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Edge computing is promoted to meet increasing performance needs of data-driven services using computational and storage
resources close to the end devices at the edge of the current network. To achieve higher performance in this new paradigm, one
has to consider how to combine the efficiency of resource usage at all three layers of architecture: end devices, edge devices, and
the cloud. While cloud capacity is elastically extendable, end devices and edge devices are to various degrees resource-constrained.
Hence, an efficient resource management is essential to make edge computing a reality. In this work, we first present terminology
and architectures to characterize current works within the field of edge computing. Then, we review a wide range of recent articles
and categorize relevant aspects in terms of 4 perspectives: resource type, resource management objective, resource location, and
resource use.This taxonomy and the ensuing analysis are used to identify some gaps in the existing research. Among several research
gaps, we found that research is less prevalent on data, storage, and energy as a resource and less extensive towards the estimation,
discovery, and sharing objectives. As for resource types, the most well-studied resources are computation and communication
resources. Our analysis shows that resource management at the edge requires a deeper understanding of how methods applied at
different levels and geared towards different resource types interact. Specifically, the impact of mobility and collaboration schemes
requiring incentives are expected to be different in edge architectures compared to the classic cloud solutions. Finally, we find
that fewer works are dedicated to the study of nonfunctional properties or to quantifying the footprint of resource management
techniques, including edge-specific means of migrating data and services.

1. Introduction

Recently, the edge computing paradigm, which consists
in having network nodes with computational and storage
resources close to the devices (mobile phones, sensors) at
the edge of the current network, has attracted interest from
both industry and researchers, carrying the promise of a new
communication era in which industry can meet the rising
performance needs of future applications.

Indeed, with a forecast of 9 billion mobile subscriptions
in the world by 2022, of which 90% will include mobile
broadband, coupled to an eightfold increase in mobile traffic
and 17.6 billion of Internet of Things (IoT) devices also
sending data [1], there will be a considerable strain put on the
network.The current network technologies need to undergo a
paradigm shift in order to handle this situation [2].Therefore,

the aim is to avoid overwhelming the network up to the
cloud and, when possible, move some computing and data
analysis closer to the users to enable better scalability [3].
Thus, the main idea of edge (or fog) computing is to have
intermediate computing facilities between the end devices
and the current cloud. As suggested by Mehta et al. [4], this
would also enable the current telecom network operators to
reduce their operational costs.

In addition to this, moving computing and storage to the
edge of the network has other benefits [3] such as reducing
the latency and jitter [5], which is especially important for
real-time applications such as self-driving cars. Moreover, it
enables more privacy for the users by making it possible to
keep private data at the edge and enforce privacy policies for
the data sent to the cloud (such as blurring sensitive info on
a video [2]). Finally, edge networking makes the applications
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more resilient by being able to process requests at the edge
even if the central cloud is down.

In order to achieve this and to make edge computing
a reality and a success, there is a need for an efficient
resource management at the edge. Indeed, mobile devices
or IoT devices are resource-constrained devices, whereas
the cloud has almost unlimited but far away resources.
Providing and/or managing the resources at the edge will
enable the end device to spare resources (e.g., stored energy
in batteries) and speed up computation and allows using
resources it does not possess. Moreover, keeping data close
to where it was generated enables better control, especially
for privacy-related issues. Finally, being located close to the
user, edge computingmakes it possible to increase the quality
of provided services through the use of profiling within a
local context, without compromising the privacy or having
to handle a large number of users. This is known as context
adaptation.

Even though this is still an emerging research area, there is
a lot of work ongoing under different denominations includ-
ing mobile cloud computing [6], fog computing [7], edge
computing [3], mobile edge computing [8], path computing
[9], mobile edge cloud [10], mobile edge network [4], infinite
cloud [11], follow-me cloud [12], mobile follow-me cloud
[13], multitier cloud federations [14], small cell cloud [15],
fast moving personal cloud [16], CONCERT [17], distributed
clouds [18], and femtoclouds [19, 20].

Independently of the terminology chosen, which might
follow the current naming trend, a common concept here is
an intermediate level between the device and the traditional
cloud. It is possible to find in the literature numerous surveys
about those paradigms in general [6, 10, 21–25], specific
aspects of them such as security [8, 26], or specific techniques
such as Software-Defined Networking (SDN) [27]. However,
those typically do not consider the resource aspect. The
existing surveys about resources either consider it at a high
level [28] or consider only resource/service provisioning
metrics [29].

One area that is of high importance and is present in
many use-cases in edge computing is offloading. This is the
idea of executing a task on a device other than the current
execution target. This other device has typically more pow-
erful computational capacities or fewer energy constraints.
Resource management is tightly connected to offloading
since in order to take a decision to offload, one needs to
have knowledge about system resources. This knowledge is
provided by resource management techniques. For example,
resource discovery can be used as an input for taking an
offloading decision, while resource allocation techniques can
be used to perform the offloading decision. To the best of our
knowledge, existing surveys about resource management for
offloading at the edge focus on an end device perspective [30,
31], on the resource allocation part of resource management
[32, 33], or on a single-user/multiuser perspective [34].

We aim to complement those surveys by providing amore
comprehensive perspective.That is, (a)we consider allocation
as one among five resource management objectives, (b) we
consider edge resources in addition to end device or cloud
resources, (c) we address multiple types of resources and

interrelations amongst them, and (d) we review aspects
related to locality and what the resource is intended for.

In selecting the survey papers, works considering direct
interactions from a device to a cloud [35] or focusing on cloud
performance by offloading to the edge [36] are not consid-
ered. However, offloading between edge devices or from the
edge to the cloud when edge resources are also considered
is included. All included papers consider the notion of edge
which we attempt to characterize by defining edge-specific
architectural instances. This will be done independently of
the terminology the authors chose to use. This paper is a
substantial extension of our previous much shorter review
[37].

In the remaining parts of this paper, we will first present
the terminology used, define edge-specific architectures, and
present the proposed taxonomy in Section 2. The taxonomy
is then exemplified by an extensive review of papers, which
are categorized using the taxonomy elements introduced,
namely, resource type (Section 3), resource management
objective (Section 4), resource location (Section 5), and
resource use (Section 6). We then discuss research challenges
in Section 7 and conclude the paper in Section 8.

2. Architectures and Research Taxonomy

Edge computing is an innovative area bringing together
diverse business sectors such as telecommunication actors,
vehicle vendors, cloud providers, and emerging application
or device providers, for example, for augmented reality.
Therefore, the terminology used in research works is diverse
and is still evolving andmultiple architectures are considered.

In this section, we present first the relevant terminology
associated with edge computing which will be used in the
rest of the paper. Then, we discuss the current architectures
used and present an architectural breakdown that will be
the basis for classifying existing research. Finally, we present
our proposed research taxonomy and use it to classify the
surveyed works.

2.1. Terminology. Following the development of the IoT, it is
nowadays not only computers or smartphones which can be
connected to the network but also a large variety of things
such as cars, sensors, drones, robots, or home appliances. In
this survey, all those objects located at the user end of the
network which produce data or need cloud/edge resources
will be called end devices.

Devices installed at the edge specifically for edge comput-
ing purposes are called edge devices. We also include under
this term the devices that are already now connecting the end
devices to the rest of the network, for example, home routers,
gateways, access points, or base stations, which are becoming
increasingly powerful [38].

Finally, physical components of the cloud are referred to
by the term cloud devices.

We use those network device classifications to create
different levels in the network: the device level, the edge level,
and the cloud level. Resources that are managed are used to
perform tasks at some level of the architecture. These can be
composed to provide a service to the user.
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2.2. Current Status of Edge Architectures. There is currently
no standard architecture for edge computing, although in-
dustry and research initiatives exist, such as the Open Edge
Computing (http://openedgecomputing.org/) community,
the Open Fog Consortium (https://www.openfogconsortium
.org/), and a European Telecommunications Standards Insti-
tute (ETSI) standardization group working on Multiaccess
Edge Computing (http://www.etsi.org/technologies-clusters/
technologies/multi-access-edge-computing). Current stan-
dardization efforts coming from the ETSI group have been
reviewed in detail by Mao et al. [34] and Mach and Becvar
[33]. Mao et al. [34] also present edge standardization efforts
within the 5G standard.

Therefore, current research on edge computing is using
several different architectures and there is ongoing work
for defining edge computing architectures. Recent surveys
focus on presenting these architectures. For example, Liu et
al. [10] review different architectures for mobile edge cloud
servers and networks, and Mach and Becvar [33] present an
overview of proposed solutions enabling computation to be
brought close to the end device within the field of mobile
edge computing. The approach chosen by Mouradian et al.
[39] is to classify the architectures depending on whether
they are application-specific or not. They also elaborate on
architectural challenges according to 6 criteria including
scalability and heterogeneity. Our classification of the device
types above is consistent with all the surveys on architecture
so far.

2.3. Used Breakdown of Architectures. In this survey, we
choose to classify the different architectures into three main
categories inspired by the work of Mtibaa et al. [40] and
presented in Figure 1. Those categories are technology-
independent and aim at visualizing three high-level variants
of the edge computing concept that the current works are
using.

