
Fault and Timing Analysis in Critical Multi-Core
Systems - A Survey with an Avionics Perspective

Andreas Löfwenmark
Saab Aeronautics

Linköping, Sweden
andreas.lofwenmark@saabgroup.com

Simin Nadjm-Tehrani
Department of Computer and Information Science

Linköping University
Linköping, Sweden

simin.nadjm-tehrani@liu.se

Abstract—With more functionality added to future safety-critical
avionics systems, new platforms are required to offer the compu-
tational capacity needed. Multi-core processors offer a potential
that is promising, but they also suffer from two issues that are
only recently being addressed in the safety-critical contexts: lack
of methods for assuring timing determinism, and higher sensitivity
to permanent and transient faults due to shrinking transistor sizes.
This paper reviews major contributions that assess the impact of
fault tolerance on worst-case execution time of processes running
on a multi-core platform. We consider the classic approach for
analyzing the impact of faults in such systems, namely fault
injection. The review therefore explores the area in which timing
effects are studied when fault injection methods are used. We
conclude that there are few works that address the intricate
timing effects that appear when inter-core interferences due to
simultaneous accesses of shared resources are combined with fault
tolerance techniques. We assess the applicability of the methods
to currently available multi-core processors used in avionics. Dark
spots on the research map of the integration problem of hardware
reliability and timing predictability for multi-core avionics systems
are identified.

I. INTRODUCTION

Added functionality in future avionics systems brings com-
plexities to both design and operation of these systems and
requires new platforms that offer more computational capacity.
Multi-core processing offers a potential that the industry is
exploring, and which opens up for new research questions in
the context of safety-critical systems. Commercial off-the-shelf
(COTS) multi-core processors are inherently less predictable
because of shared resources [1,2] and the efforts of the chip
manufacturers to optimize the throughput, which affect the
analyses of worst-case execution time (WCET) and worst-case
response time (WCRT). In the absence of new techniques,
these analyses tend to result in very pessimistic estimates,
which could negate the intended addition of computational
capacity.

In this paper, we review the state of research that addresses
the joint study of timing predictability and fault tolerance in
the multi-core setting. The elementary fault classes of interest
are dimension (hardware, software) and persistence (transient,
permanent) [3]. We analyze proposed fault tolerance methods
targeting these fault classes and whether their impact on
WCET analysis is addressed. We also assess the applicability

of the surveyed methods to safety-critical systems on multi-
core platforms within a practical setting.

Avionics systems operate at high altitude and are more ex-
posed to cosmic rays than electronics at ground-level. These
cosmic rays have sufficient energy to alter the states of circuit
components, resulting in transient faults, which could result in
corrupted data (e.g., in caches and memory). These transient
faults are often referred to as soft errors, as the effect of the
fault will disappear when for instance a memory location is
overwritten. Permanent hardware errors (e.g., resulting from
deficiencies in manufacturing processes or component failure),
are permanent in time. As the technology advances and the
transistor sizes shrink, both permanent and transient faults
will increase, thus making the soft errors a bigger problem
for industries at sea level (e.g., automotive and railway) as
well. Safety and reliability requirements of the system mandate
making a serious attempt to make it fault-tolerant by masking
both permanent and transient faults.

Caches occupy a large area on the processor chip and are
vulnerable to soft errors. Therefore, to mitigate soft errors the
caches are equipped with error detecting (and sometimes also
error correcting) codes. The simplest detection type is parity
where (typically) one extra bit is used per byte to indicate
whether the number of 1-bits in the byte is even or odd.
This can later be used to detect an error. An error-correction
code (ECC) is required to correct errors and a common error
correcting code is the single-error correction and double-error
detection (SECDED) Hamming code [4].

Software faults are faults (bugs) in the software, which could
result from the design or implementation phase. They are
permanent in nature, but the effects of the bugs can be
transient [5]. In this paper, we refer to these kinds of bugs
as transient software faults. Other terms for software faults
are Bohrbug (permanent), Mandelbug and Heisenbug (tran-
sient) [6,7].

The fault tolerance mechanisms used to ensure the safety and
reliability of the system have to be verified and validated.
Waiting for cosmic rays to alter the operational state of an
observable component is not viable as a means of documen-
tation. Fault injection can be used to introduce a fault in the
component by more controllable means. Radiation beams can

1



be used to actually change the state in the hardware component
or some other methods can be used to emulate a fault.

Other means, such as code review, static analysis and model
checking, for verifying and validating the system and its fault
tolerance mechanisms are also available (e.g., [8]) and often
mandated by safety standards. However, in this paper we focus
on fault injection as the assessment method for impacts of
faults.

To use multi-core processors in a safety-critical system, both
problems (i.e., timing predictability and fault tolerance) have
to be addressed. Safety-critical systems have to produce the
correct output within the allotted time and different fault
tolerance methods have different impact on the execution
time of the tasks in the system. We also have to ensure the
verifiability of the chosen fault tolerance mechanism and the
WCET estimates. To create repeatable experiments, we need
appropriate fault injection methods.

Specifically, we seek answers to the following questions in a
multi-core context:

1) Can we bound WCET estimates in presence of fault
tolerance?

2) Can we validate fault tolerance and timeliness claims
using fault injection?

3) What fault tolerance methods can be implemented with
current COTS processors?

Reviewing the existing research in the area creates a base
for understanding which building blocks are available from
both perspectives (timing and fault tolerance), and for making
informed architectural decisions when allocating applications
to nodes, partitions or cores, as well as their impact on other
resource boundaries (e.g., communication buses).

Others have surveyed related research areas. Mushtaq et al. [9]
surveyed fault tolerance techniques for shared memory multi-
core systems in 2011, which is similar to our work. However,
they did not include the effects that fault tolerance techniques
have on WCET estimations. Natella et al. [10] have performed
a survey of software fault injection (SFI) for systems executing
on single-core processors. Their survey does not cover multi-
core platforms nor the applicability of fault injection to verify
WCET estimation claims, which we aim to investigate.

While deploying multi-core platforms for high performance
computing has attracted much attention including prediction
models for performance of virtualised environments [11], there
has been less attention paid to embedded systems in which
throughput is not the only concern and indeed dependability
concerns are as important [12]. This work intends to bring
the need for multi-core based research in time-dependent and
dependable systems to the forefront.

Although critical systems exist in several domains (e.g., avion-
ics, automotive, railway) and we discuss topics relevant for all
of them, in this paper we focus on the avionics domain.

The remainder of the paper is structured as follows. Section II
includes the basic fault tolerance and fault injection concept
relevant to the rest of the paper. Readers familiar with basic
notions in dependability and safety can skip this section and
move on to the next section. Section III and Section IV contain
summaries of the surveyed papers related to fault tolerance
(Question 1) and fault injection (Question 2) respectively. We
discuss the papers and the implications of the covered methods
on WCET estimates in Section V, where we also analyse the
methods with regard to practical usability (Question 3). The
paper is concluded in Section VI.

II. BASIC CONCEPTS

In this section, we review some basic notions used in the rest
of the paper.

A. Fault Tolerance

We use the fundamental concepts of faults, errors, failures,
transient, intermittent, permanent and so on, in accordance
with the well-known notions of dependability [3].

Faults can originate from hardware or software. The majority
of software faults found in production software are transient as
most of the other bugs, those that always fail, should have been
discovered in the process of design, review and test [7].

The process of making a system fault-tolerant can be sum-
marized in four steps [9]: proactive fault management, error
detection, fault diagnosis and recovery. In the proactive step
one tries to predict failures and also prevent them from hap-
pening. Examples of proactive fault management are software
rejuvenation and on-line checks during run-time (such as
memory scrubbing). A watchdog can be used to detect timing
errors, which could be a result of implementation mistakes
or bit-flips due to high-energy particles (cosmic radiation).
Both of these effects could result in the system being stuck
in an infinite loop. Other types of errors can be treated using
redundancy at different levels in the system. When an error
is detected, methods to locate the faulty component and also
the type of the fault can help with the handling of the error.
Using Triple Modular Redundancy (TMR) for instance can
help identify a faulty component. It is important to mitigate
the fault before a failure is triggered.

Depending on the system, there are different ways to handle
the fault (or error). One way is to shut down the system
until the fault can be repaired, but for some systems this is
not an option. In such cases, TMR can be used to handle
faulty components if the probability of all three redundant
components failing at the same time is considered low. Other
solutions use a checkpoint and repair methodology, which
periodically saves the execution state (creating a checkpoint)
and when a fault is detected the execution is rolled back to the
checkpoint. Fault masking is also a way of recovering from
faults. TMR is an example of fault masking that uses three

2



redundant components and majority voting to mask deviating
data. Single event upsets (SEU) are so called ”soft errors”
caused by a single energetic-particle strike, and single event
functional interrupts (SEFI) are soft errors that cause the
component to reset, lock-up, or otherwise malfunction in a
detectable way, but does not require power cycling to restore
operability.

B. Fault Injection

To study the impact of transient faults and to determine how
they should be treated one could wait for a fault to happen,
but this would be very time consuming as transient faults
can be rare. Fault injection is a technique for evaluating the
dependability of systems. It can be used to inject faults into
a system with the aim of observing its behaviour and assess-
ing the fault tolerance mechanisms. It is thereby a practical
approach for achieving confidence in that faults cannot cause
serious failures.

