
Formal Verification of Random Forests in
Safety-Critical Applications

John Törnblom and Simin Nadjm-Tehrani

Dept. of Computer and Information Science
Linköping University, Sweden

{john.tornblom,simin.nadjm-tehrani}@liu.se

Abstract. Recent advances in machine learning and artificial intelli-
gence are now being applied in safety-critical autonomous systems where
software defects may cause severe harm to humans and the environment.
Design organizations in these domains are currently unable to provide
convincing arguments that systems using complex software implemented
using machine learning algorithms are safe and correct.
In this paper, we present an efficient method to extract equivalence
classes from decision trees and random forests, and to formally verify
that their input/output mappings comply with requirements. We im-
plement the method in our tool VoRF (Verifier of Random Forests),
and evaluate its scalability on two case studies found in the literature.
We demonstrate that our method is practical for random forests trained
on low-dimensional data with up to 25 decision trees, each with a tree
depth of 20. Our work also demonstrates the limitations of the method
with high-dimensional data and touches upon the trade-off between large
number of trees and time taken for verification.

Keywords: Machine learning · Formal verification · Random forest ·
Decision tree

1 Introduction

In recent years, artificial intelligence utilizing machine learning algorithms has
begun to outperform humans at several tasks, e.g. playing complex board games [21]
and diagnosing skin cancer [8]. These advances are now being applied in safety-
critical autonomous systems where software defects may cause severe harm to
humans and the environment, e.g airborne collision avoidance systems [11].

Several researchers have raised concerns [4, 13, 18] regarding the lack of verifi-
cation methods for these kinds of systems in which machine learning algorithms
are used to train software deployed in the system. Machine learning models with
large sets of parameters are hard to interpret. Humans are currently unable to
provide convincing arguments that data used to test and train these models is
sufficient, and exhaustive testing is generally intractable.

Instead, various formal methods have been suggested and evaluated. Most
research is so far focused on the verification of neural networks, but there are

2 J. Törnblom and S. Nadjm-Tehrani

other models that may be more appropriate when verifiability is important, e.g.
decision trees [2] and random forests [3]. Their structural simplicity makes them
easy to analyze systematically, but large (yet simple) models may still prove
hard to verify due to combinatorial explosion.

In this paper, we present a method to efficiently search for violations against
interesting properties in random forests. There may be many such properties,
some impacting system safety. We implement the method in our tool VoRF
(Verifier of Random Forests), and evaluate the tool on two case studies found in
the literature. The contributions of this paper are as follows.

– An efficient method to partition the input domain of decision trees into
disjoint sets, and explore all path combinations in a random forest in such
a way that counteracts combinatorial path explosions.

– A tool named VoRF to support the method.
– Application of the method to two case studies from earlier works.

The rest of this paper is structured as follows. Section 2 presents prelimi-
naries on decision trees, random forests, and a couple of interesting properties.
Section 3 discusses related works on formal methods and machine learning, and
Section 4 presents our method with our supporting tool VoRF to verify proper-
ties of decision trees and random forests. Section 5 presents applications of our
method on two case studies; a collision detection problem, and a digit recogni-
tion problem. Finally, Section 6 concludes the paper and summarizes the lessons
we learned.

2 Preliminaries

Government agencies from several countries have agreed upon guidelines [5, 10]
to help design organizations from different industries with assuring quality in
software with safety-critical applications. Several methods described in these
guidelines rely on human experts to analyze the software. However, manually
analyzing large and complex software authored by machine learning algorithms
is hard.

Recently, the avionics community published guidelines [6] describing how de-
sign organizations may apply formal methods to the verification of safety-critical
software. Applying formal methods to complex and safety-critical software is a
non-trivial task due to practical limitations in computing power, and challenges
in qualifying complex verification tools. These challenges are often caused by a
high expressiveness provided by the language in which the software is defined in.
In this paper, we address these challenges by selecting machine learning mod-
els based on their simplicity rather than their expressiveness. Specifically, we
develop a method with supporting tool to analyze decision trees and random
forests.