The first category, named edge server and depicted in Fig-
ure 1(a), is a generic architecture, where devices are connected
to an edge server, which itself is connected to the rest of the
network, including the cloud. In this type of architecture, the
edge server is at a fixed physical location and has relatively
high computational power, though it remains less powerful
than a conventional data center used in the cloud computing
paradigm. Moreover, there is a clear separation between the
device level and the edge level. In the literature, such edge
servers are named, for example, cloudlets [41, 42], micro data
centers [43, 44], nano data centers [45], or local cloud [46].
They can be located, for example, in shops and enterprises
or colocated with the base stations of the telecom access
network. Indeed, in the ongoing work on what the fifth
generation (5G) of telecommunication networks will look
like, a cloud radio access network (C-RAN) is envisaged
[47, 48], with connections to other edge computing areas such
as mobile cloud computing [49].

The second category, named coordinator device and
depicted in Figure 1(b), is an architecture, where one end
device acts as a coordinator between the other end devices.
It also acts as a proxy towards an edge device and/or the
cloud if such connectivity is needed.The difference between a

coordinator device and an edge server is that the coordinator
device can be mobile and has less computational power and
bandwidth than an edge server. In this architecture category,
the border between the device level and the edge level is
not a sharp one, as the coordinator level providing edge
functionality is actually an end device. Solutions using this
category of architecture are named, for example, fog colonies
with a control node [50], vehicular clouds with a cluster head
[51], and local clouds with a local resource coordinator [52].
It is interesting to note here that the term local cloud, which
was already used for describing a part of the edge server
architecture category described in the previous paragraph, is
used to describe various architectural solutions, illustrating
well the fact that the terminology used in edge computing is
not yet set.

The last category, named device cloud and depicted in
Figure 1(c), is an architecture, where the end devices commu-
nicate with each other to find needed resources and deliver
the wanted services.The devices might communicate with an
edge device connected to the cloud if needed but this is not
necessary. In this architecture category, the device level and
the edge level are thus merged. Research works considering
this category of architecture call it opportunistic computing
[53], cooperation-based mobile cloud computing [54, 55], or
transient clouds [56].

While all these architectures need to be populated with
dedicated resourcemanagement elements, there is no general
agreement about where to place the needed policies. A recent
proposal for a generic software architecture that encompasses
the edge server version in Figure 1(a) is an enabler for
evaluation of multiple resource management policies within
common testbeds [57].

2.4. Taxonomy of Edge Resource Management. In addition to
classifying the reviewed papers according to the architecture
category they consider, we also present a taxonomy of
resource management at the edge. This taxonomy, illustrated
in Figure 2, aims at getting an overview of state-of-the-art
research in this area and presents four main aspects: resource
type, objective of resource management, resource location,
and resource use.

The two first aspects were constructed by reviewing the
current type of resources used and the objective for which they
are used in the literature. The two last aspects are based on
mutually exclusive pairs for describing the resource location
and the use of the resource.

In the coming sections, wewill describe the different parts
of the taxonomy and how the surveyed works can be placed
in the four above contexts, as well as the architectural models
described.

3. Resource Type

The first step in evaluating the benefit of an edge solution is
to decide what are the resource types that can be managed in
a better way compared to a centralized system.

An obvious justification for using edge architectures is
reducing the response time, which can be done if com-
putation and communication resources are provided and
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Figure 1: Categories of architectures used in edge computing.

used adequately. Storage as a resource is also a concern,
since local storage may benefit security or timeliness due
to customized fetching and secure storing mechanisms. A
less obvious type of resource is having access to a special
type of data (e.g., availability of sensors) that provides local
benefits in an application. Examples are the use of cameras
or location sensors. The amount and type of data captured
in turn affect computation and communication resources
(how often to shuffle data and how much to process or filter
before shuffling) and implicitly the choice of where and how

much of other resources to deploy. The fifth category we
consider is energy as a resource, which is clearly influenced
by the amount of computation, communication, storage, and
data capturing that goes on. Finally, some works consider
resources in a generic way using abstract terms such as
“Virtual Resource Value” or just as unitless elements in a
model.

Table 1 summarizes the surveyed papers in terms of their
mapping to the architectural choices in Figure 1. It also shows
which resource is focused onwithin eachwork, either specific
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Figure 2: A taxonomy of resource management at the edge.

or generic. As it can be seen, the vast majority of the surveyed
articles focus on several resources.Therefore, this section will
present the common combinations of resources described
above and presented in Figure 2.

3.1. Single Resource Focus. Even though the majority of the
surveyed papers choose to focus on several resources, some
papers focus on only one resource type. We present those
papers in this subsection and then move on to multiresource
cases.

3.1.1. Generic. When focusing on a single resource type, most
of the works use a generic one, which is used as an abstraction
for actual resources.

The abstraction used varies in various articles. For exam-
ple, Penner et al. [56] work with device capabilities as an
abstraction when proposing resource assignment algorithms.
Other works, such as Aazam et al. [43, 58], define a new
conceptual unit. “Virtual Resource Value” is the unit for
any resource, which is then mapped to physical resources
according to the type of service and current policies of the
cloud service provider.

Sometimes the abstraction is at an even higher level:
Wang et al. [77] use generic cost functions that can be used
to model many aspects of performance such as monetary

cost, service access latency, amount of processing resource
consumption, or a combination of these. When proposing a
method for online service placement, they, however, analyze
its performance for a subset of cost functions related to
resource consumption with the claim that this subset is still
general.

3.1.2. Energy. Some works focus solely on energy, which is
especially important at the edge since devices, in particular
end devices, are often resource-constrained. For example,
Mtibaa et al. [83] perform offloading between end devices in
order to maximize the group lifetime.

Still considering only energy but with another perspec-
tive, Borylo et al. [65] classify data centers in two categories
(green and brown depending on which source of energy they
use) and then use a latency-aware policy to choose a data
center for serving a request.

3.1.3. Other. There are works that consider a minimum
computational resource unit per device. For example, Fricker
et al. [69] use servers as an abstraction (one request occupies
one server).

Data as a resource, in addition to sensor data mentioned
earlier, can also be seen as content. Gomes et al. [13] propose
an algorithm for content migration at the edge, together
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Table 1: Surveyed articles according to architecture category from Figure 1 and resource type.

Article Computation Communication Storage Data Energy Generic

Edge server

Liu et al. [59] � �
Confais et al. [60] � �
Aazam et al. [43] �
Arkian et al. [61] � � �

Aazam and Hu [58] �
Fan et al. [62] � �
Oueis [63] � � �

Tang et al. [64] � �
Borylo et al. [65] �

Yousaf and Taleb [48] � � �
Wang et al. [49] � �
Gu et al. [66] � � �

Tärneberg et al. [67] � �
Plachy et al. [68] � �
Gomes et al. [13] �
Fricker et al. [69] �

Rodrigues et al. [70] � �
Zhang et al. [71] � �

Bittencourt et al. [72] � �
Zamani et al. [73] � �
Valancius et al. [45] � � �
Chen and Xu [74] � � �
Wang et al. [75] � � �
Yi et al. [76] � �

Wang et al. [77] �
Sardellitti et al. [78] � � �
Singh et al. [44] � �

Coordinator device

Nishio et al. [52] � � � �
Skarlat et al. [50] � � � �
Borgia et al. [79] � � �

Athwani and Vidyarthi [80] � � �
Arkian et al. [51] � � �
Penner et al. [56] �
Bianzino et al. [81] � �
Habak et al. [20] � � �

Device cloud

Liu et al. [54] � �
Mascitti et al. [53] � �
Liu et al. [55] � �

Meng et al. [46] � �
Qi et al. [82] � �

Mtibaa et al. [83] �

with mobility prediction as an enabler within their new
mobile follow-me cloud architecture. This work builds upon
the initial follow-me cloud proposal by Taleb and Ksentini
[12].

3.2. Multiple Resource Focus. All other surveyed articles are
focusing on multiple resource types. In this section, we
group the papers according to the different combinations of
resources they consider.

3.2.1. Computation and Communication. The most common
combination of resource types studied is computational and
communicational resources together. Thus, we begin by
considering works that study this combination and in one
case together with data.

Liu et al. [59] considerwireless bandwidth and computing
resource when deciding to handle a request either in a
cloudlet or in the cloud. Another example is the work by
Bittencourt et al. [72], who consider bandwidth between the
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cloud and cloudlet, as well as cloudlet processing capabilities
when evaluating different scheduling strategies.

Computational resources can be addressed at a physical
level, for example, discussing CPU cycles, or at a conceptual
level, for example, use of virtual machines (VMs) as resource
elements. In the surveyed articles, Wang et al. [49] consider
CPU cycles, Singh et al. [44] considerMillions of Instructions
per Second (MIPS), and Rodrigues et al. [70] consider the
number of processors per cloudlet. At a conceptual level,
Zamani et al. [73] consider different computing resources
based on the average number of tasks completed per unit of
time, and Plachy et al. [68] allocate computational resources
in the form of VMs.

Sometimes the VMs are used as a means to ensure that a
task can run given enough underlying resources in the device
hosting the VM, for example, in the work by Tärneberg et al.
[67].