This is done by intentionally introducing faults in the hardware
on which the application runs. Fault injection can take many
forms and can be introduced in different phases of system
development. Radiation beams is an example of physical
injection methods that can be used to inject faults in a
hardware circuit and can produce transient faults in random
locations inside a hardware circuit, but it is a time-consuming
and expensive task. Alternatives have been developed, some
hardware-based, some software-based and some simulation-
based [4].

Hardware-based fault injection includes radiation-beam test-
ing, risking permanent damage to the tested device and re-
quires special hardware instrumentation. Software-based fault
injection is cheap and is achieved by altering the contents
of CPU registers or memory while running the relevant ap-
plication software on the hardware being tested. The faults
are simulated using a fault model, and the selection of fault
model is an issue that influences the potential outcomes
of the injection experiments. Simulation-based fault-injection
offers complete visibility inside the device under test pro-
vided that the simulation model of the hardware is detailed
enough.

Software fault injection (SFI) attempts to simulate software
faults through code changes, either at compile-time by modi-
fying the source code or at run-time by using a trigger and then
changing data in e.g., memory or registers. Mutation testing
modifies existing lines of code and can be used to simulate
faults unintentionally introduced by programmers. SFI can be
used to inject code changes, data errors and interface errors.
Addressing the questions of when, where and what to inject are
important to create an efficient fault injection method.

C. Safety-Critical Systems

Regardless of which domain a critical system belongs to, it is
subjected to international safety standards containing guidance

for validation and certification. Table I shows the safety levels
of a few major domains.

Table I
COMPARISON OF SAFETY LEVELS [13]

Domain Safety Levels (high to low)

Avionics
DO-178C DAL1 A B C D E

Automotive
ISO 26262 ASIL2 - D C/B A QM

General
IEC-61508 SIL3 4 3 2 1 -

Railway
EN 50128 SIL3 4 3 2 1 -

1 Design Assurance Level
2 Automotive Safety Integrity Level
3 Safety Integrity Level

As an example, development of safety-critical airborne soft-
ware is guided by the standard RTCA/DO-178C [14] con-
taining a number of objectives to be fulfilled. The software is
assigned a design assurance level (DAL), ranging from level A
(most critical) to E (non-critical), depending on the criticality
as determined in the safety assessment process.

In addition to RTCA/DO-178C, the certification authorities
have issued the Certification Authorities Software Team po-
sition paper (CAST 32A) [15] that identifies topics impacting
safety, performance, and integrity of an airborne software
system executing on multi-core processors. It is required that
probabilistic safety guarantees are provided to functionalities
of different criticality as shown in Table II. Clearly, higher crit-

Table II
FAILURE RATE PER RTCA/DO-178C CRITICALITY LEVEL

Level Failure Condition Failure Rate

A Catastrophic 10−9/h
B Hazardous 10−7/h
C Major 10−5/h
D Minor 10−3/h
E No Effect N/A

icality levels require more stringent analyses of both hardware
and software to ensure the assurance levels needed. Worst-case
execution time (WCET) estimates need to be determined more
thoroughly and tend to be higher (more pessimistic) in higher
criticality levels.

D. Mixed-Criticality Systems

Most embedded systems consist of many different functions.
However, all functions in a system are not equally critical for
correct service or mission (e.g., the flight control system in a
commercial airliner or the braking system in a car is more
critical than the infotainment system). A mixed-criticality
system is a system hosting several different functions assigned
different safety levels (DAL/ASIL/SIL) on the same comput-
ing platform. When estimating WCETs for the functions, the

3



most critical ones may get a more stringent analysis than the
less critical ones.

The introduction of multi-core supports the migration from
federated systems (functions implemented and packaged as
self-contained units) to integrated systems. Integrated Modular
Avionics (IMA) [16] and AUTomotive Open System ARchi-
tecture (AUTOSAR) [17] are examples from the avionics and
automotive domains respectively.

The multi-criticality task model was proposed by Vestal [18]
after showing that existing scheduling theory could not address
multiple criticality requirements. Multiple WCET estimates
are specified for each task, one WCET for the criticality level
the task belongs to and one for each lower level. Higher
criticality levels demand greater levels of assurance and the
WCET will therefore be more pessimistic for the same task at
a lower criticality level. Similarly, treatment of tasks in terms
of resource allocation, and analysis of fault tolerance can be
differentiated depending on the task criticality.

E. WCET Estimations

WCET estimations are essential ingredients for establishing
a predictable timing behaviour in safety-critical systems, but
the introduction of multi-core processors has made their esti-
mation even more difficult to perform. Having to account for
failures complicates the task even further. WCET estimation
can be classified as static or measurement-based.

A static analysis method computes the execution time of
individual code blocks using a micro-architectural model of the
target platform they will execute on. By design, it will find the
longest path and can thus provide a safe (overestimated) upper
bound instead of the WCET. The amount of overestimation
is dependent on the micro-architectural model, which can be
very difficult to produce for complex platforms (e.g., multi-
core with multi-threading, branch prediction, pipelining and
multi-level caches).

Measurement-based analysis can provide accurate execution
times as the software is running on the target platform, but
since it depends on actual execution it may be difficult to
know whether the WCET path has been covered. There is
always a risk that the WCET estimation is not equal to the
real WCET.

Hybrid WCET estimation techniques also exist, where the
application is executed (several times) on the target hardware
and execution traces are collected. With the execution traces,
together with knowledge of the code structure, a WCET
estimate can be produced. For this to function, all statements
in the application source code have to be executed during trace
collection.

Probabilistic timing analysis (PTA) [19,20] can be used to
calculate a probabilistic WCET (pWCET). The failure rates
specified for different DALs (Table II) can be utilized during
the pWCET calculations to find the relevant target probability.

Two variants exist, static (SPTA) and measurement based
(MBPTA), similar to the classical deterministic WCET esti-
mations. These pWCET estimates are derived in such a way as
to provide indications of likelihood (e.g., the estimates can be
exceeded with a given probability [20]). Instead of requiring
time-deterministic behaviour of the platform, PTA is based
on randomization of the timing behaviour for some hardware
(e.g., caches and shared buses).

Having covered the basic terms and notions, we now move on
to review a selection of works within the real-time and fault-
tolerant systems that we believe have the initial seeds needed
to address our main problem, i.e. building integrated modular
avionics (IMA) systems on multi-core platforms and provide
the timing determinism and dependability requirements for
these. We will therefore cover both methods from the single-
core world and multi-core techniques.

III. FAULT TOLERANCE

In this section, we aim to investigate Question 1, referring
to worst-case execution time (WCET) bounds in presence
of faults tolerance. The question can be viewed from two
different perspectives: (a) Fault tolerance methods can consider
WCET aspects; and (b) Timing analysis methods can be fault
aware. We treat each perspective separately. In Section III-A
we consider (a) and (b) is considered in Section III-B.

To validate claims about fault tolerance, fault injection meth-
ods are used, but the actual injection method is not a contri-
bution of the papers reviewed in this section. Fault injection
(related to Question 2) is surveyed in Section IV. Later, in
Section V we will summarise all the categories covered here
in a summary table (Table III) and discuss in the context
of our aims. The selection of articles has been guided by
the criteria of potential applicability to safety-critical systems
assurance, since our intention is to finally judge where the
gaps for applicability to safety-critical systems lie.

A. Fault Tolerance Methods

In this section we look at representative fault tolerance meth-
ods in presence of transient and/or permanent hardware faults.
Some also consider software faults. An obvious category
of fault tolerance works are those that exploit the multi-
core platform itself as a means of achieving resilience to
faults, namely by adopting replication. We begin by reviewing
examples of such works, and then move on to works that
use a checkpointing and recovery technique running on multi-
core. In a third category, we consider the works that use
fault forecasting to combine with the hardware-assisted fault
detection, and finally we give an example of works that
not only detect but also build in recovery from attacks. All
these techniques are highly representative of methods that
one needs to consider in a high-integrity and safety-critical
system.

4



1) Multi-core platform used for replication: In systems with
cost and space constraints, such as automotive, the use of
replicated hardware is not feasible. A software-based fault
tolerance method can be used in a distributed system, where
tasks are replicated on other nodes. Kim et al. [21] present
SAFER (System-level Architecture for Failure Evasion in
Real-Time applications), incorporating fault tolerance methods
to tolerate fail-stop processor and task faults. Hot and cold
standbys can be configured for the primary tasks, where hot
standbys execute the same instructions as the primary, but
generate no output. The cold standbys on the other hand are
dormant and only awoken if the primary fails. The state of the
primary is communicated to the node with the cold backup to
ensure that the cold standby can take over the role as primary.
All replicas (hot and cold standbys) must be placed on nodes
other than the one where the primary resides. A schedulability
analysis including all tasks (primaries and backups) for the
whole distributed system is also provided. Bhat et al. [22]
address some of the limitations of SAFER, such as using the
AUTomotive Open System ARchitecture (AUTOSAR) instead
of Linux. The worst-case recovery time of the task model is
analysed and they also present a task mapping heuristic to
minimize the number of required nodes in the system and still
meet the placement constraint.