2.1 Decision Trees and Random Forests

A decision tree implements a function t : Xn → IRm using a tree structure
where each internal node is associated with a decision function, and the leaves

Formal Verification of Random Forests in Safety-Critical Applications 3

define output values. The n-dimensional input domain Xn includes elements x as
tuples where each element xi captures some feature of the application as an input
variable. In general, decision functions are defined by non-linear combinations
of several input variables at each internal node. In this paper, we only consider
binary trees with linear decision functions with one input variable, which Irsoy
et al. call univariate hard decision trees [9].

The tree structure is evaluated in a top-down manner, where decision func-
tions determine which path to take towards the leaves. When a leaf is hit, the
output y ∈ IRm associated with the leaf is emitted. Assuming a perfectly bal-
anced binary tree, the number of leaves in a tree is 2d, where d is the tree depth.
Figure 1 depicts a univariate hard decision tree with one decision function (x ≤ 0)
and two outputs (1 and 2).

x ≤ 0

1

true

2

false

Fig. 1. A decision tree with two possible outputs, depending on the value of single
variable x.

Decision trees are known to suffer from a phenomenon called overfitting.
Models suffering from this phenomenon can be fitted so tightly to their training
data that their performance on unseen data is reduced the more you train them.
To counteract these effects in decision trees, Breiman [3] propose random forests.

Definition 1 (Random Forest). A random forest f : Xn → IRm is a collec-
tion of B decision trees that are combined by averaging the values emitted by
each individual tree, i.e.

f(x) =
1

B

B∑
b=1

tb(x)

where tb is the b-th tree in the forest.

To reduce correlation between trees, each tree is trained on a random subset of
the training data, using a random subset of the input variables.

Decision trees and random forests may also be used as classifiers. A classifier
is a function that categorizes samples from an input domain into one or more
classes. In this paper, we only consider one-class classifiers, i.e. functions that
map each point from an input domain to exactly one class.

4 J. Törnblom and S. Nadjm-Tehrani

Definition 2 (Classifier). Let f(x) = (y1, . . . , ym) be a model trained to pre-
dict the probability yi of encountering a class i within disjoint regions in the
input domain, where m is the number of classes. Then we would expect that

∀i ∈ {1, . . . ,m}, 0 ≤ yi ≤ 1, and
m∑
i=1

yi = 1. A classifier fc(x) may then be

defined as
fc(x) = argmax

i
yi.

2.2 Safety Properties

In this paper, we consider two properties commonly used in related works; global
safety [17], and robustness against noise. Note that compliance with these two
properties alone is generally not sufficient to ensure safety. Moreover, the notions
used here as an illustration are from AI papers. System safety engineers typically
define requirements on software functions that are richer than these properties
alone. Hence, global safety may be a misnomer in that context, but we simply
repeat it here to be consistent with the literature that we refer to.

Property 1 (Global safety). Let f : Xn → IRm be the function subject to verifi-
cation. The function is globally safe if and only if

∀x ∈ Xn,∀i ∈ {1, . . . ,m}, f(x) = (y1, . . . , ym), αi ≤ yi ≤ βi.

for some αi, βi ∈ IR.

In classification problems, the output tuple (y1, . . . , ym) contains probabilities,
and thus αi = 0 and βi = 1.

Property 2 (Robustness against noise). Let f : Xn → IRm be the function sub-
ject to verification, ε ∈ IR≥0 a robustness margin, and ∆ = {δ ∈ IR : −ε < δ < ε}
noise. We denote by δ an n-tuple of elements drawn from ∆. The function is
robust against noise iff

∀x ∈ Xn, ∀δ ∈ ∆n, f(x) = f(x+ δ).

Pulina and Tacchella [17] define a stability property that is similar to our notion
of robustness here but use scalar noise.

3 Related Works

Due to the extreme progress made in the application of machine learning in
artificial intelligence, awareness regarding its (lack of) security and safety have
increased. Researchers from several fields are now addressing these problems in
their own way, often in collaboration between fields [20].

There have been extensive research on formal verification of neural networks.
Pulina and Tacchella [17] combine SMT solvers with an abstraction-refinement

Formal Verification of Random Forests in Safety-Critical Applications 5

technique to analyze neural networks with non-linear activation functions. They
conclude that formal verification of realistically sized networks is still an open
challenge. Scheibler et al. [19] use bounded model checking to verify a non-
linear neural network controlling an inverted pendulum. They encode the neural
network and differential equations of the system as an SMT formula, and try to
verify properties without success. These works [17, 19] suggest that SMT solvers
are currently unable to verify realistic non-linear neural networks.