Instead of using VMs, Yi et al. [76] adopt lightweight OS-
level virtualization and a container technique, arguing that
resource isolation can be provided at a much lower cost using
OS-level virtualization. They also pinpoint that the creation
and destruction of container instances are much faster and
thus enable the deployment of an edge computing platform
with minimal efforts.

As in Section 3.1.3, some works consider a minimum
resource unit that corresponds to a device. For example,
Meng et al. [46] consider one vehicle as the minimal comput-
ing resource unit. Vehicles are aggregated in a resource pool
together with communication resources and resource units
from the cloud and the edge.

Communication power needed can be considered as a
part of the cost when sharing resources [64]. In contrast,
communication can be characterized by a delay term impact-
ing the task completion time, like [44, 53, 73].

Finally, Habak et al. [20] consider computation, commu-
nication, and data in femtoclouds. The data considered gives
information about task dependencies in order to determine
in which order the tasks need to be executed and which ones
can be run in parallel.

3.2.2. Computation, Communication, and Storage. Other
works, in addition to the computation and communication
resource types, also include storage in their study.

For example, Arkian et al. [51] tackle resource issues
in vehicular clouds by considering all three resource types.
Elsewhere, crowdsensing is tackled with the same resource
considerations [61].

Another example is the work by Skarlat et al. [50],
where they model service demands and a specific kind of
resource (sensor data) as well as the computational and
storage resources. In this work, communication is considered
as a delay term.

VMs can also be considered as an encapsulation of the
above three resources in methods that ensure the underlying
resources in the device hosting the VM are adequate [66].

Still considering virtualization, Wang et al. [75] pro-
pose a system architecture where applications’ requests con-
tain computing complexity and storage space requirements.
Those requirements are then translated by a SDN controller

node into computing power requirements, bandwidth vol-
umes, or requirements on security groups. When trying to
allocate more computing and bandwidth resources in an
emergency situation, their system will do it by creating new
VMs.

Finally, in addition to considering computation, com-
munication, and storage, Yousaf and Taleb [48] emphasize
the fact that different resources should not be considered in
isolation as there are interactions between them. Thus, they
describe and use the concept of resource affinity in their
scheme.

3.2.3. Computation, Communication, and Energy. Another
combination studied by several of the surveyed articles is
computation, communication, and energy resource types.

Athwani and Vidyarthi [80] aim at making resource
discovery energy-efficient in order to save battery. Nishio et
al. [52] consider energy efficiency in their algorithms but at a
more general level, without battery life considerations.

Oueis [63] focuses on energy-efficient communication
with the aim of minimizing the communication power
needed. Similarly, when studying edge collaboration in ultra-
dense small base stations networks with trust considerations,
Chen and Xu [74] consider computing (CPU cycles per
second), communication as radio-access provisioning, and
energy used for both transmission and computation.

Sardellitti et al. [78] propose an algorithmic framework
to solve the joint optimization problem of radio and com-
putational resources with the aim of minimizing the overall
energy consumption of the users while meeting latency
constraints. They first present a solution for the single-user
case and then consider the case of offloading with multiple
cells in a centralized and a distributed manner.

When considering energy as a resource, a comprehen-
sive discussion of interactions between multiple actions is
mapped to energy apportionment policies by Vergara et al.
[84]. However, since this work considers edge-/cloud-specific
apportionments as one amongmany application areas, that is,
addresses energy sharing in a much wider context, we do not
further consider it in our classifications.

3.2.4. Combinations Including Generic Resources. We now
consider generic resources in association with other resource
types, such as energy or communication.

First, Liu et al. [54] consider abstract tasks and resources
to address energy efficiency. They switch between a central-
ized and a flooding mode depending on energy consumption
while keeping the expected value of RIA (Resource Informa-
tion Availability), which is their quality metric. Qi et al. [82]
choose to abstract resources as services and consider energy
consumption in the end device when taking an offloading
decision.

Regarding communication, Liu et al. [55] use the notion
of generic resource (when referring to a combination of
bandwidth and CPU available for sharing) as well as concrete
bandwidth when nodes are at contact range. Borgia et al.
[79] consider data-centric service providers having storage,
computing, and networking capabilities but in their evalua-
tion abstract away the storage and computing resources by
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only considering the extent to which services are waiting for
resources on the provider side.

3.2.5. Other Combinations. Not all works considering com-
putation also consider communication. Less common com-
binations including computational resources are those with
energy and data.

With regard to energy, Fan et al. [62] present a virtual
machine migration scheme that aims at using as much green
energy as possible in the context of green cloudlet networks.

Data and computation are the focus of Zhang et al. [71]
who studied distributed data sharing and processing in order
to use data coming from different stakeholders for new IoT
applications and propose a new computing paradigm called
Firework.

Less common combinations including communication
resources include storage and energy resource types.

Confais et al. [60] present how a storage service can be
provided for fog/edge infrastructure, based on the InterPlan-
etary File System, and scale-out network-attached systems.
Their aim is to propose a service similar to the Amazon Sim-
ple Storage Service solution (https://aws.amazon.com/fr/s3/)
for the edge.

Adding energy to storage and communications resources,
Valancius et al. [45] consider energy-efficient algorithms
when introducing a new distributed data center infrastruc-
ture for delivering Internet content and services.

Finally, Bianzino et al. [81] study the trade-off between
bandwidth and energy consumption when an end device
has access to multiple networking interfaces and can switch
between them. They aim at energy efficiency but use an
abstract model of power usage based on the amount of data
being shuffled.

3.3. Summary of Resource and Architecture Choices. In this
section, we have presented the surveyed articles depending
on their resource focus. Examining the collection of papers
above, resource studies so far seem to focus on computation
and communication resources to a greater extent. Moreover,
data as a resource is a potential not extensively explored.
Similarly, energy is underrepresented among resources stud-
ied.

Furthermore, it is noticeable that storage is not the main
focus of attention. It could be due to the fact that the cloud
is available as a fall-back in many cases. It could also be
the case that persistent data storage is not the main focus
of most of the applications considered at the edge. Rather,
the service or completed task is the main purpose. Another
reason could be that presently there are not many critical use
cases with latency-constrained storage, but this may change
when more and more IoT devices appear in the field. An
alternative explanation could be that the authors choose to
focus on a reduced set of resources for ease of presentation
thinking that the work can be extended to other resources
such as storage. Such claims, however, have to be considered
with care as this is ignoring the fact that there could be
interactions between resources as studied byYousaf andTaleb
[48].

Some resources are dealt with mainly as physical ele-
ments, whereas others naturally lend themselves to be defined
in abstract ways. For example, sensors are present in the
end devices, which can produce useful data needed for the
completion of the task (as in [50, 52, 56, 71]), whereas
bandwidth (throughput) is a natural abstraction for dis-
tinguishing between different radio interfaces or different
physical environments (abstracting the impacts of reduced
signal strength, interference, etc.).

Moreover, when using a generic resource representation,
it is easier to combine several resource types or to combine
resources with other performance-related considerations,
one example being the generic cost function in the work
by Wang et al. [77]. In their performance analysis, they
define local and migration resource consumption that can be
related, for example, to CPU and bandwidth occupation or
the sum of them.

Another point to note is that the first architectural
instance (edge server) is themost predominant structure used
in the surveyed papers.

4. Objective

A major classification represented in this taxonomy is the
objective of resource management. Resource management at
the edge can be decomposed into several areas addressing
different problems, as shown in the branches under objective
in Figure 2. In Table 2, we present which surveyed article
addresses which problem(s) and we describe those problems
in the following subsections. As it can be seen in the table,
one surveyed work can address several of the areas.

The resource management objective is orthogonal to the
resource types presented in Section 3 but a discussion of
the relationship between objectives of resource management
and resource types is conducted in our summary in Sec-
tion 4.6.

4.1. Resource Estimation. One of the first requirements in
resource management is the ability to estimate how many
resources will be needed to complete a task or to carry a
load. This is important, especially for being able to han-
dle fluctuations in resource demand while maintaining a
good quality of service (QoS) for the user. On the sup-
ply side, resources at the edge can be mobile and thus
become unreachable, which makes them less reliable than
resources in a data center. On the demand side, user mobility
implies that there can be sudden user churn, with the
corresponding dynamic requests having to be handled by the
edge.

In their work, Liu et al. [54] use the average of historical
data in order to predict the characteristics of resource distri-
bution andusage for the next time slot.The term fog is used by
Aazam et al. [43] who propose that it can be used to perform
future resource consumption estimation as a first step for
allocating resources in advance.They formulate an estimation
mechanism that takes into account the reliability of the
customer, using what they call the relinquish probability. In
another article, Aazam and Huh [58] present the same idea

https://aws.amazon.com/fr/s3/


Wireless Communications and Mobile Computing 9

Table 2: Surveyed articles according to architecture category from Figure 1 and objective of resource management.