Multi-core platforms can be used to enhance fault tolerance,
in a similar way to the distributed systems described above,
where redundant processes can execute on different cores
instead of processors. Shye et al. [23] present process-level
redundancy (PLR), a software-centric paradigm in transient
fault tolerance on multi-core platforms. They use several cores
to deploy redundant processes of the original (single-threaded)
application process and then compare the results to detect
transient faults. One master process is replicated several times
to create the redundant slave processes (replicas). Since all
processes execute the same instructions, care must be taken to
ensure that any system state that is modified is only modified
once as if the original process is executing by itself (preserving
the semantics of the master process). This has been solved
by a system call emulation unit that is inserted (using the
LD PRELOAD feature of Linux) between the process and the
operating system. The emulation unit intercepts the application
start (to create redundant processes as well as the original
process) and the system calls, and ensures that system calls
that return non-deterministic data (such as time of day) will
be handled in a way that all replicas see the same value. This
method works well on systems where throughput is not the
primary goal. To be able to both detect and recover from
transient faults, at least three redundant processes (the original
process and two replicas) are needed.

Marshall et al. [24] present a framework for component-based
systems, S3RES, similar to PLR. S3RES does not use system
call emulation as PLR does, but redirects the input and output
channels to a user-space voter process.

Quest-V, proposed by Missimer et al. [25], implements fault

tolerance by leveraging hardware virtualization to isolate the
cores of a multi-core processor. This way, redundant tasks
that are typically run on separate processors to form a triple
modular redundancy (TMR) system can be consolidated on
one multi-core processor. To further improve fault detection,
hashes are calculated on memory modified by the programs
between synchronization points. These hashes are compared
by the voter in the TMR system to detect deviations in the
redundant computations.

While Shye et al. [23] only cover single-threaded applica-
tions, multi-threaded applications are addressed by Mushtaq
et al. [26]. They introduce a record/replay approach to make
multi-threaded shared memory requests deterministic in ad-
dition to the use of redundant processes. The order of all
shared memory requests performed by the original process
is recorded and later replayed by the replicas. Recovery is
handled by checkpointing and rollback. This method requires
communication between the original process and the replicas,
and the memory used for the communication can also become
corrupted, which makes it less reliable. Therefore, Mushtaq
et al. extend their work and introduce deterministic multi-
threading [27] instead of record/replay. The definition of
deterministic multi-threading is that given the same input,
the threads of a multi-threaded process always have the same
lock interleaving. To ensure that the locks are acquired in the
same order, they introduce logical clocks that are inserted at
compile-time. When a thread is trying to acquire a lock, it is
only allowed to do so if its logical clock has the minimal value.
A number of optimizations are introduced to the logical clock
handling to reduce the overhead. The fault tolerance method
adds an average overhead of 49 percent to the execution time
in absence of faults.

The fault tolerance methods discussed so far use uniform
multi-core processors, where all cores are identical (i.e., so
called homogeneous multi-core). Another variant is explored
by Meisner and Platzner [28], where they combine “normal”
cores with cores implemented in a field-programmable gate
array (FPGA) (i.e., heterogeneous or hybrid multi-core). They
propose a dynamic redundancy technique, named thread shad-
owing, which duplicates (shadows) a software or hardware
thread during a time period. One advantage of using hybrid
multi-cores is that a software thread can shadow a hard-
ware thread, or the other way round (which is called trans-
modal). Hardware threads are often much faster than software
threads and this can be utilized in a trans-modal round-robin
shadowing (i.e., one hardware thread shadows a number of
software threads for a time period one at a time). This requires
only one extra core, but does not provide continuous error
detection. It is also possible to increase the number of cores
to shadow each thread and provide a more comprehensive
error detection, which is more suitable for transient faults. The
former configuration can be used to detect permanent hardware
faults.

Thread duplication and majority voting is suitable for masking

5



transient faults, but it is more difficult to detect permanent
faults. The question is also what to do when identifying a
permanent fault. Peshave et al. [29] use a reconfigurable Chip
Multi-Core Processor (CMP) to provide redundancy in order
to improve reliability. They mask transient faults and tolerate
core-level permanent faults. The framework consists of a TMR
system that uses dual-core CMPs, where one of the cores is
deactivated and used as a redundant core in case of faults in
the running one. Each of the three CMPs execute a copy of
the application and the output from each is used in a voting
procedure to produce the final result. The voter is included
in a separate hardware block that monitors the system and
can for instance switch to the redundant core on any CMP if
a permanent fault is detected. This system is compared to a
standard TMR system using single-core processors and they
conclude that the dual-core system can tolerate more core-
level permanent and transient faults than the single-core based
system.

2) Software-assisted checkpoint and recovery: Even though
the semiconductor technology evolution resulting in smaller
and smaller transistors increases the sensitivity to both per-
manent and transient faults, the fault-free operation is still the
common case. Hari et al. [30] focus therefore on light-weight
detection mechanisms, whereas the relative rare operation
of fault diagnosis is allowed to use more resources (e.g.,
execution time) and is performed by a replay task. They
develop a diagnosis algorithm for multi-threaded applications
on multi-core systems. The algorithm is based on repeated roll-
back/replay and can deterministically replay execution from a
previous checkpoint for a multi-threaded application, which is
a requirement for a proper diagnosis. Several replays may be
necessary to distinguish between software bugs, transient and
permanent hardware faults, and to identify the faulty core in
case of a permanent fault.

The components that implement the different fault tolerance
methods, such as replication and checkpointing mentioned
above, are also vulnerable to faults unless care is taken to
protect them. Hoffmann et al. [31] propose dOSEK, which
aims to be a robust real-time operating system that provides
a reliable computing base (RCB) on which the fault-tolerant
applications can be implemented. The RCB is the set of
components that are expected to be reliable to ensure an
operational fault tolerance method. To keep the RCB to a
minimum, dOSEK is designed and implemented using static
techniques to minimize the amount of code and data in
the operating system vulnerable to transient faults. A code
generator is also used to tailor the system. The operating
system kernel is further hardened by using arithmetic encoding
of kernel data structures to detect both data and control flow
faults.

Song et al. [32] present C3, which is a system-level fault toler-
ance mechanism implemented on the Composite component-
based operating system. Components in Composite execute
at user-level in a private protection domain. Even system-

level functions, such as scheduling and memory management,
are user-level components. C3 focuses on recovery from
transient faults without hardware or process-level replication.
The goal of C3 is to rebuild the internal state of a failed
system component. This is done by tracking the state of
components at the interface boundary and when a fault occurs,
the component is ”rebooted” and the saved state is restored. To
better handle deadlines in the presence of faults, they include
the overhead of C3 in the presented schedulability analysis.
Song and Parmer [33] extend Composite and C3 with C’Mon,
which is a monitoring infrastructure that keeps track of all
communication in the system and validates that the behavior
conforms to a model specified offline. C’Mon can detect and
recover from latent faults in system services. The work also
includes a system overhead aware schedulability analysis for
systems using C’Mon.

3) Fault forecasting combined with error correction: The
majority of transient faults will be spatial multi-bit faults as
the technology scaling continues towards smaller and smaller
feature sizes [34]. A spatial multi-bit fault is a single-event
upset affecting more than one bit. If the affected bits belong
to the same protection domain, the common single-error cor-
rection and double-error detection (SECDED) error correction
code cannot be used for correction as it only corrects single-
bit faults. Therefore, Manoochehri and Dubois [34] develop a
formal model (PARMA+) to benchmark failure rates of caches
with spatial multi-bit faults and different protection schemes.
They focus on the cache because the caches occupy a large
area on the processor chip and are vulnerable to soft errors,
which will affect reliability. PARMA+ estimates the cache
failures in time (FIT) rate. The FIT rate of a device is the
number of failures that can be expected in one billion (109)
device-hours of operation (e.g., 1000 devices for 1 million
hours, or 1 million devices for 1000 hours each, or some
other combination). A component having a failure rate of 1
FIT is then equivalent to having a mean time between failures
(MTBF) of 1 billion hours. Most components have failure rates
measured in hundreds or thousands of FITs. This is not really a
fault tolerance method, but the model can help chip designers
to configure reliability enhancing protection schemes in a more
optimal way, resulting in more reliable components.

One fault forecasting method targeting railway transportation
systems is Timed Fault Trees (TFTs) proposed by Peng et
al. [35], which extends traditional fault tree analysis with
temporal events and fault characteristics. TFTs can be used to
predict and prevent accidents and also be applied to a system
at design time.

Being able to predict a forthcoming failure is very important
in cyber-physical systems. Chen and Sankaranarayanan [36]
present a linear model-predictive scheme for monitoring linear
systems. The monitor keeps a list of reachable set predictions
and reports an unsafe incident or an alert when a prediction
that is uncontrollable is detected. This way, one can switch
from a high-performance controller, that may be unsafe, to a

6



safe controller.

Sangchoolie et al. [37] study the impact of multiple bit-
flip faults and compare whether the number of silent data
corruptions (SDCs) increases compared to single bit-flips.
They also seek ways to prune the multi-bit fault injection
space. Their conclusion is that multiple bit-flip faults do not
result in higher rates of SDCs compared to single bit-flip
experiments.