Recent research focuses on piece-wise linear neural networks. Katz et al. [12]
combine the simplex method with a SAT solver to verify properties of deep neu-
ral networks with piecewise linear activation functions. They successfully verify
domain-specific safety properties of a prototype airborne collision avoidance sys-
tem trained using reinforcement learning. The verified neural network contains a
total of 300 nodes organized into 6 layers. Ehlers [7] combines an ILP solver with
a modified SAT solver to verify neural networks. His method includes a tech-
nique to approximate the overall behavior of the network to reduce the search
space for the SAT solver. The method is evaluated on two case studies; a col-
lision detection problem, and a digit recognition problem. We reuse these two
case studies in our work, and also provide a global approximation of the overall
model (in our cases, random forests).

Mirman et al. [15] use abstract interpretation to verify robustness of neu-
ral networks with convolution and fully connected layers. They evaluate their
method on four image classification problems (one of which we use in our work),
and demonstrate promising performance. In our work, we address similar verifi-
cation problems, but for random forests. Since decision trees and random forests
are generally easier to analyze systematically than neural networks, we expect
that formal verification methods scale better when applied to decision trees and
random forest compared to neural networks. More importantly, the simplicity of
our method allows implementations such as VoRF to be certified for online use
in safety-critical applications.

The fact that decision trees may be easier to verify than neural networks is
demonstrated by Bastani et al. [1]. They train a neural network to play the game
Pong, then extract a decision tree policy from the trained neural network. The
extracted tree is significantly easier to verify than the neural network, which they
demonstrate by formally verifying properties within seconds using an of-the-shelf
SMT solver. Our method provides even greater performance when verifying deci-
sion trees. However, our outlook is that decision trees per se may not be sufficient
for problems in non-trivial settings and hence we address random forests which
provides a counter-measure to overfitting.

4 Analyzing Random Forests

In this section, we define a process for verifying learning-based systems, and de-
fine a formal method capable of verifying properties of decision trees and random
forests. We also describe VoRF (Verifier of Random Forests), our implementa-

6 J. Törnblom and S. Nadjm-Tehrani

tion of our method, and provide an example on how to define and verify the
global safety property of random forest classifiers using VoRF.

4.1 Problem Definition

We formulate the software verification process for learning-based systems using
the following problem definitions.

Problem 1 (Constraint Satisfaction). Let f : Xn → IRm be a function that
is known to implement some desirable behavior in a system, and a property
IP specifying additional constraints on the relationship between x ∈ Xn and
y ∈ IRm. Verify that ∀x ∈ Xn, the property IP holds.

Since a random forest is a pure function and thus there is no state space to
explore, this problem may be addressed by considering all combinations of paths
through trees in the forest. Furthermore, by partitioning the input domain into
equivalence classes, i.e. sets of points in the input domain that yield the same
output, constraint satisfaction may be verified for regions in the input domain,
rather than for individual points explicitly.

Problem 2 (Equivalence Class Partitioning). For each path combination p in a
random forest f : Xn → IRm, determine the complete set of inputs Xp ⊆ Xn

that lead to traversing p, and the corresponding output yp ∈ IRm. Then verify
that ∀x ∈ Xp, the property IP holds.

Our method efficiently generates equivalence classes as pairs of (Xp,yp), and
automatically verifies the satisfaction of a property IP. Assuming that the trees
in a random forest are of equal size, the number of path combinations in the
random forest is 2d·B . In practice, decisions made by the individual trees are
influenced by a subset of features shared amongst several trees within the same
forest, and thus several path combinations are infeasible and may be discarded
from analysis.

Example 1 (Discarded Path Combination). Consider a random forest with the
trees depicted in Figure 2. There are four path combinations. However, x cannot
be less than or equal to zero at the same time as being greater than five. Conse-
quently, Tree 1 cannot emit 1 at the same time as Tree 2 emits 3, and thus one
path combination may be discarded from analysis.