Objective
Resource
estimation

Resource
discovery

Resource
allocation

Resource
sharing

Resource
optimization

Edge server

Liu et al. [59] � �

Confais et al. [60] �

Aazam et al. [43] �

Arkian et al. [61] � �

Aazam and Hu [58] �

Fan et al. [62] � �

Oueis [63] � �

Tang et al. [64] �

Borylo et al. [65] �

Yousaf and Taleb [48] � �

Wang et al. [49] � �

Gu et al. [66] � �

Tärneberg et al. [67] � �

Plachy et al. [68] �

Gomes et al. [13] �

Fricker et al. [69] �

Rodrigues et al. [70] � �

Zhang et al. [71] �

Bittencourt et al. [72] �

Zamani et al. [73] � � �

Valancius et al. [45] � �

Chen and Xu [74] �

Wang et al. [75] �

Yi et al. [76] � �

Wang et al. [77] � � �

Sardellitti et al. [78] � �

Singh et al. [44] �

Coordinator device

Nishio et al. [52] � �

Skarlat et al. [50] � � �

Borgia et al. [79] �

Athwani and Vidyarthi [80] � � �

Arkian et al. [51] � � �

Penner et al. [56] �

Bianzino et al. [81] � �

Habak et al. [20] � � � �

Device cloud

Liu et al. [54] � � �

Mascitti et al. [53] �

Liu et al. [55] � �

Meng et al. [46] � �

Qi et al. [82] � �

Mtibaa et al. [83] � � � �

but with an emphasis on how different customers can be
charged for the service. Another work by Mtibaa et al. [83]
estimates power consumption in order to maximize device
lifetime.

Wang et al. [77] use a look-ahead window for prediction
into the future in order to minimize cost over time. They
study the optimal size for such a window and propose an
algorithm using binary search to find this size which they
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Figure 3: Distribution of resource allocation approaches in the surveyed articles.

evaluate as accurate as it gives results close to the size giving
the lowest cost. However, the actual prediction mechanism is
assumed to be available.

With respect to computational resources, Habak et al.
[20] are estimating the task requirements within a job
analyzer. They evaluate the sensitivity of their mechanisms
to estimation errors and find that the pipeline job model
is insensitive to such errors, whereas the general parallel
path model starts exhibiting a significant increase of job
completion time if the estimation error variance exceeds 30%.

There are of course many earlier works that use sophisti-
cated prediction mechanisms for estimating future loads in
cloud environments (e.g., [85]) but our focus has been on
edge-related papers and instances of estimation therein.

4.2. Resource Discovery. As opposed to the estimation prob-
lem that relates to the demand side, resource discovery is
about the supply side. A management system needs to know
which resources are available for use, where they are located,
and how long they will be available for use (especially if the
resource providing device is moving or it is battery-driven).
This area is especially important at the edge, where every
resource is not under the control of the system at all times,
so the supply is volatile.

The collaboration at the edge can take the formof clusters,
as advocated by Athwani and Vidyarthi [80]. They present
an algorithm for forming clusters of devices and performing
resource discovery within the cluster. Their strategy is that
each member of the cluster will inform the cluster head
about their available resources and all requests for resources
are handled by the cluster head. From their evaluation with
respect to energy consumption and delay, they conclude that
maintaining the cluster consumes extra energy, especially if
the devices are very mobile. Arkian et al. [51] also present
a solution using clusters and an algorithm for selecting the
cluster head, that is, the vehicle that will be responsible for
maintaining the vehicular cloud resources. They use fuzzy
logic and a reinforcement learning technique. In order to
select the best vehicle, they need to know which vehicle
possesses the best communication to the edge node located
on the road-side, hence performing resource discovery. This
is done in a similar way to earlier work [80]; that is, each

potential cluster head node sends a message to the edge node
in order to evaluate the link quality before doing the selection.
Therefore, those works use a locally centralized strategy for
resource discovery.

However, using a locally centralized strategy comes at
the cost of the necessity to regularly update the node
gathering the resource information. Such updates are costly,
for example, in terms of energy consumption, as studied
by Liu et al. [54]. They propose an algorithm enabling a
switch between a locally centralized mode and a distributed
mode. In the locally centralized mode, end devices propagate
their resource information/request to a specific node. In
the distributed mode, end devices look for resources in the
neighboring devices by using ad hoc WLAN. They qualify
their strategy as adaptive as it takes into account the current
characteristics of resource distribution and usage in the
network. When evaluating the energy consumption of two
variants of the adaptive strategy, these perform close to the
ideal energy consumption (10% to 13% more energy) and
both perform better than strategies using only a distributed
or locally centralized mode.

Finally, Zamani et al. [73] use a framework called Comet-
Cloud, which performs resource discovery for video analysis
and compare the benefit gained to a solution in the cloud.

4.3. Resource Allocation. Resource allocation can be tackled
from two different perspectives: where to allocate (both
initially, but also where and when to perform a migration
if needed) and when and how much to allocate. Among the
dominant approaches to allocation, we find the following
three perspectives: placement (14 articles), migration (7 arti-
cles), and scheduling (3 articles), as well as a multiperspective
one (6 articles) as shown in Figure 3.

In what follows, we group papers that have a single
perspective under Sections 4.3.1, 4.3.2, and 4.3.3 and then
move on to papers where several perspectives are present.

4.3.1. Placement. Most of the surveyed works emphasize the
first perspective, that is, where should the task be executed
and the resource allocated for the best possible execution.
The definition of best execution varies depending on the
considered system and the focus of the research.
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Load distribution to achieve lower latency has attracted
attention in a number of surveyed works, and it can be seen
as an instance of placement. Fricker et al. [69] propose an
offloading strategy between edge data centers under high
loads that show the benefit of having a larger data center
as back-up for a small one. Latency is also the focus of a
study by Borylo et al. [65] who investigate dynamic resource
provisioning.They present a policy in which the edge can use
the cloud in compliance with the latency requirements of the
edge but enables better energy efficiency by using resources
in data centers powered by green energy.

Also focusing on energy, Mtibaa et al. [83] propose a
power balancing algorithm inwhich a device decideswhether
to offload and to which other device depending on the energy
left in the devices’ batteries. In a single-hop scenario, their
solution extended the time before the first device of the group
runs out of battery by 60% (from 40 minutes to 2 hours)
compared to a greedy solution.

Oueis [63] tackles the issue of load distribution and
resource allocation in small cell clusters. She formulates a
joint computational and communication resource allocation
and optimization problem in amultiuser case with a focus on
latency and power efficiency. Similarly, Sardellitti et al. [78]
study an offloading problemwhen the end users are separated
into two groups: those who need computation offloading and
those who do not.They propose a method to jointly optimize
communication and computation resources, where both user
groups compete for communication resources but only the
first group competes for computation resources. They first
present an algorithm for the single-user case and then two
algorithms for the multiple cells case, a centralized one, and a
distributed version to mitigate the communication overhead
induced by the centralized approach.

Valancius et al. [45] propose a content placement strategy,
where the content is movies. The focus is first on finding the
optimal number of replicas of the data to be stored and then
on placing the replicas on available gateways. Similarly, Qi
et al. [82] present an allocation scheme, where the resource
(coming from either a cloudlet or a cloud) is chosen for each
task. The aim is to pick the resource from the most suitable
location when the user is moving.

Wang et al. [77] study service placement in a system
composed of edge server nodes and traditional cloud nodes.
Simulation results with real-world traces from San Francisco
taxis show that the proposed approach is close to the case of
online placement when the future is known, outperforming
edge-only or cloud-only solutions. Similarly, Skarlat et al. [50]
present a service placement problem for IoT services.

Mascitti et al. [53] present an algorithm where an end
device can choose to either use a resource from a node it
is directly in contact with or compose different resources
from different nodes in order to complete its task. Coming
from the same research group, Borgia et al. [79] present a
framework where the decision is taken to obtain a service
from a local group of end devices or from the cloud, based
on an estimation of the time required to obtain the service.

Confais et al. [60] propose a storage mechanism where
the objects to be stored are primarily placed locally at
their creation but can then be copied to another location

if another edge site is requiring access to it. In vehicular
networks where resources are mobile, placement has to take
account of changes in location. Meng et al. [46] present a
resource allocation scheme that can manage resources from
a vehicular cloud, the edge, or the cloud. Their focus is on
minimizing delays for the users.

In the application domain of healthcare, Gu et al. [66]
include VM placement in their optimization problem for
analyzing data.Their two-phase solution has a nearly optimal
solution and outperforms a greedy strategy with regard to
cost.

4.3.2. Migration. Still considering where the task should be
executed, when it comes to virtual entities such as services,
applications, tasks, and VMs, the focus could also be on how
they can be moved during execution if the new location is
better, that is, on migration.

For example, Tärneberg et al. [67] study application-
driven placement and present a system model for mobile
cloud network with a dynamic placement algorithm that
guarantees application performance, minimizes cost, and
tackles resource asymmetry problems. Plachy et al. [68]
propose a cooperative and dynamicVMplacement algorithm
associated with another cooperative algorithm for selecting
a suitable communication path. They use VM migration to
solve user mobility problems.

Other works focus specifically on the problem of migrat-
ing resources. For example, Gomes et al. [13] present a
content-relocation algorithm for migrating the content of
caches present in edge devices.This needs a prediction of user
mobility.

With respect to virtual computational resources, Fan et al.
[62] andRodrigues et al. [70] focus onVMmigration butwith
different optimization objectives (increase the use of green
energy and minimize delays, resp.). Yousaf and Taleb [48]
propose a VMmigration (and VMmanagement) system that
takes into account the relationship between resource units
when making migration decisions. They present this work in
the context of 5G but it should be applicable to all physical
machines hosting VMs.