4) Hardware-assisted detection and attack recovery: The fault
tolerance mechanisms described so far are all designed to han-
dle random sporadic faults (and permanent faults in caches),
but faults can also be used to attack a system. In this case, the
faults are injected by an adversary in a well-planned manner.
Hence, the fault-tolerant mechanisms discussed so far are
not enough for fault-based attack resistance. Yuce et al. [38]
propose FAME (Fault-attack Aware Microprocessor Exten-
sions), a hardware-based fault detection that is continuously
monitoring the system and a software-based fault response
mechanism (software trap handler) that is invoked when a fault
is detected. A fault control unit (FCU) collects information
to ensure that a recovery is possible from the software trap
handler. The FCU also flushes the processor pipeline and
disables write operations to the memory and registers to ensure
that no faulty results are committed to the processor state and
the software trap handler is restarted if the fault detection unit
(FDU) detects a fault during execution of the trap handler. This
ensures the completion of the trap handler before resuming
normal execution.

B. Fault-Aware Timing Analysis

Most of the fault tolerance methods presented in the previous
section do not consider the impact they have on the execution
(response) time of tasks and perform no timing analyses.
The focus is on delivering the correct function and none of
these methods can be used (without alterations) to answer
Question 1. Some works [21,22,32,33] do take into account
how the fault tolerance method impacts schedulability and
provide a schedulability analysis. However, these are either on
multi-processor systems (separate processors communicating
over a network with no shared resources) or on single-
core processors. Therefore, they cannot be directly applied
to multi-core processors. Many embedded systems will have
strict requirements on the worst-case execution time (WCET)
of different functions, hence fault tolerance methods cannot
ignore their impact (interference due to shared resources) on
WCET and schedulability on multi-core systems. We proceed
to review fault-aware timing analysis methods.

1) Fault-tolerant mixed-criticality scheduling: The FTMC
scheduling algorithm for single-core systems proposed by
Pathan [39] includes a fault tolerance perspective by using
execution of backup tasks if faults are detected. Each task
(both original and backup) has different WCETs on the differ-
ent criticality levels (in this case LO and HI). The frequency

of faults during a fixed time period is also considered for
LO and HI criticality modes. The system will switch from
LO to HI mode when either a task exceeds its LO-criticality
WCET or the number of errors exceeds its threshold. Once the
system has switched to HI-criticality mode all LO-criticality
tasks are dropped. If any task errors are detected, a backup
is executed and this could be re-execution of the original task
(to handle transient hardware-faults) or execution of a diverse
implementation (to handle potential software bugs). The error
detection mechanism is assumed to be present in the platform
already.

A similar method is proposed by Huang et al. [40] for handling
transient hardware-faults, but instead of dropping less critical
tasks when switching to HI-criticality mode the service can
be degraded (e.g., by changing the inter-arrival time of these
tasks). Safety requirements are introduced for each criticality
level based on the probability-of-failure-per-hour metric (such
as those in Table II) and a re-execution profile is defined for
each task to ensure it meets the safety requirement. For the
HI-criticality tasks a killing profile is defined specifying the
number of re-executions that are allowed before LO-criticality
tasks are dropped. The impact of task re-execution, task
dropping and service degradation are thus bounded.

The above methods present scheduling algorithms that con-
sider fault tolerance and WCET in a single-core setting.
Kang et al. [41] apply the concepts of mixed-criticality and
reliability to a multi-processor system-on-chip (MPSoC) using
the standard model with two criticality levels (normal and
critical state). Tasks are mapped to processing elements (PEs)
and then locally scheduled. Re-execution and replication is
used for reliability and droppable tasks are dropped when
switching to the critical state. The dropped tasks are allowed
to execute again at the next hyper-period once the system is
switched back to normal mode. So, in this case the critical
state is just a temporary state to cope with the faults without
risking non-droppable tasks missing their deadline. The focus
here is on bounding the worst-case response time (WCRT) by
using static mapping and optimizations.

By integrating fault tolerance in the methods above, the
transition to the critical state is performed for both detected
faults and deadline misses even though different handling
of the two may be more suitable. To overcome this and to
improve the quality of service for the LO-criticality tasks,
a four-mode model is proposed by Al-bayati et al. [42]. In
addition to the standard two modes (LO, HI) the transient
fault (TF) and the overrun (OV) modes are introduced. The TF
mode will be transitioned to when a transient fault is detected,
and task re-execution is needed and the OV is transitioned to
when a task misses its deadline. The HI mode is used to cover
the cases where both overrun and a transient fault are detected.
LO-criticality tasks are dropped when the system enters OV
or TF. Similar to Huang et al. [40] not all LO-criticality tasks
are dropped, but they try to maximize the number of LO-
criticality tasks that can run in each mode without affecting

7



the schedulability of the HI-criticality tasks.

Pathan also presents a global scheduling algorithm (FTM) for
real-time sporadic tasks on multi-core platforms [43], but
with no focus on mixed-criticality (this is left as future work).
The algorithm considers a combination of active and passive
redundancy, where active backups are executed in parallel on
a different core from the primary task and passive backups are
executed in sequence. Both permanent and transient hardware
faults are considered. The application-level model considers
errors to be detectable in both the primary task and in the
backups. The stochastic behaviour of the actual fault model is
inserted later, which results in a probabilistic analysis capable
of assessing an application’s ability to tolerate faults during
run-time. A heuristic to help the designers configure the
number of active backups is also presented.

2) Estimation of WCET: WCET estimation is a difficult task
and most of the WCET analysis methods assume a fault-
free execution, but this may no longer be an acceptable
assumption as mentioned previously. If we continue to assume
that components are fault-free while the probability of failures
increases for circuits (e.g., due to miniaturization), there is a
risk of underestimating the worst-case execution time of the
components, for example when a fault leads to a cache miss
where a cache hit was expected. Considering the impact of
cache faults is particularly difficult, which is why we have
focused on selecting works that are representative of this
area.

With the shrinking sizes of components, the number of per-
manent faults increases and caches taking up a large area in
the processor will be a non-negligible source of performance
degradation. Slijepcevic et al. [44] present a measurement-
based probabilistic timing analysis (MBPTA) approach for
faulty caches. The method requires a hardware platform that
is compliant with a probabilistic timing analysis (e.g., caches
with random (re)placement). It also requires a mechanism to
disable a cache line once a permanent fault is detected in
that line. Execution times are measured on hardware with
maximum degradation. Therefore, they introduce Degraded
Test Mode (DTM) that allows a number of cache lines to be
disabled. Using DTM it is possible to get measurements for
a faulty cache on a fault-free processor so that probabilistic
WCET (pWCET) estimates are safe. Slijepcevic et al. [45]
continue by also handling transient faults and the timing
impact of error detection, correction, diagnosis and reconfigu-
ration. A lot of requirements are placed on the hardware, but
they claim the result is a tight pWCET.

Chen et al. [46] perform static probabilistic timing analysis
(SPTA) on instruction caches with random replacement on
single-cores considering both permanent and transient hard-
ware faults. Memory traces for single-path programs are used
as input and the probability of exceeding a certain execution
time is computed using state space techniques based on a non-
homogeneous Markov chain model. The result of the Markov
model is a timing analysis taking all cache states into account.

However, the number of states grows polynomially with high
exponent values as more and more memory addresses are
requested. To overcome this they introduce a method that
limits the number of states by using a lower number of
memory addresses for the states.

The method used by Hardy and Puaut [47] is quite similar
to what Slijepcevic et al. [44] present, but not as many
requirements are posed on the hardware. They present an
SPTA-based approach for instruction caches with least recently
used (LRU) replacement. Their work is based on a low-level
static analysis of the cache using abstract interpretation and
a high-level WCET analysis using an integer linear program-
ming (ILP) technique (Implicit Path Enumeration Technique
(IPET)). Cache sets are independent, which means it is not
necessary to explore all faulty cache configurations to ob-
tain the penalty probability distribution, but rather compute
the convolution of the set’s probability distributions. They
compute fault-free WCET and then derive an upper bound
of the time penalties caused by fault-induced misses. The
evaluation performed shows that for a given probability of
a static random-access memory (SRAM) cell failure the
pWCET estimates are significantly larger than the fault-free
WCETs.

Hardy et al. [48] introduce two hardware based mitigation
mechanisms, Reliable Way (RW) and Shared Reliable Buffer
(SRB). RW introduces a permanent fault resilient way for each
cache set to capture the spatial locality of memory requests,
which otherwise would be missed as all those requests would
end up in an entirely faulty cache set. RW ensures that the
cache performance is not worse than a direct-mapped cache
with a size equal to the number of sets. SRB is also introduced
to mitigate the increase in cache misses when a whole set is
faulty, but at a lower hardware cost. The price for the lower
cost is a performance that may be worse than RW when
there are faults. The WCET estimation is adapted to using
RW or SRB and their experimental evaluation shows a gain
in pWCET of 48 percent and 40 percent for RW and SRB
respectively, compared to their previous work [47].