We postulate that since several path combinations may be discarded from
analysis, all equivalence classes in a random forest may be computed and enu-
merated within a reasonable amount of time for practical applications. To ex-
plore this idea, we developed the tool VoRF1 which automates the computation,
enumeration, and verification of equivalence classes.

1 https://github.com/john-tornblom/vorf

Formal Verification of Random Forests in Safety-Critical Applications 7

Tree 1 Tree 2

x ≤ 0

0

true

1

false

x ≤ 5

2

true

3

false

Fig. 2. Two decision trees that when combined into a random forest, contains three
feasible path combinations and one discarded path combination.

4.2 Tool Overview

VoRF consists of two distinct components, VoRF Core and VoRF Property
Checker. VoRF Core takes as input a random forest f : Xn → IRm, a hyper-
rectangle defining the input domain Xn (which may include ±∞), and emits all
equivalence classes in f . These equivalence classes are then processed by VoRF
Property Checker that checks if all input/output mappings captured by each
equivalence class are valid according to a property IP, as illustrated by Figure 3.

Equivalence
Class
(Xp, yp)

Input Domain
Definition

(X)

VoRF
Core

Random
Forest
(f)

VoRF
Property
Checker

Property
(ℙ)

Result
(PASS/FAIL)

Fig. 3. Overview of VoRF.

4.3 Computing Equivalence Classes

There are three distinct tasks being carried out by VoRF Core while computing
equivalence classes of a random forest:

8 J. Törnblom and S. Nadjm-Tehrani

– partitioning the input domain of decision trees into disjoint sets
– exploring all feasible path combinations in the random forest
– deriving output tuples from leaves.

Path exploration is performed by simply walking the trees depth-first. When a
leaf is hit, the output yp for the traversed path combination p is incremented
with the value associated with the leaf, and path exploration continues with the
next tree. The set of inputs Xp is captured by a set of constraints derived from
decision functions associated with internal nodes encountered while traversing p.
When the final leaf in a path combination is hit, yp is divided by the number of
trees B (recall the definition of a random forest in Section 1 which includes the
same division). Finally, the VoRF Property Checker checks if the mappings from
Xp to yp comply with the property IP. If the property holds, the next available
path combination is traversed, otherwise verification terminates with a “FAIL”
and the most recent (Xp, yp) mapping as a counterexample.

4.4 Approximating Output Bounds

The output of a random forest may be bounded by analyzing each leaf in the
collection of trees exactly once. Assuming that all trees are of equal size, the
number of leaves in a random forest is B · 2d, where B is the number of trees
and d the tree depth, thus making the analysis scale linearly with respect to the
number of trees.

Let f : Xn → IRm be a random forest, Yt the union of all output tuples from
all trees in the forest, and L = |Yt|. A conservative approximation for an upper
bound ymax ≥ f(x) may then be defined as

ymax = (max{y1,1, . . . , y1,L}, . . . ,max{ym,1, . . . , ym,L}),

where yi,j denotes the i-th element in the j-th tuple in Yt. Analogously, a con-
servative approximation of a lower bound ymin ≤ f(x) may be defined. These
bounds may then be used by a property checker to approximate f in e.g. the
global safety property from Section 2.2. Note that these output bounds are con-
servative and approximate. If property checking does not return “PASS” with
the approximation (see details below), the property IP may still hold, and fur-
ther analysis of the forest is required, e.g. by computing all possible equivalence
classes (which are precise).

4.5 Implementation

This section presents implementation details of VoRF Core and VoRF Property
Checker, and aspects that impact accuracy in floating point computations.

VoRF Core. For efficiency, core features in VoRF are implemented as a library
in C, and utilize a pipeline architecture as illustrated by Figure 4 to compute
and enumerate equivalence classes. The first processing element in the pipeline

Formal Verification of Random Forests in Safety-Critical Applications 9

Intermediate
Mapping

Initialize

Intermediate
Mapping Tree 1

Refinery

Intermediate
Mapping

...