Finally, Penner et al. [56] introduce the term transient
cloud and concentrate on task assignment towards a given
node. They present a collaborative computing platform that
allows nearby devices to form an ad hoc network and provide
the ability to balance the assignments among themselves.This
may be considered as a form of migration.

4.3.3. Scheduling. While there is a huge body of researches
available on when and howmany resources to allocate within
networking and cloud-specific areas, our goal here was to
identify examples where scheduling decisions are at the edge
level in the sense of our terminology in Section 2.1.

Regarding when to allocate resources, Bittencourt et
al. [72] study the impact of three different fog scheduling
strategies on application QoS (concurrent, first come-first
served, and delay-priority). For two applications studied,
when more than four users are moved between cloudlets,
the concurrent strategy exhibits a lot longer delays than the
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sequential ones. However, this same strategy is using the
network a lot less than the other two.

With the same focus, Singh et al. [44] consider only
scheduling for tasks with a private tag. Those can only be
executed on the local edge server and will be rejected if not
enough resources are available. In their algorithm, tasks are
considered in an earliest-deadline-first manner.

Regarding how many resources to allocate, Wang et
al. [49] propose a joint cost-effective resource allocation
between the mobile cloud computing infrastructures and the
cloud radio access network infrastructure. If the need of
the application is greater than the available computational
resources, then they reduce the amount given to each virtual
machine so that it fits the total amount available and adapt
the data rate accordingly. They show that joint optimization
with respect to cost and energy performs better compared to
separate cost- and energy-optimization strategies.

Similarly, Wang et al. [75] propose elastic resource allo-
cation for video-surveillance systems. The elasticity comes
from an algorithm they propose to handle some emergency
surveillance event (like tracking a criminal) that requires
a sudden increase of computation and communication
resources to make sure that all the possible images are
analyzed within a reasonable timeframe. When such an
emergency event happens, network bandwidth allocation is
reconfigured and computing resources are reallocated (by
launching new VMs in the impacted zone and balancing the
workload on nodes). When experimenting in their physical
testbed, they verified that data propagation round-trip time
is about 5 times lower with edge nodes close to the cameras
compared to the cloud. They also found that the time for
launching new VMs in the emergency mode is between one
and two minutes, which they claim is acceptable in such a
scenario.

When addressing scheduling, the surveyed articles most
often do it at the same time as placement or migration, which
is the topic of the next subsection.

4.3.4. Multiple Perspectives. A work that tackles both per-
spectives is by Liu et al. [59]. It presents a multiresource
allocation system that first decides whether the request
should be served or rejected (admission control) and then
where to run it (edge or cloud level) and finally how much
bandwidth and computing resources should be allocated
for this task. To do that, they use Semi-Markov Decision
Processes and their aim is to maximize system benefit while
guaranteeing QoS for the users. To measure the benefit, they
use blocking probability and service time as metrics. When
evaluating, they compare to two greedy strategies and show
that their proposal outperforms the first one and provides
a 90% reduction of the blocking probability with only a
slight increase of service time compared to the second greedy
strategy, which would be acceptable for congested situations.

In the context of video analysis, Zamani et al. [73] also
studied those two perspectives. Their scheduling is based
on identified chunks of video, applying two alternatives:
minimizing computation time or minimizing computation
costs. Their placement is done after resource discovery using
CometCloud. In their evaluation, they showed that the

solution using edge accepts more tasks and in particular
more high-value tasks than a solution using only the cloud.
Hence, the overall value obtained from the processed data
is maximized at the same time as the throughput of the
infrastructure.

Also in the area of video analytics, Yi et al. [76] investi-
gate three task prioritizing schemes for scheduling the task
requests at a receiving edge node. Their solution, using the
flow job shop model and applying a well-known approach
(Johnson’s rule), aims at minimizing the makespan. Their
simulations compared the approach with other strategies
(Short IO First, Longest CPU Last) and found that response
time was improved. Their work also includes a second
perspective, by investigating three task placement schemes
for collaboration within the edge level (Shortest Transmis-
sion Time First, Shortest Queue Length First, and Shortest
Scheduling Latency First). Using their testbed, they found
that the Shortest Scheduling Latency First achieves the best
performance in terms of task completion time.

Singh et al. [44] consider both placement and scheduling
with respect to semiprivate or public tasks (in addition to
what was mentioned in the last subsection for private tasks).
Those tasks are placed after a decision is taken for the private
ones. Still considering Earliest Deadline First, the placement
strategy is to try first one’s own edge and then one’s own
cloud and if they are overloaded go to some external edge and
then to an external cloud. In the evaluation, they show that,
for tasks having tight deadlines, their system RT-SANE will
complete a lot more tasks before their deadline than a cloud-
only solution.

How many resources are to be allocated to a given IoT
data generator is a topic of discussion by Arkian et al. [61],
in which they first mathematically model deployment and
communication costs on various fog nodes and then decide
onplacement ofVMs to achieve lowest costs. Analyzingmon-
etary costs for compute nodes, their fog solution decreased
the cost by over 33% compared to using a cloud solution. For
routing and storagemonetary cost, the decrease is about 20%.

Habak et al. [20] first consider placement for deciding in
which end device a task will be run. They use a path-based
assignment policy with the aim of minimizing the overhead
of transmitting data needed for task execution between end
devices. In the evaluation, this translates into performing
better than two other baseline solutions in terms of service
completion time. Then, they also consider scheduling of the
computation resource. This should be done in a predictable
way so that the part of the system distributing the tasks can
make good decisions.They propose a fair queuing based task
pick-up that ensures a fair execution of the tasks belonging to
different services. Moreover, they implement an early pick-
up mechanism to enhance the previous mechanism so that a
task with an urgent deadline but belonging to a service with
a lower priority can be executed before a higher priority task
if this one still meets its deadline.

While this is not the focus of the survey and as such is
not included in the table, Dong et al. [86] study offloading
and Earliest Deadline First scheduling within end devices.
They find that one of their proposed approaches maintains
good predictability for twice higher CPU utilization than



Wireless Communications and Mobile Computing 13

widely used approaches, while keeping energy consumption
reasonable.

4.4. Resource Sharing. Resources on end devices are het-
erogeneous and most of the time scarce, and edge devices
also have limited resources compared to (almost infinite)
resources in the cloud. Sharing resources between devices or
between end and edge devices aims at tackling three different
issues: not having the needed resource at all in the device
where the task is initiated, not having enough of it, or using
other devices’ resources in order to get a faster completion of
the task.

Sharing resources is typically realized by pooling
resources in the local vicinity of client nodes.This can extend
to the edge domain (clustering edge servers) or remain at end
devices. The latter is investigated by Skarlat et al. in so-called
fog colonies [50], by Arkian et al. within vehicular clusters
[51], or by Bianzino et al. [81] for uploading data streams in
presence of mobility.

We can classify the surveyed articles into two categories
according to whether they include how to form the groups
of devices that will share resources or if they assume that the
formation is already done and focus on the actual sharing.
We call these two categories dynamic coalitions and static
coalitions, respectively.

Starting with dynamic coalitions, Chen and Xu [74] and
Bianzino et al. [81] include the formation of device coalitions.
Chen and Xu [74] do it using a coalition game incorporating
trust considerations. When the supply matches the demand,
they found that using a coalition can lead up to 40% lower
weighted cost (including latency and monetary considera-
tions) compared to a noncooperative scenario. When there
is overload or light workload, it is either not possible or not
needed to collaborate and the gain is very low. Bianzino et
al. [81] express resource sharing as an optimization problem,
where the aim is to create as few and large groups as possible
to minimize the number of high-energy interfaces that will
be used. They evaluate that their algorithm leads to over
60% energy saving of the total energy consumed by the end
devices.

Still using dynamic coalitions, Arkian et al. [51] and Ath-
wani and Vidyarthi [80] propose methods to create clusters.
The former compare their method to an earlier baseline
and achieve 3 times lower service discovery delay and 4,5
times lower service consumption delay for a small number
(50) of vehicles. The latter show that energy consumption is
similar to a centralized approach, while the delay is closer to
a flooding approach (i.e., low in both cases).

However, creating and maintaining a group of devices
that can share their resources has a cost, for example,
shown by Athwani and Vidyarthi [80] who concluded that
maintaining the cluster consumes extra energy, especially if
the devices are very mobile. This is why it is beneficial to do
the resource sharing in two phases, where the first phase is
deciding whether the device gains more by working alone
or joining a coalition, and the second one is deciding if
the device will consume others’ resources [81, 87]. Yu et al.
[87] show that their cooperative solution improves user QoS
(defined by how much computing and how many bandwidth

resources are allocated to a user) by 75%. However, this paper
is using traditional cloud resources and not edge, so it is not
included in the tables.

Moving to static coalitions, Skarlat et al. [50] consider
resources shared between two neighbor fog colonies and
achieve a 35% reduction of execution cost compared to a
cloud-only strategy. Regarding data, a resource that many
stakeholders may be interested in sharing, Zhang et al. [71]
present a data sharing framework called Firework. They
include two case studies, including the search for a person
with the help of multiple cameras from different owners.