Caches are of course not the only component that can affect
WCET, Höfig [49] propose an SPTA approach consider-
ing faulty sensors. The Failure-Dependent Timing Analysis
(FDTA) is based on tools such as Enterprise Architect (EA,
a visual modeling and design tool based on OMG UML),
Simulink (a graphical programming environment for modeling,
simulating and analyzing multidomain dynamical systems) and
aiT (a static timing analysis tool, based on abstract interpre-
tation, for bounding WCET). Simulink is used to model the
system and this model is imported into EA, where a safety
analysis is performed to generate a fault tree. The failure
modes resulting from this analysis are used to generate a new
Simulink model for each mode in which a specific fault has
been inserted. Code is generated and compiled for each of the
fault-injected models and aiT is used to statically estimate the
WCET. A probability is calculated for each of the resulting

8



WCET estimates providing a probabilistic guarantee that the
deadline miss ratio of a task is below a given threshold.

To summarize, our review of the works in Sections III-A
and III-B above shows that research works that focus on fault
tolerance methods combined with multi-core elements have so
far focused on using multi-core resources as a means of miti-
gating faults, and research that focuses on fault-aware timing
analysis focuses on isolation of critical tasks or interference
analysis in the absence of faults. We note that fault models that
impact shared (hardware) resources (e.g., caches and DRAM)
and thereby introduce additional inter-core interference in a
multi-core are not well-studied.

IV. FAULT INJECTION

To verify fault tolerance mechanisms such as those reviewed
in Section III, one can use automated fault-injection tools
to speed up the otherwise often time-consuming verification
and validation. Most fault-injection tools focus on a particular
type of fault (hardware or software fault) and on a particular
component such as cache or memory, which occupy large
parts of the chip area and are thereby extra vulnerable to
faults. However, estimating the impact of faults on timing
also needs an assumption of the frequency of faults, which
is missing from the models adopted by most fault injection
techniques.

Since there already exists a recent survey of fault injection
methods for single-core platforms, Natella et al. [10], we
complement their survey by selecting representative papers
that address fault injection on multi-core platforms. We are
not only interested in verifying the fault tolerance mechanism,
but also timeliness (Question 2).

A. Fault Injection Emulating Hardware Faults

Most modern processors include capabilities for detecting and
reporting errors in most processor units. Cinque and Pec-
chia [50] use this mechanism in Core i7 from Intel to emulate
machine check errors (e.g., cache, memory controller and
interconnection errors) by writing to registers associated with
the error-reporting capability. They target virtualized multi-
core systems and support fault injection at both hypervisor
and guest-OS-level. This is an easy and lightweight fault
injection method, but requires support for writing to these
error-reporting registers. In the works below we consider both
specific and generic hardware models as a basis of injecting
faults.

Wulf et al. [51] present a software-based fault injection tool,
SPFI-TILE, which emulates single-bit hardware faults in reg-
isters or memory on the many-core TILE64 using a debugger
(the gnu debugger, GDB). They also present a data cache fault-
injection extension called Smooth Cache Injection Per Skip-
ping (SCIPS), which distributes fault injection probabilities
evenly over all cache locations. As the cache is not directly

accessible from software, they emulate faulty cache data by
using the debugger to halt the selected tile (core) at a fault
injection point, step to the next load instruction, inject a fault
in the correct memory address, and then continue the execution
to let the load instruction finish with the faulty data. SCIPS is
used to balance the fault injection probabilities by randomly
skipping several load instructions instead of injecting into the
first load instruction after the location where the debugger halts
the processor.

By using the fork() and ptrace() system calls and operat-
ing system signals (e.g., SIGSTOP and SIGCONT) Vargas
et al. [52] develop a fault injection tool that is hardware-
independent (but not operating system-independent) and can
inject faults into general purpose registers, some selected
special purpose registers and in memory regions. The parent
process (after the fork() call) is used as the fault injector and
the child process executes the application under analysis. This
is actually similar to what GDB does under the hood (used
by Wulf et al. [51]). Multi-threaded (pthreads or OpenMP)
applications are supported as the fault injector queries the
operating system for the number of threads in the child process
and their IDs.

Software-based fault injection is easy to use and portable, but
cannot be used to inject faults into parts that are not accessible
from software. A full-system simulator can expose the internal
state of the processor, which simplifies fault injection and no
modifications to the device under test is required.

In most simulators one can save a checkpoint containing the
current state of the simulated system. This feature can be
used to inject faults if modification of the saved checkpoint
is possible. One can save one or more checkpoints during
a fault-free simulation, which is regarded the golden model
and can be compared to checkpoints saved after a fault has
been injected. Checkpoints can also be used to reduce the
amount of re-executed code and speed up the simulation.
This checkpointing and golden model method is used by
several fault injection frameworks, of which a few ([53]–[56])
are described here. Carlisle et al. [53] use the Simics full-
system simulator to develop DrSEUs (Dynamic robust Single-
Event Upset simulator), which is used to simulate single event
upsets (SEUs) and single event functional interrupts (SEFIs).
They use the checkpointing capability of Simics to inject
bit-flips into any of the components in the processor (e.g.,
general-purpose registers, program counter, Ethernet controller
registers and translation-lookaside buffer entries). Caches and
main memory are not targeted by DrSEUs. OVPSim-FIM is
presented by Rosa et al. [54]. The golden checkpoints are
created by executing the application on the original OVPSim.
Faults (single bit-flips) are injected at a random time, in a ran-
dom component (registers or memory) and then the simulation
continues. Miele [55] adds SystemC/TLM, for modelling the
architecture, to the methodology which offers the possibility
to monitor system behavior at both the application and the
architectural level. The emulator QEMU is used to inject faults

9



by Höller et al. [56] to analyse software countermeasures
against attacks.

Petersén et al. [57] present a simulation-based platform for
experimenting with fault injection and fault management,
which utilizes an existing IEEE 1687 network for monitoring
purposes. To simplify the experimenting, several parts of the
platform are implemented using VHDL to model a multi-
processor system-on-chip.

B. Fault Injection Emulating Software Bugs

Software fault injection (SFI) is a common technique to
validate fault tolerance mechanisms in systems. Natella and
Cotroneo [6] investigate whether SFI really does emulate
transient software faults (mandelbugs) to a satisfactory degree.
They perform a case study and analyse the SFI tool G-SWFIT,
finding that the injected faults do not represent mandelbugs
that well. This is because the injected faults are activated early
in the execution phase and all process replicas are affected in
a deterministic way.

Natella et al. [10] discuss several important aspects of SFI,
such as how well the injected faults represent real faults, how
efficiently the experiments can be performed and how usable
the methods and tools are. Such a thorough analysis would also
be needed for multi-core systems and would be useful when a
sizeable body of works address injecting faults in multi-core
systems.

V. DISCUSSIONS

In our pursuit of answers to Question 1 and 2 we reviewed
several state-of-the-art methods for dealing with fault tolerance
in presence of hardware faults, by injection of (emulated)
hardware faults, and in some cases software faults. In this
section, we compare and evaluate these methods with regard
to our posed questions.

Table III summarizes the surveyed papers and their respective
focuses. Column two clarifies whether the method has a
pronounced focus on critical systems as these may be a better
starting point. We assume that generic application domains do
not have any strict timing requirements (i.e., the main goal is
performing the computations correctly). In the third column
the main focus of the paper is presented, whether the method
is applicable for designing or verifying (validating) a system,
namely the space of fault tolerance techniques to choose
from at design time, and the available injection techniques
for verifying the adopted requirements. The fourth column
specifies the type of faults that are considered and in the last
column we indicate whether any impact on timing analysis is
considered.

The following aspects will be considered in our detailed
evaluation and discussion.

Portability to hard real-time systems We look at the facil-
ities used from the underlying hardware and operating

system and how (if) they can be ported to a constrained
environment (real-time operating systems and design
paradigms). As an example, safety-critical systems rarely
allow dynamic memory allocation. (Question 3)

Inter-core interference When running mixed-criticality sys-
tems the temporal partitioning is fundamental. No func-
tion should be able to affect the execution of another. In a
multi-core platform with shared resources multiple cores
can access the same shared resource in parallel, which
could affect the execution time of the applications on the
cores. (Question 1 and 2)

WCET impacts Safety-critical systems have to perform the
intended function in a timely fashion even under faulty
conditions so fault tolerance should consider its impacts
to worst-case execution time (WCET) and worst-case re-
sponse time (WCRT) (or WCET/WCRT estimates should
consider faults). (Question 1 and 2)

We start by looking at the execution environment for the
methods and whether they depend on specific features of either
the hardware or the operating system the applications execute
on.

1) Portability to critical applications: Several of the proposed
fault tolerance methods are implemented on Linux and rely
on its features to alter the running process by preloading
(LD PRELOAD) dynamic shared libraries to extend system
call functionality and override other shared library functions.
Another example is fork(), which is used to dynamically
create an identical copy of a process [24,26,27]. Process-level
redundancy (PLR) as proposed by Shye et al. [23] uses Intel
Pin for dynamic code patching on Linux. The methods are
easily implemented using the support of the OS, but may
be hard to port to a real-time operating system designed
for safety-critical systems, where dynamic features are often
disallowed. Linux is recognized as not being suitable for
RTCA/DO-178C [14] design assurance level (DAL) C and
higher in safety-critical avionics systems, where the OS needs
to be certified to the same DAL as the most critical application
running in the system. The same type of requirement exist also
for other domains.