Intermediate
Mapping

Tree n
Refinery

Finalize

VoRF
Core

Equivalence
Class
(Xp, yp)

Input Domain
Definition

(Xn)

Fig. 4. Control flow of equivalence class partitioning in VoRF Core.

constructs an intermediate mapping from the entire input domain to an out-
put tuple of zeros. The final processing element divides output tuples with the
number of trees in the forest. In between, there is one refinery element for each
tree that splits intermediate mappings into disjoint regions according to deci-
sion functions in the tree, and increments the output with values carried by the
leaves.

To decouple VoRF from any particular random forest training library, a ran-
dom forest is loaded into memory by reading a JSON-formatted file from disk.
VoRF includes a tool2 to convert random forests trained by the library scikit-
learn [16] to this file format.

VoRF Property Checker. VoRF includes two pre-defined property checkers
which are parameterized and executed from a command line interface; the global
safety property checker, and the robustness property checker.

The global safety property checker first uses the output bounds approxima-
tion to check for property violations, and resorts to equivalence class analysis
only when a violation is detected when using the approximation.

The robustness property checker checks that all points Xr within a hypercube
with sides ε, centered around a test point xt, map to the same output. Note that
selecting which test points to include in the verification may be problematic.
In principle, all points in the input domain should be checked for robustness,
but with random forest classifiers, there is always a hyperplane separating two
classes from each other, and always points which violate the robustness property

2 https://github.com/john-tornblom/vorf/blob/v0.1.0/support/train-sklearn.py

10 J. Törnblom and S. Nadjm-Tehrani

(adjacent to each side of the hyperplane). Hence, the property is only applicable
to points at distances greater than ε from the classification boundary.

VoRF also includes Python bindings for easy prototyping of domain-specific
property checkers. Example 2 depicts an implementation of the global safety
property that uses these Python bindings to do sanity checking for a classifier’s
output.

Example 2 (Global Safety of a Classifier). Ensure that the probability of all
classes in every prediction is within [0, 1].

import sys
import vor f

def g l o b a l s a f e t y (mapping , alpha =0, beta =1):
minval = min ([mapping . outputs [dim] . lower

for dim in range (mapping . nb outputs)])

maxval = max([mapping . outputs [dim] . upper
for dim in range (mapping . nb outputs)])

return (minval >= alpha) and (maxval <= beta)

f = vor f . Forest (sys . argv [1]) # load model from d i s k
assert f . f o r a l l (g l o b a l s a f e t y)

Computational Accuracy. Implementations of random forests normally ap-
proximate real values as floating point numbers, and thus may suffer from inac-
curate computations. In general, VoRF and the software subject to verification
must use the same precision on floating point numbers and averaging function
as in Definition 1 to get a compatible property satisfaction. In this version of
VoRF, we use the same representation so that the calculation errors are the same
as in the machine learning library scikit-learn [16]. Specifically, we approximate
real values as 32-bit floating point numbers, and implement the averaging func-
tion literally as presented in Definition 1, i.e. by first computing the sum of all
individual trees, then dividing by the number of trees. Other machine learning li-
braries may use 64-bit floating point numbers, and may implement the averaging
function differently, e.g.

f(x) =

B∑
b=1

tb(x)

B
.

This would be easily changeable in VoRF.

5 Case Studies

In this section, we present an evaluation of VoRF on two case studies found in
the literature where neural networks have been analyzed for compliance with

Formal Verification of Random Forests in Safety-Critical Applications 11

interesting properties. Each case study defines a training set and a test set, and
we used scikit-learn [16] to train random forests of different sizes. All training
parameters except the number of trees and maximum tree depth were kept con-
stant and at their default values. We evaluated accuracy on each trained model
against its test set, i.e. the percentage of samples from the test set where there
are no misclassifications. We then implemented verification cases for the global
safety and robustness against noise properties (from Section 2.2) using VoRF.
The time spent on verification was recorded for each trained model as presented
below. All experiments were conducted on an Intel Core i5 2500K with 16GB
RAM, running Ubuntu 18.04.

5.1 Vehicle Collision Detection

In this case study, we verified properties of random forests trained to detect
collisions between two moving vehicles traveling along curved trajectories at
different speeds. Each verified random forest accepts six input variables, emits
two output variables, and contains 10-25 trees with depths 10-20.