Some researchers, such as Liu et al. [55], try to exploit
opportunistic contacts between the devices, creating a
resource sharing mechanism that enables faster task com-
pletion. They propose different models for calculating task
latencies and their approximation algorithm performs better
than two other strategies. Similarly, Mtibaa et al. [83] define
three mobile device clusters (one hop, two hops, and oppor-
tunistic) that can share their resources. Their aim is to share
resources in order to get the longest possible network lifetime,
that is, saving as much energy as possible through offloading
to another device so that the devices can stay on longer. They
identify two important topological factors: number of hops
and disconnection rate due to mobility.

Resource sharing can perhaps speed up the execution
of a task, but Nishio et al. [52] argue that this is not
bringing any advantage for the user if we do not consider
task dependencies in order to provide a service to the user.
They provide the example of a GPS service: if the best route
calculation is very fast but the downloading of themap is not,
the service to the user will not get faster as both are needed.
Habak et al. [20] consider sharing of end device resources
belonging to a femtocloud in order to execute tasks. In their
system, the owner of the end device can configure how
they want to share resources via their personalized resource
sharing policies.

Finally, even if resource sharing can bring benefits for
a group of end devices, it is not obvious that users will
agree to share their resources, especially if they are always
on the providing side. Therefore there is a need to develop
incentives for resource sharing such as works by Tang et al.
[64], Bianzino et al. [81], andChen andXu [74].The following
mechanisms are provided in the above works, respectively:

(a) A double bidding mechanism for demander and
supplier of resources where the focus is on how to
encourage mobiles with resources to share them

(b) A mechanism for lending energy to vicinity nodes
which is rewarded and can be used in future scenarios
when the lending node itself needs energy

(c) Payment incentives for lending out resources

On the same topic, Habak et al. [20] performed a pi-
lot study to identify effective incentive mechanisms. They
studied the willingness of around 50 students to share their
resources in 4 scenarios and found out that they would agree
to share their resources if they are getting compensation (e.g.,
money) for it or if the reason for the computation taking place
is significant (e.g., emergencies).
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4.5. Resource Optimization. A fifth objective pursued in the
surveyed works is to optimize the resource use at the edge.
This is usually a joint objective together with one of the
previously described objectives. Which aspect should be
optimized and the associated constraints vary among the
surveyed works but the three main ones are QoS (often
understood as latency), energy, and operational cost. How the
optimization problem is formulated and solved also varies,
and we present those variations in this section.

First, some articles consider selecting the optimum solu-
tion by comparing the results from different candidates and
selecting the minimum/maximum value depending on the
objective. For example, Yousaf and Taleb [48] select the value
maximizing the resource utilization, Athwani and Vidyarthi
[80] use theminimumvalue of a custom function to select the
cluster head, and Mtibaa et al. [83] select the configuration
maximizing the estimated remaining energy.

Another group of works solve their optimization problem
using linear programming [45, 59] or an approximation based
on linear programming [55].

A third group of works use integer linear programming
[50, 81] or mixed-integer linear programming [62]. Qi et al.
[82] formulate their task allocation problem using integer
programming and solve it by a self-adaptive learning parti-
cle swarm optimization algorithm. First formulating using
mixed-integer nonlinear programming, Arkian et al. [61]
then linearize the problem and solve it using mixed-integer
linear programming. Gu et al. [66] do the same and then
use heuristics. Using a different approach, Yi et al. [76] first
formulate a mixed-integer nonlinear programming problem
but then relax the integer constraints and use sequential
quadratic programming for solving.

Some works focus on convex problems, like Wang et
al. [77] who use an approximation algorithm in the online
case and Nishio et al. [52] who use a heuristic. Starting with
nonconvex problems, Oueis [63] casts them into convex ones
and Wang et al. [49] first use a Weighted Minimum Mean
Square Error-based method on their nonconvex problem to
obtain a convex problem that they apply the block coor-
dinate descent method to for solving. Finally, Sardellitti et
al. [78] have an optimization problem in the multiple-cells
case which is nonconvex and they solve it by developing
a method based on Successive Convex Approximation for
the centralized approach. For the distributed approach, they
choose the approximation functions in a way that allows
decomposition in smaller subproblems solvable in parallel.

A further group of works propose their own algorithm
or heuristic. Tärneberg et al. [67] approximate an exhaustive
search approach yielding an optimal solution but having
exponential computation complexity with an iterative local
search algorithm finding a local optimal solution. Zamani
et al. [73] implement an optimization strategy where con-
straints on computation time and cost are enforced using an
admission control strategy. Wang et al. [77] present a binary
search algorithm for finding the optimal look-ahead window
size, and Habak et al. [20] propose an algorithm in order to
do deadline-based optimization when a helper has to handle
multiple tasks belonging to different services. Finally, Liu
et al. [54] propose a heuristic algorithm that uses different

statistics to estimate the energy that is going to be consumed
in each of the two possible modes during a time slot and
chooses which mode to use depending on this and other
parameters.

Other methods can be used to compare heuristics with
baselines or to solve a formulation in a custom form. In
the offline case, Wang et al. [77] show that their problem
is equivalent to the shortest-path problem and solve it by
using dynamic programming. Meng et al. [46] solve Bellman
equations recursively, Rodrigues et al. [70] use integration
techniques, and Arkian et al. [51] consider fuzzy logic and Q-
learning.

4.6. Summary of Objectives in Resource Management. By
far, the most active area of research in the edge resource
management is resource allocation, as visible in Table 2.
This is followed by optimization as a goal, where we see a
great majority of papers present. Among the objectives from
our taxonomy, resource estimation and resource discovery
are least studied. Resource sharing, to the extent it is used,
is well represented among the second and third types of
architectures in Figure 1, that is, coordinator device and
device clouds, but not in the first type of architecture (edge
server).

Somewhat surprisingly, while scheduling is a major topic
in cloud systems, the edge-specific literature does not con-
sider it as the main problem, as evident from fewer works
addressing scheduling compared to placement and migra-
tion. Where autoscaling is mentioned in an edge context,
authors typically deal with offloading to the cloud, which
was not the focus of our work. There are several excellent
surveys already covering these. The work by Wang et al. [88]
addressing autoscaling and the edge is among few exceptions,
so we did not create a special category for this type of work.

While the previous breakdown was done in a resource
independent manner, it is also interesting to consider the
resource type studied with regard to the resource man-
agement objectives. Table 3 thus combines the information
contained in Tables 1 and 2 to give us this view. Not
surprisingly, most of the articles consider computation and
communication for resource allocation and optimization.
Quite expected as well, the proportion of resource sharing
articles (from Table 2) considering energy as a resource
(45% according to Table 3) is higher than the proportion of,
for example, resource allocation articles considering energy
(23%), as an incentive to share resources is when you consider
energy-constrained devices. It is interesting to note that, in
the surveyed works, resource estimation is most often done
for a generic resource type and that none of the articles
combined resource estimation and storage and resource
discovery and data.

5. Resource Location

Computing at the edge differentiates itself from regular cloud
computing with the fact that resources used can belong to
different levels. It is indeed not uncommon to use resources
at the edge level primarily but also from the cloud level if
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Table 3: Surveyed articles according to resource type and objective of resource management.

Objective
Resource
estimation

Resource
discovery Resource allocation Resource sharing Resource optimization

Resource
type

Computation [20] [51, 73, 80] [20, 44, 46, 48–50, 53, 59, 61–
63, 66–70, 72, 73, 75, 76, 78] [20, 50–52, 64, 71, 74, 80] [20, 46, 48–52, 59, 61–63,

66, 67, 70, 73, 76, 78, 80]

Communication [20] [51, 73, 80]
[20, 44–46, 48–50, 53, 59–

61, 63, 66–
68, 70, 72, 73, 75, 76, 78, 79]

[20, 50–
52, 55, 64, 74, 80, 81]

[20, 45, 46, 48–
52, 55, 59, 61, 63, 66, 67,
70, 73, 76, 78, 80, 81]

Storage [51] [45, 48, 50, 60, 61, 66, 75] [50, 51] [45, 48, 50, 51, 61, 66]
Data [20] [13, 20, 50, 79] [20, 50, 52, 71] [20, 50, 52]

Energy [54, 83] [54, 80] [45, 62, 63, 65, 78, 82, 83] [52, 74, 80, 81, 83] [45, 52, 54, 62, 63, 78, 80–
83]

Generic [43, 54,
58, 77] [54] [56, 77, 79, 82] [55] [54, 55, 77, 82]

required. Moreover, end devices and sometimes edge devices
do not have to be stationary as in a data center. Note that here
we make a distinction between mobility on the demand side
and mobility on the supply side. Even though the demand
side clients are almost always mobile, the infrastructure
that supplies the adequate resources has been invariably
stationary in the past.

In this section, we first look at where the managed
resources considered are located within the architectures
presented in Figure 1.We then shift focus and look at the same
set of resources again but this time studying their mobility.

5.1. Location within the Architecture. Edge resource manage-
ment is actually not only aboutmanaging resources located at
the edge level as a study of themanaged resources’ location in
the surveyed work reveals. This study is presented in Table 4.