Simulators are often used to demonstrate the fault toler-
ance methods [30,44]–[46] because the existing commercial
platforms do not support the controllability or observability
required for the method to work. For some methods, where the
required hardware support does not exist, additional hardware
modifications are required for the method to become imple-
mentable. This makes it very difficult to deploy the methods
in a real-world system as it may be hard to get the chip
manufacturers to implement the needed features into their
processors unless there is a big demand for these features.
At least the avionics domain is quite small compared to
the consumer market with general-purpose computers, mobile
phones and tablets. The methods using additional hardware
outside of the system-on-chip (SoC) have bigger potential of

10



Table III
CLASSIFICATION OF SURVEYED PAPERS

Application Domain Fault Hardware Faults Software Faults Addresses Timing
Paper Safety Critical Generic Tolerance Injection Transient Permanent Analysis (WCET)

Shye [23] X X X
Mushtaq [26] X X X
Mushtaq [27] X X X
Meisner [28] X X X X
Peshave [29] X X X X
Hari [30] X X X X X
Kang [41] X X X X
Al-bayati [42] X X X X
Slijepcevic [45] X X X X X
Pathan [43] X X X X X X
Missimer [25] X X X X X
Marshall [24] X X X
Kim [21] X X X X X
Bhat [22] X X X X X
Mushtaq [9]1 X X X X X
Cinque [50] X X X
Wulf [51] X X X
Vargas [52] X X X
Carlisle [53] X X X
Petersén [57] X X X X
Miele [55] X X X

M
ul

ti-
C

or
e

Rosa [54] X X X

Manoochehri [34] X X X
Pathan [39] X X X X X
Huang [40] X X X X
Höfig [49] X X X X X
Slijepcevic [44] X X X X
Chen [46] X X X X
Hardy [47] X X X X
Hardy [48] X X X X
Yuce [38] X X X
Hoffmann [31] X X X
Song [32] X X X X
Song [33] X X X X
Natella [6] X X X

Si
ng

le
-C

or
e

Natella [10]1 X X X

1 Survey

actually making it to the industry. Implementations on field-
programmable gate arrays (FPGAs) together with currently
available components may be a way forward.

2) Inter-core interference: The most common surveyed meth-
ods for detecting and recovering from faults are process
redundancy and re-execution [9,21]–[28,41]. Redundancy is
particularly relevant when it comes to multi-core platforms,
since plenty of resources exist for execution.

However, both redundancy and re-execution can be prob-
lematic on multi-cores due to inter-core interference when
accessing shared resources. The re-execution will result in
additional execution time and memory requests, which will
lead to a variability in the response time (for tasks on other
cores) as the cores contend for the shared resource. In a
distributed multi-processor system, where redundant tasks are
run on other nodes, we have no additional overhead and can
perform a schedulability analysis [21,22] on each node. If we
want to consolidate this system to a multi-core processor and
run the redundant tasks on different cores, this will also lead
to a variablility of the response time as the different processes

access the same shared resources.

Most of the works focus on functional fault tolerance with no
regard to the impact they have on the execution (or response)
time as a result of this consolidation or re-execution on multi-
core processors.

WCET estimation for a task in a multi-core system is increas-
ingly difficult due to the dependence of what is executing on
the other cores. There are proposed methods (e.g., [58,59]) that
will allow WCET to be estimated for each task in isolation
and then determining the maximum interference the task can
be subjected to. In the integration phase where all tasks on
all cores are brought together the final WCET (WCRT) can
be determined and schedulability analysis can be performed.
The works considering schedulability [39]–[42] on multi-core
all assume that WCET estimates have been derived and are
ready to be used. The response times estimated in these works
have to be interference-aware as the fault tolerance method
used is re-execution of a task, which may introduce additional
memory requests that interfere with, or are interfered with,
by tasks on other cores resulting in a variability of the

11



WCRT.

Delays for memory requests are modeled with a constant
value in the works considering WCET estimates [44]–[49],
which is not accurate considering the inter-core interference
and the resulting timing variability for memory requests on a
shared-memory multi-core system. Löfwenmark and Nadjm-
Tehrani [58] present a methodology for estimating WCET in
multi-core systems that includes measurements using a real-
time operating system equipped for this purpose. To ensure an
upper bound on the interference processes may experience, the
memory requests issued from processes are monitored and the
process is suspended when (if) the per-process allotted number
of requests is exceeded. However, they also assume a fault free
execution.

Related to the inter-core interference is the recovery method
used for some caches, where the cache line in a write-through
cache is automatically invalidated when a fault is detected.
This also applies to instruction caches as no modified data
exist. This may result in additional memory requests and
thus increase the inter-core interference. This has not been
considered in any work. Chen et al. [46] identify that faults in
the instruction cache result in new memory requests to fetch
the instructions again, but as the method is developed for a
single-core processor the application to multi-cores is not well-
understood.

3) WCET impacts: Triple Modular Redundancy using redun-
dant hardware has no effect on WCET as the three units are
executing independently and the voter logic has a well-defined
delay, but it is expensive in terms of hardware as complete
hardware components have to be tripled. For some systems this
may still be the only viable option. On the other hand, using
redundant processes on a multi-core does affect the WCET
since the processes will execute concurrently and will access
the same shared resources as mentioned above. Memory-
intensive applications suffer from a larger overhead than CPU-
intensive applications due to the higher cache miss rate and
the subsequent larger number of memory requests [23].

We have surveyed works ([21,22,32,33]) that do consider the
impact the fault tolerance method has on the schedulability and
do provide a schedulability analysis. However, they are not
targeting multi-core processors and are thus not considering
any inter-core interference. Therefore, they cannot be directly
applied to multi-core processors.

No fault tolerance method targets all features (e.g., register,
cache, interconnect) of a processor. When determining which
features to protect, the safety assessment process has to
estimate the probabilities of faults and compare them to the
probabilistic safety guarantees required by the criticality level
(DAL/ASIL/SIL) of the software. The interconnect that is
present in many multi-core platforms is often part of the
manufacturer’s intellectual property and details are seldom
disclosed, making it difficult to assess its fault tolerance
capabilities.

The use of probabilistic methods [44]–[49] does sound in-
teresting and is worth a more in-depth study in the domain
of safety-critical systems. However, Gil et al. [60] identify a
number of open challenges for deriving probabilistic WCET
(pWCET) using measurement-based probabilistic timing anal-
ysis (MBPTA) and the hardware requirement with random
caches and buses may also be an obstacle. The avionics
industry is currently focused on platforms with PowerPC
processors and as far as we know these platforms do not
support this. If the gain is big enough a change of processor
family may be possible, but the avionics industry is slow-
moving with long-lived projects.

Simulators can also be used for fault injection [53]–[57],
making it possible to inject faults in basically every component
of a processor. Simulations of complex processors can be very
slow, offering a best-case simulation performance of 2-3 MIPS
(33 injections per second) [54].

4) Validation by fault injection: Much of the research efforts
in the software fault injection area are looking at the problem
of producing representative software faults, that is, focusing on
what to inject, where to inject it, and how to inject it. Software-
based fault injection [50,52] affects the execution time and
thus it may be hard to verify WCET estimates in presence of
faults.

No software fault injection campaigns aiming at quantifying
impacts on multi-core systems were identified, which is a bit
surprising. Additional software faults when single-core-tested
software is migrated to multi-core can arise since new race
conditions or lack of locks can show up in interference sce-
narios. For instance, in a single core priority-based preemptive
system, the software developer can often assume that a high-
priority task and a low-priority task will not access the memory
simultaneously, since the high-priority task will preempt the
low-priority task or the low-priority task priority is temporarily
raised using ceiling mechanisms. This may lead to applications
failing to use a lock to properly synchronize access to the
memory. In a multi-core system both of these tasks can run in
parallel, resulting in simultaneous access to the memory with
unpredictable consequences. Other problems may exist due to
synchronization mechanisms that work well on a single core
system, but lead to problems that surface only in a multi-core
system.

Software faults that do not manifest themselves in every
execution (earlier referred to as mandelbugs), where the effect
is transient in nature, are not well represented by existing
software fault injection tools [6]. This type of bug is hard
to find during design time and pre-production testing. Thus,
most of the bugs found in an operational system are classified
as mandelbugs.

VI. CONCLUSION

Faults are becoming more and more common, not only in the
very harsh environments such as the cruising altitude of an air-

12



craft or in space, but also due to miniaturization and software-
intensive functionality. The shrinking sizes of transistors make
the processors more sensitive to cosmic radiation and voltage
variations, resulting in an increased number of transient faults.
We reviewed papers that indicate an increase in permanent
fault rates, indicating that fault-tolerant system development
will be more important than before in many domains. The
area should attract increasing attention.

In this survey we presented a representative analysis of the
state-of-the-art fault tolerance and fault injection methods
with the aim of addressing validated worst-case execution
time/response time (WCET/WCRT) estimation within multi-
core systems. We posed three questions that we set out
to answer, unfortunately none of them have been answered
in a satisfactory way. While many of these approaches are
promising, several challenges remain.

We identify a lack of research on WCET/WCRT estimations
under faulty conditions on safety-critical systems built with
commercial off-the-shelf (COTS) multi-core platforms requir-
ing temporal partitioning. This research is urgently required
to safely deploy multi-cores in the a safety critical domain,
and for certification authorities to accept and approve their
usage.