Dataset. We used a simulation tool from Ehlers [7] to generate 30,000 training
samples and 3,000 test samples. Unlike neural networks which Ehlers used in his
case study, the size of a random forest is limited by the amount of data available
during training, hence we generated ten times more training data than Ehlers to
ensure that sufficient data is available for the size and number of trees assessed
in our case study. Each sample contains the relative distance between the two
vehicles, the speed and starting direction of the second vehicle, and the rotation
speed of both vehicles.

Robustness. We verified the robustness against noise for all trained models by
defining input regions surrounding each sample in the test set with the robustness
margin ε = 0.05. Table 1 lists random forests included in the experiment with
their maximum tree depth d, number of trees B, accuracy of the classifications
(Accuracy), elapsed time T during verification, and the percentage of samples
from the test set where there were no misclassifications within the robustness
region (Robustness).

Increasing the maximum depth of trees increased accuracy on the test set, but
reduced the robustness against noise. This suggests that the models were over-
fitted with noiseless examples during training, and thus adding noisy examples
to the training set may improve robustness. Verifying the largest random forest
with B = 25 trees and depth d = 20 took approximately 1.5h. The significant
drop in elapsed time between {d = 10, B = 25} and {d = 20, B = 10} may seem
counter-intuitive at first. However, recall that the theoretical upper limit of the
number of path combinations in a random forest is 2d·B , and that 220·10 � 210·25.

Scalability. Next, we assessed the scalability of VoRF Core when the number
of trees grows by verifying the trivial property IP = true which accepts all

12 J. Törnblom and S. Nadjm-Tehrani

Table 1. Accuracy and robustness of random forests in the vehicle collision detection
case study.

d B Accuracy (%) T (s) Robustness (%)

10 10 90.5 1 41.0
10 15 90.3 11 45.0
10 20 90.4 84 48.9
10 25 90.0 449 50.3
20 10 94.0 3 28.0
20 15 94.1 77 27.5
20 20 94.2 930 29.5
20 25 94.5 5499 29.6

input/output mappings. We implemented this trivial property in a verification
case that also counts the number of equivalence classes emitted by VoRF Core.
We then executed the verification case for all models with a tree depth of d = 10.
The recoded number of equivalence classes C for different number of trees B is
depicted in Figure 5 on a logarithmic scale. The number of equivalence classes

0 5 10 15 20 25 30

10

20

30

B

lo
g
2
(C

)

Fig. 5. Number of equivalent classes C on a logarithmic scale from the vehicle collision
detection case study for different number of trees B with a depth d = 10.

increased exponentially as more trees were added, but the magnitude of the
growth decreased for each added tree. The number of equivalence classes for
large number of trees are significantly smaller than the upper limit of 2d·B (which
occurs when there are no shared features amongst trees, and thus each path
combination yields a distinct equivalence class).

Global Safety. Finally, we verified the global safety property (here ensuring
that all predicted probabilities are in the range [0, 1]). All trained models passed
the verification case within fractions of a second. This is expected since the out-
put bound approximation algorithm implemented in the global safety property
checker scales linearly with respect to the number of leaves in a forest, and thus
there is no combinatorial explosion when the number of trees grows.

Formal Verification of Random Forests in Safety-Critical Applications 13

5.2 Digit Recognition

In this case study, we verified properties of random forests trained to recognize
images of hand-written digits.

Dataset. The MNIST dataset [14] is a collection of hand-written digits com-
monly used to evaluate machine learning algorithms. The dataset contains 70,000
gray scale images with a resolution of 28x28 pixels at 8bpp. Each image was en-
coded as a tuple of 784 pixels, and the dataset was randomized and split into
two subsets; a 85% training set, and a 15% test set (a similar split was used
in [14]).

Robustness. We verified the robustness against noise for all trained models
by defining input regions surrounding each sample in the test set with the ro-
bustness margin ε = 1, which amounts to a 0.5% lightning change per pixel in
a 8bpp gray-scaled image. Each input region contains 2784 noisy images, which
would be be too many for VoRF to handle within a reasonable amount of time.
Consequently, we reduced the complexity of the problem significantly by only
considering robustness against noise within a sliding window of 5x5 pixels. For
a given sample from the test set, noise was added within the 5x5 window, yield-
ing 25·5 noisy images. This operation was then repeated on the original image,
but with the window placed at an offset of 1px relative to its previous position.
Applying this operation on an entire image yields 25·5 · (28− 5)2 ≈ 234 distinct
noisy images per sample from the test set, and about 1014 noisy images when
applied to the entire test set.