5.1.1. Single Level. As expected when surveying edge resource
management papers, a large part (54%) of those consider
managed resources located only at the edge level, for example,
the works by Arkian et al. [61], Fan et al. [62], Gomes et al.
[13], Yousaf and Taleb [48], Chen and Xu [74], Sardellitti et
al. [78], and Wang et al. [75].

Aazam et al. [43] consider resources located at only
one physical location, a fog node, but considering resources
within the same architectural level most often does not mean
that the resources are located at the same physical location.
For example, Oueis [63] considers resources on different cells
and Gu et al. [66] and Plachy et al. [68] consider resources on
different base stations. Fricker et al. [69] and Rodrigues et al.
[70] consider task placement andmigration on different types
of edge devices (data centers for the former and cloudlets for
the latter).

Essentially refining our architecture, some works distin-
guish different levels in the same architectural level from our
Figure 1. For example, Wang et al. [49] consider transmission
in the access network and computation in a mobile cloud
computing architecture. Tärneberg et al. [67] consider that
data centers at the edge can have a different distance to the
device and different sizes.

Among the surveyed works, two works consider
resources located only at the device level but where the
management is performed at the edge, Tang et al. [64] and
Nishio et al. [52], who consider resources present on different
end devices.

There is no work considering managed resources located
at the cloud level only as those were on purpose considered
out of the scope of this survey.

5.1.2. Multilevel. We observe that resources do not need to
belong to the same architecture level. Among the multilevel
works, the most common is to use resources located both at
the edge and at the cloud level. This is the case in the works
by Liu et al. [59], Borylo et al. [65], Valancius et al. [45], Yi
et al. [76], Wang et al. [77], and Singh et al. [44]. Specifically,
Skarlat et al. [50] and Bittencourt et al. [72] favor using edge
resources over cloud resources. Liu et al. [54] use resources
in the device/edge level or in the cloud depending on the
availability of the resources and Confais et al. [60] work with
different storage locations at the edge or cloud level.

This is, however, not the only combination and Zhang et
al. [71] work with data as a resource that can be located both
in the end devices and at the edge. This combination is also
used by Bianzino et al. [81] and Habak et al. [20], where an
end device is promoted to an edge role.

Finally, combining the three levels, Zamani et al. [73] use
resources on the device, on the network path to the cloud
(edge level), and in the cloud level.

5.2. Resource Mobility. In an edge context, it is not obvious
that resources located in the lower two levels of the architec-
ture will be stationary or mobile.Therefore, it is interesting to
study the mobility of the managed resources in the surveyed
articles.

5.2.1. Stationary Resources. Most of the surveyed articles
(71%) consider resources that are stationary only. This can
be because the architecture/application considered does not
have mobile resources or for simplification reasons. The
latter is found in works where the architecture presented has
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Table 4: Managed resources and their supply-side mobility.

Article Managed resources’ location
Device level Edge level Cloud level

Edge server

Liu et al. [59] Stationary Stationary
Confais et al. [60] Stationary Stationary
Aazam et al. [43] Stationary
Arkian et al. [61] Stationary

Aazam and Hu [58] Stationary + mobile
Fan et al. [62] Stationary
Oueis [63] Stationary

Tang et al. [64] Stationary
Borylo et al. [65] Stationary Stationary

Yousaf and Taleb [48] Stationary
Wang et al. [49] Stationary
Gu et al. [66] Stationary

Tärneberg et al. [67] Stationary
Plachy et al. [68] Stationary
Gomes et al. [13] Stationary
Fricker et al. [69] Stationary

Rodrigues et al. [70] Stationary
Zhang et al. [71] Stationary Stationary

Bittencourt et al. [72] Stationary Stationary
Zamani et al. [73] Stationary Stationary Stationary
Valancius et al. [45] Stationary Stationary
Chen and Xu [74] Stationary
Wang et al. [75] Stationary
Yi et al. [76] Stationary Stationary

Wang et al. [77] Stationary Stationary
Sardellitti et al. [78] Stationary
Singh et al. [44] Stationary Stationary

Coordinator device

Nishio et al. [52] Stationary
Skarlat et al. [50] Stationary Stationary
Borgia et al. [79] Mobile Stationary

Athwani and Vidyarthi [80] Mobile
Arkian et al. [51] Mobile
Penner et al. [56] Mobile
Bianzino et al. [81] Mobile Mobile
Habak et al. [20] Mobile Mobile

Device cloud

Liu et al. [54] Stationary Stationary
Mascitti et al. [53] Mobile
Liu et al. [55] Mobile

Meng et al. [46] Stationary + mobile Stationary
Qi et al. [82] Mobile Stationary

Mtibaa et al. [83] Mobile

resources that are theoretically mobile but where this part is
ignored in the solution or evaluation presented, for example,
in [54] or [52].

This preponderance of stationary resources may be
explained by the fact that those works consider edge as an
extension of the cloud, which has only stationary resources.

5.2.2.Mobile Resources. Havingmobile edge devices and thus
mobile resources obviously creates lots of challenges such as
how to handle the unreliable connectivity of those resources
and how to provide seamless handovers.Thus, having mobile
resources introduces another level of complexity in resource
management algorithms.
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Different mobility models are used; for example, Penner
et al. [56] model departure and arrival times using statistical
models, which is similar towhat is used by Bianzino et al. [81].
Also using statistical models, Habak et al. [20] model arrival
rate and presence time. In those statistical models, arrivals
are modeled using a Poisson distribution, departure most
often using an exponential distribution, and presence time
using a normal distribution. Another model that is relatively
common is the Random Way Point Model, used by Mascitti
et al. [53] and Liu et al. [55].

With a different and more uncommon approach, Arkian
et al. [51] consider the speed of the vehicles, and Athwani and
Vidyarthi [80] consider that 10% of the nodes are moving
after a request. Finally, Mtibaa et al. [83] consider both a
mobility model with low disconnection rate and a mobility
model based on a dataset (Infocom06), where the mobility
of the devices is predictable in different communication
scenarios.

5.2.3. Combination of Stationary andMobile Resources. Some
works mention a combination of mobile and stationary
resources. In the edge level, Aazam and Huh [58] consider
different types of devices (stationary ormobile). However, the
devices are actually not mobile in their simulations.

Borgia et al. [79] consider the local cloud (i.e., the edge
level) as mobile and the global cloud as stationary. They use
the Random Way Point Model for mobility. Similarly, Qi et
al. [82] havemobile end devices and stationary infrastructure
servers and describe their own mobility model. Meng et al.
[46] use a mobile vehicular cloud together with a stationary
local cloud at the edge level and a stationary remote cloud.
The mobility of the vehicles is modeled as a Poisson pro-
cess.

5.3. Summary of Edge Resource Location. Table 4 reveals
the distribution of the papers among the above categories
and clearly shows that fewer works are multilevel, and the
majority are stationary. As noted before, few works are
studying managed resources located at different levels and/or
mobile.

Note that this does not mean that the works do not
consider mobility at all; it only means that the mobility is
not on the supply side. An example of the works including
mobility on the demand side only is the paper by Plachy et
al. [68] who consider that computational resources needed
by a user are allocated in a stationary base station in a VM,
which can be transferred to another base station if the user
is moving. Similar solutions are presented by Tärneberg et al.
[67], Gomes et al. [13], Oueis [63], Fan et al. [62], and Wang
et al. [77].

Despite demand side node mobility that may be present
in all architectures, the supply side node mobility, that is, the
notion ofmobilemanaged resource, is among the promises of
what the edge brings. We see more mobile resources present
in the second and third types of architecture (coordinator
device and device cloud). It remains to be seen if the future
works will include more 3-level works in which at least two
are mobile.

6. Resource Use

The final aspect of resource management considered in our
taxonomy is the purpose for which the resource will be used.

6.1. Functional Properties. Edge computing is promoted as
a means of getting access to a given service in most of the
surveyed articles, that is, for satisfying functionality in an
application. There are numerous articles in the literature
providing an overview of edge applications, including [6, 7,
10, 23, 27, 34, 41, 89]. Such applications range over augmented
reality, connected vehicles, disaster recovery, and a lot of
others.

When looking at the different applications used in the
surveyed articles presented in the earlier sections, the first
finding is that the majority of them (66%) do not consider
a specific application in their study. Instead, they refer to
generic applications such as IoT services [60], real-time
applications [68], and latency-sensitive applications [59] or
name some applications but only as an illustration.

Table 5 presents the remaining papers according to which
type of application they consider. We can distinguish seven
areas in which the described applications can be categorized.
Note that in the Generic category we place papers that
although not fixed towards one domain of application refer
specifically to classes of applications that they exemplify
clearly.

6.2. Nonfunctional Properties. In addition to enabling func-
tionalitieswhen using the edge computing paradigm, the very
organization of the edge architecture and realizing desirable
properties require some kind of resource management too.
This additional work is not directly related to the service to
obtain; that is, it is a nonfunctional property (also referred
to as extrafunctional properties). Obviously, papers that are
focusing on a functional property can also be interested in
some nonfunctional property.