We also identify the lack of research on fault tolerance induced
memory requests and the effect on resource-monitoring multi-
core COTS systems with deterministic timing.

WCET estimates in presence of permanent faults can be found
and seem to be well-researched. Research on how to handle
transient faults so far focuses on re-execution to ensure func-
tionally correct tasks rather than investigating the impact that
the transient faults have on WCET and schedulability.

None of the fault injection methods consider verification of
timeliness, but a cycle-accurate simulator could perhaps be
used for WCET estimation in presence of hardware faults
provided the hardware model in the simulator is detailed
enough. Furthermore, combining outcomes of fault injection
experiments with models for analysis of WCET and WCRT
in a systematic way, e.g. using formal methods, is a future
direction in research.

To summarize, no work combining timing predictability and
hardware reliability in presence of inter-core interference on
multi-core systems are currently identified. This makes the
topic an interesting area for future research. There are more
or less isolated islands between work on fault tolerance and
timing assurance in the multi-core setting. Also, fault injection
platforms aiming at multi-core fault tolerance need more active
research.

ACKNOWLEDGEMENT

This work was supported by the Swedish Armed Forces, the
Swedish Defence Materiel Administration and the Swedish

Governmental Agency for Innovation Systems under grant
number NFFP6-2013-01203 and NFFP6-2014-00917.

REFERENCES

[1] A. Löfwenmark and S. Nadjm-Tehrani, “Challenges in Future Avionic
Systems on Multi-Core Platforms,” in Proc. of 25th IEEE International
Symposium on Software Reliability Engineering Workshops, Nov 2014,
pp. 115–119.

[2] G. Macher, A. Höller, E. Armengaud, and C. Kreiner, “Automotive
embedded software: Migration challenges to multi-core computing
platforms,” in 2015 IEEE 13th International Conference on Industrial
Informatics (INDIN), July 2015, pp. 1386–1393.

[3] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, Jan
2004.

[4] D. K. Pradhan, Ed., Fault-tolerant Computer System Design. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.

[5] Y. Huang, P. Jalote, and C. Kintala, “Two techniques for transient
software error recovery,” in Hardware and Software Architectures for
Fault Tolerance: Experiences and Perspectives, M. Banâtre and P. A.
Lee, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994, pp.
159–170. [Online]. Available: http://dx.doi.org/10.1007/BFb0020031

[6] R. Natella and D. Cotroneo, “Emulation of Transient Software Faults for
Dependability Assessment: A Case Study,” in Dependable Computing
Conference (EDCC), 2010 European, April 2010, pp. 23–32.

[7] J. Gray, “Why Do Computers Stop and What Can Be Done About It?”
Tandem Computers, Tech. Rep. 85.7, 1985.

[8] J. Hammarberg and S. Nadjm-Tehrani, “Formal verification of fault
tolerance in safety-critical reconfigurable modules,” International
Journal on Software Tools for Technology Transfer, vol. 7, no. 3,
pp. 268–279, Jun 2005. [Online]. Available: https://doi.org/10.1007/
s10009-004-0152-y

[9] H. Mushtaq, Z. Al-Ars, and K. Bertels, “Survey of fault tolerance
techniques for shared memory multicore/multiprocessor systems,” in
Design and Test Workshop (IDT), 2011 IEEE 6th International, Dec
2011, pp. 12–17.

[10] R. Natella, D. Cotroneo, and H. S. Madeira, “Assessing Dependability
with Software Fault Injection: A Survey,” ACM Comput. Surv.,
vol. 48, no. 3, pp. 44:1–44:55, Feb. 2016. [Online]. Available:
http://doi.acm.org.e.bibl.liu.se/10.1145/2841425

[11] Y. Cheng, W. Chen, Z. Wang, and Y. Xiang, “Precise contention-aware
performance prediction on virtualized multicore system,” Journal of
Systems Architecture - Embedded Systems Design, vol. 72, pp. 42–50,
2017. [Online]. Available: https://doi.org/10.1016/j.sysarc.2016.06.006

[12] M. Garcı́a-Valls, A. Casimiro, and H. P. Reiser, “A few open
problems and solutions for software technologies for dependable
distributed systems,” Journal of Systems Architecture - Embedded
Systems Design, vol. 73, pp. 1–5, 2017. [Online]. Available:
https://doi.org/10.1016/j.sysarc.2017.01.007

[13] Wikipedia Foundation, “Automotive Safety Integrity Level,” https://en.
wikipedia.org/wiki/Automotive Safety Integrity Level, Last accessed
16 March 2018.

[14] RTCA, Inc, “RTCA/DO-178C, Software Considerations in Airborne
Systems and Equipment Certification,” 2012.

[15] Certification Authorities Software Team, “CAST 32A Multi-core
Processors,” https://www.faa.gov/aircraft/air cert/design approvals/air
software/cast/cast papers/media/cast-32A.pdf, 2016.

[16] RTCA, Inc, “RTCA/DO-297, Integrated Modular Avionics (IMA) De-
velopment, Guidance and Certification Considerations,” 2005.

[17] AUTOSAR. [Online]. Available: http://www.autosar.org

13



[18] S. Vestal, “Preemptive Scheduling of Multi-criticality Systems with
Varying Degrees of Execution Time Assurance,” in Real-Time Systems
Symposium, 2007. RTSS 2007. 28th IEEE International, Dec 2007, pp.
239–243.

[19] F. J. Cazorla, E. Quiñones, T. Vardanega, L. Cucu, B. Triquet,
G. Bernat, E. Berger, J. Abella, F. Wartel, M. Houston, L. Santinelli,
L. Kosmidis, C. Lo, and D. Maxim, “PROARTIS: Probabilistically
Analyzable Real-Time Systems,” ACM Trans. Embed. Comput. Syst.,
vol. 12, no. 2s, pp. 94:1–94:26, May 2013. [Online]. Available:
http://doi.acm.org.e.bibl.liu.se/10.1145/2465787.2465796

[20] L. Cucu-Grosjean, L. Santinelli, M. Houston, C. Lo, T. Vardanega,
L. Kosmidis, J. Abella, E. Mezzetti, E. Quiñones, and F. J. Cazorla,
“Measurement-Based Probabilistic Timing Analysis for Multi-path Pro-
grams,” in 2012 24th Euromicro Conference on Real-Time Systems, July
2012, pp. 91–101.

[21] J. Kim, G. Bhatia, R. Rajkumar, and M. Jochim, “Safer: System-level
architecture for failure evasion in real-time applications,” in 2012 IEEE
33rd Real-Time Systems Symposium, Dec 2012, pp. 227–236.

[22] A. Bhat, S. Samii, and R. Rajkumar, “Practical task allocation for
software fault-tolerance and its implementation in embedded automotive
systems,” in 2017 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), April 2017, pp. 87–98.

[23] A. Shye, J. Blomstedt, T. Moseley, V. J. Reddi, and D. A. Connors,
“PLR: A Software Approach to Transient Fault Tolerance for Multicore
Architectures,” IEEE Transactions on Dependable and Secure Comput-
ing, vol. 6, no. 2, pp. 135–148, April 2009.

[24] J. Marshall, G. Bloom, G. Parmer, and R. Simha, “n-modular
redundant real-time middleware: Design and implementation,” in
Proceedings of the Embedded Operating Systems Workshop co-located
with the Embedded Systems Week (ESWEEK 2016), Pittsburgh
PA, USA, October 6, 2016., 2016. [Online]. Available: http:
//ceur-ws.org/Vol-1697/EWiLi16 15.pdf

[25] E. Messier, R. West, and Y. Li, “Distributed real-time fault tolerance
on a virtualized multi-core system,” in Proc. of 10th Annual Workshop
on Operating Systems Platforms for Embedded Real-Time Applications
(OSPERT), July 2014, pp. 17–22.

[26] H. Mushtaq, Z. Al-Ars, and K. Bertels, “A user-level library for
fault tolerance on shared memory multicore systems,” in Design and
Diagnostics of Electronic Circuits Systems (DDECS), 2012 IEEE 15th
International Symposium on, April 2012, pp. 266–269.

[27] ——, “Fault tolerance on multicore processors using deterministic
multithreading,” in 2013 8th IEEE Design and Test Symposium, Dec
2013, pp. 1–6.

[28] S. Meisner and M. Platzner, “Thread Shadowing: Using Dynamic
Redundancy on Hybrid Multi-cores for Error Detection,” in
Reconfigurable Computing: Architectures, Tools, and Applications:
10th International Symposium, ARC 2014, Vilamoura, Portugal, April
14-16, 2014. Proceedings, D. Goehringer, M. D. Santambrogio,
J. M. P. Cardoso, and K. Bertels, Eds. Cham: Springer
International Publishing, 2014, pp. 283–290. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-05960-0 30

[29] M. Peshave, F. B. Bastani, and I. L. Yen, “High-Assurance Reconfig-
urable Multicore Processor Based Systems,” in High-Assurance Systems
Engineering (HASE), 2011 IEEE 13th International Symposium on, Nov
2011, pp. 220–226.