Table 2 lists random forests included in the experiment with their maximum
tree depth d, number of trees B, accuracy on the test set (Accuracy), elapsed
time T during verification, and the percentage of samples from the test set
where there were no misclassifications within the robustness region (Robustness).
Increasing the complexity of a random forest slightly increased its accuracy, and

Table 2. Accuracy and robustness of random forests in the digit recognition case study.

d B Accuracy (%) T (s) Robustness (%)

10 10 93.0 245 65.8
10 15 93.6 824 68.8
10 20 93.8 2010 75.2
10 25 94.2 10787 74.8
20 10 94.9 482 70.4
20 15 95.8 1626 77.6
20 20 96.0 4101 82.3
20 25 96.4 17411 83.7

significantly increased its robustness against noise. Verifying the largest random
forest with B = 25 trees and depth d = 20 took approximately 5h.

14 J. Törnblom and S. Nadjm-Tehrani

Figure 6 depicts one of many examples from the MNIST dataset that were
misclassified by the random forest with B = 25 and d = 10. Since the added
noise is invisible to the naked eye, the noise (a single pixel) is highlighted in red.

Fig. 6. A missclassified noisy sample from the MNIST dataset.

Scalability. Next, we assessed the scalability of VoRF Core when the number
of trees grows by verifying the trivial property IP = true. This was done in a
similar way as described in the vehicle collision detection use case presented in
Section 5.1. We then executed the verification case for all models with a tree
depth of d = 10. Enumerating all possible equivalence classes was intractable for
random forests with more than B = 4 trees. We aborted the experiment after
running the verification case with a random forest of B = 5 for 72h. Figure 7
depicts the four data points we managed to acquire. The number of equivalence

1 2 3 4

10

20

30

40

B

lo
g
2
(C

)

Fig. 7. Number of equivalent classes C on a logarithmic scale from the digit recognition
case study for different number of trees B with a depth d = 10.

classes increased exponentially as more trees were added, without demonstrating
any signs of stagnation. The ability to discard infeasible path combinations in a
random forest is an essential ingredient to our method. When random forests are
trained on high-dimensional data, the number of features shared between trees is

Formal Verification of Random Forests in Safety-Critical Applications 15

relatively low, so it is not surprising that our method experiences combinatorial
path explosion. This shows that in non-trivial applications, transforming domain
knowledge into reasonable constraints in the form of a property IP is a useful
means of addressing combinatorial problems in verification.

Global Safety. Finally, we verified the global safety property (again ensuring
that that all predicted probabilities are in the range [0, 1]). All trained mod-
els passed the verification case within seconds. This is expected since the out-
put bound approximation algorithm implemented in the global safety property
checker scales linearly with respect to the number of leaves in a forest, and thus
there is no combinatorial explosion when the number of trees grows.

6 Conclusions and Future Work

In this paper, we proposed a method to formally verify properties of random
forests. Our method exploits the fact that several trees make decisions based on
a shared subset of the input variables, and thus several path combinations in a
random forest are infeasible. We implemented the method in a tool called VoRF,
and demonstrated its scalability on two case studies.

In the first case study, a collision detection problem with six input variables,
we demonstrated that problems with a low-dimensional input space can be ver-
ified using our method within a reasonable amount of time. In the second case
study, a digit recognition problem with 784 input variables, we demonstrated
that our method copes with high-dimensional input space when verifying ro-
bustness against noise. But it does so only if the systematically introduced noise
does not attempt to exhaustively cover all possibilities. Since the number of
shared input variables between trees is low, we observed a combinatorial explo-
sion of paths in the forest. However, we successfully verified the global safety
property in both case studies within seconds by using a fast approximation al-
gorithm that scales linearly with respect to the number of trees in a random
forest.