This subsection is related to the categories of objectives for
resourcemanagement we have already discussed in Section 4.
Achieving the objectives in that section was evaluated using
metrics that are often representative for measuring nonfunc-
tional properties.

Examples of metrics and their related nonfunctional
property which are encountered more often are

(i) response time as a measure of timeliness
(ii) energy consumption as a measure of energy efficiency
(iii) admission ratio, or its equivalent blocking probability,

as a measure of availability of the edge service
(iv) CPU/network utilization as a measure of computa-

tion/communication resource efficiency
(v) monetary cost paid to an infrastructure owner as a

measure of cost efficiency

The list of metrics is not exhaustive, but we have focused
on the more prevalent ones. Figure 4 shows how popular the
above metrics are in the context of the works studied so far.
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Table 5: Applications considered in the surveyed articles.

Area Applications Articles

Healthcare Medical cyber-physical systems [66]
Connected health [71]

Video
Video analytics [73, 76]

Video surveillance [71, 72, 75]
Video on demand [45]

IoT Crowd-sensing [61]
Sense-Process-Actuate application [50]

Gaming Electroencephalography (EEG) tractor beam game [72]
Transportation Connected vehicles [46, 51]
Content management User profiling [13]

Generic Computation/communication-intensive [70]
Delay-sensitive/Delay-tolerant [81]

Response time

[20]

[50]

[51]

[52]

[53] [55]

[56] [59]
[60]

[61]

[63]

[65]

[67]

[68]

[70]

[72]

[73]

[75]

[76] [77]

[79]

[80]
[82]

[45]

[54]
[62]

[78]

[81]

[83]

[48]
[44]

[69]

[49]

[66]

[74]
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Figure 4: Generic metrics related to a nonfunctional property used in the surveyed articles.

It is not surprising that those metrics that relate to timeli-
ness or availability or resource efficiency are well represented.

As we have noticed earlier, the same paper can deal
with multiple resources, multiple objectives, and, also clearly
seen in this figure, multiple nonfunctional properties. This
illustrates the complex trade-offs involved when dealing with
resources in a multistakeholder distributed system.

7. Research Challenges

In this section, we present the research challenges not
substantially addressed which could be of interest for further
research in the field.

From the previous sections, we noted that the archi-
tecture with three active and distinct levels (edge server)

is predominant. We also noted that the resource objectives
allocation and optimization were well studied. Moreover,
computational and communicational resources are the most
commonly addressed, typically being stationary and located
within a single level. Therefore, research is less prevalent on
data, storage, and energy as a resource and less extensive
towards the estimation, discovery, and sharing objectives
(especially the first two). Furthermore, new works should
consider mobility and multilevel locality on the supply side.

Elaborating on mobility, the new phenomenon at the
edge is that the supply side can also be mobile and not
only the demand side as it was the case in classic clouds.
Indeed, edge systems will have to deal with a greater variety
of mobility with end devices that are often mobile (like
vehicles) but can also be stationary (e.g., video-surveillance
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cameras), as well as mobile edge devices. It is, however,
not obvious that the mobility patterns of all those devices
will be similar, especially between end and edge devices.
Considering the large variety of edge applications, their
characteristics can potentially vary greatly. For example, an
edge solution intended to serve networks of cars moving
on a road network will probably be quite different from an
edge solution intended to serve persons within a shopping
mall. Hence, it is critical to have efficient and thus tailored
solutions. But should each application domain rediscover the
wheel? Obviously, there is going to be generic wisdom that is
transferable across the domains if adequate characterizations
of resource requirement patterns are formulated. More work
is needed on collectingmobility traces from the different edge
applications to see if present patterns can in a generic way be
used to create pertinent edge mobility models at both levels
of the architecture, the end and the edge level. These can
then become a basis for repeatable evaluations of resource
management strategies.

Another aspect that will be critical to solving is col-
laboration. There are new papers appearing where multiple
operators at the edge level are modeled, and this introduces
new challenges. At the end level, we have seen that different
incentives can be provided to enable resource sharing [64,
81] and similarly at the edge level [74]. Such collaboration
is especially good for managing workload churns and is
interesting for infrastructure owners. The next challenge
would be to do multilevel collaboration with a hierarchy of
incentive schemes at different levels assuring that they do
not cancel out each other’s benefits. Moreover, finding more
advanced incentive schemes that take both resource efficiency
and security into account is needed. Current solutions either
choose not to collaborate for security- or privacy-sensitive
tasks [44] or rely on classic trust establishment [74] but this
will not be enough for a wide collaboration at the edge.

Context adaptation is also one of the properties expected
from edge computing and is advocated as a good reason
to choose this paradigm [90]. Providing tailored service
depending on the user’s physical location of course has to
be taken care of at the application level. However, it also
impacts resource management as those applications will
require resources to provide those services, in particular
considering data (about supply mobility and abundance) as
a resource.

Security, and its subcomponents availability, confidential-
ity, and integrity, is a key point for edge computing, together
with privacywith respect to sensitive end-user data. Although
similar, security and privacy have distinct characteristics
and should be addressed in depth and separately, which
is not the case in the current surveyed works [44, 74].
Regarding availability, most of the works considered focus on
admission ratio but do not consider the fact that resources
could disappear while executing due to mobility, misuses,
or attacks. A notable exception is the work by Habak et
al. [20] who propose and evaluate a task checkpointing
mechanism that performs result replication to mitigate in
case a device disappears. Focusing on availability, several
works always consider that the cloud is available as a last
fall-back for providing an edge service. If this is not the

case (e.g., due to overload, attack, or natural disaster), the
availability of the edge service will be impacted. More works
in those directions and quantifying edge-specific availability
metrics are required. Edge computing will most certainly be
interesting for critical infrastructure because of its benefits
and those require high standards on security. Research in this
direction can be found for the mobile cloud paradigm, for
example [91, 92], but they consider scenarios where the edge
level is absent.

End-to-end timeliness requires quantification of latencies
from an end device towards the cloud (or somewhere at the
edge) all the way back to the same device (or to another
device). This means traversing the edge networking services,
including what we referred to as resource management
services in this paper. Since estimation, discovery, sharing,
and allocation (including migration) are complex algorithms
in such networks, these must also be evaluated in terms of
their own resource footprint and thereby their own impact
on timeliness and QoS. In the surveyed articles, computing
time of the solution is only evaluated by Gomes et al. [13]
and Skarlat et al. [50]. Since edge computing cannot become
widely used without strong security and privacy properties, it
is especially important to research on the resource overhead
for providing those properties as well. Too high an overhead
can signify a technology that is not feasible in practice.

As shown in Section 3, resources managed at the edge
are most often a combination of different resource types.
This implies that there will be some interrelations among
resource utilization levels, which can create new challenges.
Considering resource affinity as in the work by Yousaf and
Taleb [48] may be a start but more research is needed to
understand and address the complexity of suchmultiresource
problems in the edge context.

As mentioned in Section 2, edge computing brings
together diverse business sectors with their existing tech-
niques for solving relevant problems in those areas. Tech-
niques previously applied in only one of those domains
may be applicable to edge computing with the required
adaptations. For example, performing resource migration
requires efficient techniques for this purpose. Ma et al. [93]
study container migration and found that the hand-off time
decreased by 56% to 80% in comparison to state-of-the-
art VM migration for the edge. Results like this should be
exploited in the new edge era and utilize technologies that
may bring added benefit to edge computing.

Another enabler for resource-efficient edge computing
is the development of tools for testing the new proposals
in relevant conditions and setups. In the surveyed articles,
the most common method used for validating a model or
a proposed algorithm is to use an analytical tool (e.g., a
solver and/or an optimization engine). Another common
approach is to use a simulator, either a generic network
simulator such as OMNeT++ (https://omnetpp.org/) or one
designed for regular cloud environments such as CloudSim
[94], most often with some custom extensions. There also
exists a dedicated simulator designed for fog computing,
called iFogSim [95], which extends CloudSim, but this one
currently has limitations, for example, no mechanisms for
offloading or communication between two nodes at the same

https://omnetpp.org/
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level. A third way of evaluating in the surveyed works is the
use of physical testbeds. Such evaluations provide invaluable
insights into problems that are easy to oversee in simulation
and investigate their impact. However, a big challenge for
testbeds is to get them to scale, which is to some extent
also a problem for simulations. Therefore, there is a need for
creating open research testbeds and simulation tools so that
configurable architectures and application/domain-specific
edge computing methods can be efficiently compared. Com-
ing back to a previous point, such tools should be able to
handlemobility of end and edge devices and should obviously
be scalable for evaluation of real-world scenarios.

8. Conclusion

The past decade has created tremendous expectations on
IoT changing the landscape of data-driven services with
benefits for multiple societal sectors. Many researchers
have contributed to the development of technologies and
addressed challenges that come with resource scarcity in the
end devices. Other researchers with a background in cloud
computing have looked at how to carry the data generated
by the massive IoT deployments and how to efficiently use
the cloud resources. The area of edge computing brings
these two ends of the same service together in an emerging
ecosystem and creates a means to discuss resource adequacy
from an end-to-end perspective. In this paper, we have tried
to provide an overview, not from a cloud perspective or an
IoT device perspective, but with a focus on edge resource
management.
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