[30] S. K. S. Hari, M. L. Li, P. Ramachandran, B. Choi, and S. V. Adve,
“mSWAT: Low-cost hardware fault detection and diagnosis for multicore
systems,” in 2009 42nd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), Dec 2009, pp. 122–132.

[31] M. Hoffmann, F. Lukas, C. Dietrich, and D. Lohmann, “dosek: the
design and implementation of a dependability-oriented static embed-
ded kernel,” in 21st IEEE Real-Time and Embedded Technology and
Applications Symposium, April 2015, pp. 259–270.

[32] J. Song, J. Wittrock, and G. Parmer, “Predictable, efficient system-level
fault tolerance in c3,” in 2013 IEEE 34th Real-Time Systems Symposium,
Dec 2013, pp. 21–32.

[33] J. Song and G. Parmer, “C’mon: a predictable monitoring infrastructure
for system-level latent fault detection and recovery,” in 21st IEEE Real-
Time and Embedded Technology and Applications Symposium, April
2015, pp. 247–258.

[34] M. Manoochehri and M. Dubois, “Accurate Model for Application
Failure Due to Transient Faults in Caches,” IEEE Transactions on
Computers, vol. 65, no. 8, pp. 2397–2410, Aug 2016.

[35] Z. Peng, Y. Lu, A. Miller, C. Johnson, and T. Zhao, “Risk assessment
of railway transportation systems using timed fault trees,” Quality and
Reliability Engineering International, vol. 32, no. 1, pp. 181–194,
2016. [Online]. Available: http://dx.doi.org/10.1002/qre.1738

[36] X. Chen and S. Sankaranarayanan, “Model predictive real-time
monitoring of linear systems,” in 2017 IEEE Real-Time Systems
Symposium (RTSS), vol. 00, Dec 2017, pp. 297–306. [Online].
Available: doi.ieeecomputersociety.org/10.1109/RTSS.2017.00035

[37] B. Sangchoolie, K. Pattabiraman, and J. Karlsson, “One bit is (not)
enough: An empirical study of the impact of single and multiple bit-flip
errors,” in 2017 47th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), June 2017, pp. 97–108.

[38] B. Yuce, N. F. Ghalaty, C. Deshpande, C. Patrick, L. Nazhandali, and
P. Schaumont, “FAME: Fault-attack Aware Microprocessor Extensions
for Hardware Fault Detection and Software Fault Response,” in
Proceedings of the Hardware and Architectural Support for Security
and Privacy 2016, ser. HASP 2016. New York, NY, USA: ACM,
2016, pp. 8:1–8:8. [Online]. Available: http://doi.acm.org.e.bibl.liu.se/
10.1145/2948618.2948626

[39] R. M. Pathan, “Fault-tolerant and real-time scheduling for mixed-
criticality systems,” Real-Time Systems, vol. 50, no. 4, pp. 509–547,
2014. [Online]. Available: http://dx.doi.org/10.1007/s11241-014-9202-z

[40] P. Huang, H. Yang, and L. Thiele, “On the Scheduling of
Fault-Tolerant Mixed-Criticality Systems,” in Proceedings of the
51st Annual Design Automation Conference, ser. DAC ’14. New
York, NY, USA: ACM, 2014, pp. 131:1–131:6. [Online]. Available:
http://doi.acm.org/10.1145/2593069.2593169

[41] S.-h. Kang, H. Yang, S. Kim, I. Bacivarov, S. Ha, and L. Thiele, “Static
Mapping of Mixed-Critical Applications for Fault-Tolerant MPSoCs,”
in Proceedings of the 51st Annual Design Automation Conference, ser.
DAC ’14. New York, NY, USA: ACM, 2014, pp. 31:1–31:6. [Online].
Available: http://doi.acm.org/10.1145/2593069.2593221

[42] Z. Al-bayati, J. Caplan, B. H. Meyer, and H. Zeng, “A four-mode model
for efficient fault-tolerant mixed-criticality systems,” in 2016 Design,
Automation Test in Europe Conference Exhibition (DATE), March 2016,
pp. 97–102.

[43] R. M. Pathan, “Real-time scheduling algorithm for safety-critical
systems on faulty multicore environments,” Real-Time Systems, vol. 53,
no. 1, pp. 45–81, 2017. [Online]. Available: http://dx.doi.org/10.1007/
s11241-016-9258-z

[44] M. Slijepcevic, L. Kosmidis, J. Abella, E. Quiñones, and F. J. Cazorla,
“DTM: Degraded Test Mode for Fault-Aware Probabilistic Timing
Analysis,” in 2013 25th Euromicro Conference on Real-Time Systems,
July 2013, pp. 237–248.

[45] ——, “Timing Verification of Fault-Tolerant Chips for Safety-Critical
Applications in Harsh Environments,” IEEE Micro, vol. 34, no. 6, pp.
8–19, Nov 2014.

[46] C. Chen, L. Santinelli, J. Hugues, and G. Beltrame, “Static probabilistic
timing analysis in presence of faults,” in 2016 11th IEEE Symposium
on Industrial Embedded Systems (SIES), May 2016, pp. 1–10.

[47] D. Hardy and I. Puaut, “Static probabilistic worst case execution time
estimation for architectures with faulty instruction caches,” Real-Time
Systems, vol. 51, no. 2, pp. 128–152, 2015. [Online]. Available:
http://dx.doi.org/10.1007/s11241-014-9212-x

14



[48] D. Hardy, I. Puaut, and Y. Sazeides, “Probabilistic WCET estimation in
presence of hardware for mitigating the impact of permanent faults,” in
2016 Design, Automation Test in Europe Conference Exhibition (DATE),
March 2016, pp. 91–96.

[49] K. Höfig, “Failure-Dependent Timing Analysis - A New Methodology
for Probabilistic Worst-Case Execution Time Analysis,” in Measurement,
Modelling, and Evaluation of Computing Systems and Dependability
and Fault Tolerance: 16th International GI/ITG Conference,
MMB & DFT 2012, Kaiserslautern, Germany, March 19-21,
2012. Proceedings, J. B. Schmitt, Ed. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, pp. 61–75. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-28540-0 5

[50] M. Cinque and A. Pecchia, “On the injection of hardware faults in
virtualized multicore systems,” Journal of Parallel and Distributed
Computing, vol. 106, pp. 50 – 61, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731517300849

[51] N. Wulf, G. Cieslewski, A. Gordon-Ross, and A. D. George, “SCIPS:
An emulation methodology for fault injection in processor caches,” in
Aerospace Conference, 2011 IEEE, March 2011, pp. 1–9.

[52] V. Vargas, P. Ramos, R. Velazco, J. F. Mehaut, and N. E. Zergainoh,
“Evaluating SEU fault-injection on parallel applications implemented
on multicore processors,” in Circuits Systems (LASCAS), 2015 IEEE
6th Latin American Symposium on, Feb 2015, pp. 1–4.

[53] E. Carlisle, N. Wulf, J. MacKinnon, and A. George, “DrSEUs: A
dynamic robust single-event upset simulator,” in 2016 IEEE Aerospace
Conference, March 2016, pp. 1–11.

[54] F. Rosa, F. Kastensmidt, R. Reis, and L. Ost, “A fast and scalable fault
injection framework to evaluate multi/many-core soft error reliability,”
in 2015 IEEE International Symposium on Defect and Fault Tolerance
in VLSI and Nanotechnology Systems (DFTS), Oct 2015, pp. 211–214.

[55] A. Miele, “A fault-injection methodology for the system-
level dependability analysis of multiprocessor embedded systems,”
Microprocess. Microsyst., vol. 38, no. 6, pp. 567–580, Aug. 2014.
[Online]. Available: http://dx.doi.org/10.1016/j.micpro.2014.05.008

[56] A. Höller, A. Krieg, T. Rauter, J. Iber, and C. Kreiner, “Qemu-based
fault injection for a system-level analysis of software countermeasures
against fault attacks,” in 2015 Euromicro Conference on Digital System
Design, Aug 2015, pp. 530–533.

[57] K. Petersén, D. Nikolov, U. Ingelsson, G. Carlsson, F. G. Zadegan, and
E. Larsson, “Fault injection and fault handling: An mpsoc demonstrator
using ieee p1687,” in 2014 IEEE 20th International On-Line Testing
Symposium (IOLTS), July 2014, pp. 170–175.

[58] A. Löfwenmark and S. Nadjm-Tehrani, “Understanding Shared Memory
Bank Access Interference in Multi-Core Avionics,” in 16th International
Workshop on Worst-Case Execution Time Analysis (WCET 2016), ser.
OpenAccess Series in Informatics (OASIcs), M. Schoeberl, Ed., vol. 55.
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
2016, pp. 1–11.

[59] R. Mancuso, R. Pellizzoni, M. Caccamo, L. Sha, and H. Yun,
“WCET(m) Estimation in Multi-core Systems Using Single Core Equiv-
alence,” in Proc. of 27th Euromicro Conference on Real-Time Systems,
July 2015, pp. 174–183.

[60] S. J. Gil, I. Bate, G. Lima, L. Santinelli, A. Gogonel, and L. Cucu-
Grosjean, “Open challenges for probabilistic measurement-based worst-
case execution time,” IEEE Embedded Systems Letters, vol. 9, no. 3, pp.
69–72, Sept 2017.

15