For future work, we plan to extend our method to include concepts from ab-
stract interpretation to address the combinatorial path explosion observed when
verifying the robustness property on high-dimensional data. Other directions of
work include studying different search strategies, applying to use cases where
control is involved (and not only sensing), and creating new properties that are
meaningful in the context of the problem at hand, e.g. decisive classifications.

Acknowledgements

This work was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foun-
dation.

16 J. Törnblom and S. Nadjm-Tehrani

References

1. Bastani, O., Pu, Y., Solar-Lezama, A.: Verifiable reinforcement learning via policy
extraction. In: Advances in Neural Information Processing Systems (NIPS) (2018)

2. Breiman, L.: Classification and regression trees. Wadsworth International Group
(1984)

3. Breiman, L.: Random forests. Machine learning 45(1), 5–32 (2001).
https://doi.org/10.1023/A:1010933404324

4. Burton, S., Gauerhof, L., Heinzemann, C.: Making the case for safety of ma-
chine learning in highly automated driving. In: International Conference on Com-
puter Safety, Reliability, and Security (SAFECOMP). pp. 5–16. Springer (2017).
https://doi.org/10.1007/978-3-319-66284-8 1

5. DO-178C: Software Considerations in Airborne Systems and Equipment Certifica-
tion. RTCA, Inc. (2012)

6. DO-333: Formal Methods Supplement to DO-178C and DO-278A. RTCA, Inc.
(2012)

7. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks. In:
International Symposium on Automated Technology for Verification and Analysis
(ATVA). pp. 269–286. Springer (2017). https://doi.org/10.1007/978-3-319-68167-
2 19

8. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.:
Dermatologist-level classification of skin cancer with deep neural networks. Nature
542(7639), 115 (2017). https://doi.org/10.1038/nature21056

9. Irsoy, O., Yildiz, O.T., Alpaydin, E.: Soft decision trees. In: International Confer-
ence on Pattern Recognition (ICPR) (2012)

10. ISO 26262: Road vehicles - Functional safety. International Organization for Stan-
dardization (2011)

11. Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Pol-
icy compression for aircraft collision avoidance systems. In: Digital Avionics
Systems Conference (DASC), 2016 IEEE/AIAA 35th. pp. 1–10. IEEE (2016).
https://doi.org/10.1109/DASC.2016.7778091

12. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: An
efficient smt solver for verifying deep neural networks. In: International Con-
ference on Computer Aided Verification (CAV). pp. 97–117. Springer (2017).
https://doi.org/10.1007/978-3-319-63387-9 5

13. Kurd, Z., Kelly, T., Austin, J.: Developing artificial neural networks for safety
critical systems. Neural Computing and Applications 16(1), 11–19 (2007).
https://doi.org/10.1007/s00521-006-0039-9

14. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied
to document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998).
https://doi.org/10.1109/5.726791

15. Mirman, M., Gehr, T., Vechev, M.: Differentiable abstract interpretation for prov-
ably robust neural networks. In: International Conference on Machine Learning
(ICML) (2018)

16. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Ma-
chine learning in python. Journal of machine learning research 12(Oct), 2825–2830
(2011)

17. Pulina, L., Tacchella, A.: Challenging SMT solvers to verify neural networks. AI
Communications 25(2), 117–135 (2012). https://doi.org/10.3233/AIC-2012-0525

Formal Verification of Random Forests in Safety-Critical Applications 17

18. Russell, S., Dewey, D., Tegmark, M.: Research priorities for robust
and beneficial artificial intelligence. AI Magazine 36(4), 105–114 (2015).
https://doi.org/10.1609/aimag.v36i4.2577

19. Scheibler, K., Winterer, L., Wimmer, R., Becker, B.: Towards verification of artifi-
cial neural networks. In: Automatic Verification And Analysis of Complex Systems
(MBMV). pp. 30–40 (2015)

20. Seshia, S.A., Zhu, X.J., Krause, A., Jha, S.: Machine learning and formal meth-
ods (dagstuhl seminar 17351). In: Dagstuhl Reports. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik (2018). https://doi.org/10.4230/DagRep.7.8.55

21. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.: Master-
ing the game of go with deep neural networks and tree search. Nature 529(7587),
484–489 (2016). https://doi.org/10.1038/nature16961

