributed databases are more mature. There are more
options of distributed database frameworks available compared to the
number of permissioned blockchain frameworks. The available frame-
works for permissioned blockchains are all in the early stages of devel-
opment, meaning that most likely there will more options available as
well as more mature options for permissioned blockchains. For built-in
support in cloud solutions it is also clear that there is more support for
databases. However, permissioned blockchains are on the rise and both
Amazon EC2 and Microsoft Azure are starting to support Hyperledger
Fabric, even though it is still only on a very small scale.
Despite permissioned blockchains being very young compared to

distributed databases, we show that they are comparable to older tech-
niques in terms of latency. In some cases the performance is better, and
when factoring in the consistency model, it is likely that there will be
several meaningful use-cases in the near future where a permissioned
blockchain will be a better choice than a distributed database.
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Based on the experiments performed,we can see that Fabric pays for
relatively quick reads with a slow transaction flow which gives a higher
insert latency.Cassandraon theotherhand ismore tuned toprovide low
insert latency at the cost of having a higher latency when reading data.
Whenchoosingbetweenapermissionedblockchain andadistributed

database the most important aspects to consider is the application that
should run on top of it. Some things to consider are:

• If the user will need to fetch data quickly then Fabric might be a
good choice.

• If the data is going to be updated and/or inserted frequently and
accessedmore infrequently, then Cassandra is preferred.

• The system environment software can have a huge impact on
performance.

• Does the application require linearized consistency? In that case
Fabric could be a good choice since consensus is pluggable and
always integrated in the transaction flow. Cassandra does sup-
port it but is not optimized for it.

• Although it is not covered specifically in this work the number
of data objects and the number of insert and/or update opera-
tions on these data objects is an important factor. Blockchains
never throw away data and can therefore grow large quickly if
the application is not tuned after this fact.

We hope that our work will inspire others to perform similar exper-
iments with other parameters and settings. Clearly, more work is
needed to more comprehensively understand what role permissioned
blockchains can play in the large database landscape, where each set
of requirements is matched by a system tailored to meet exactly those
requirements.
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