
Timing-based Anomaly Detection in
SCADA Networks

Chih-Yuan Lin, Simin Nadjm-Tehrani, and Mikael Asplund

Department of Computer and Information Science, Linköping University, Sweden
{chih-yuan.lin, simin.nadjm-tehrani, mikael.asplund}@liu.se

Abstract. Supervisory Control and Data Acquisition (SCADA) sys-
tems that operate our critical infrastructures are subject to increased
cyber attacks. Due to the use of request-response communication in
polling, SCADA traffic exhibits stable and predictable communication
patterns. This paper provides a timing-based anomaly detection system
that uses the statistical attributes of the communication patterns. This
system is validated with three datasets, one generated from real devices
and two from emulated networks, and is shown to have a False Positive
Rate (FPR) under 1.4%. The tests are performed in the context of three
different attack scenarios, which involve valid messages so they cannot be
detected by whitelisting mechanisms. The detection accuracy and timing
performance are adequate for all the attack scenarios in request-response
communications. With other interaction patterns (i.e. spontaneous com-
munications), we found instead that 2 out of 3 attacks are detected.

Keywords: SCADA, Industrial Control System (ICS), Anomaly Detec-
tion, Traffic Periodicity

1 Introduction

A SCADA system is an Industrial Control System (ICS) that operates public and
private industrial processes including critical infrastructures. Such systems are
becoming increasingly dependent on information and communication technolo-
gies and being connected to the Internet. This poses new challenges related to
cyber security while allowing improved flexibility and ease of use of the systems.

Being less protected and more sensitive to software updates (or malware
protection updates) than a typical office environment makes additional security
measures in ICS necessary. Also, ease of exposure to cyber attacks once the
physical levels of security is breached (e.g. insider attacks) requires a new look
at how to protect these critical environments.

Compared with standard information and communication systems, SCADA
systems exhibit more stable and persistent communication patterns since the
communications are triggered by polling mechanisms. Typically, a master device
requests data from field devices such as Programmable Logical Controller (PLC)
or Remote Terminal Unit (RTU) periodically in order to provide a real-time
view of the industrial processes. This makes anomaly detection based on timing



a potentially viable approach to detect unknown adverse events such as those
potentially caused by insider threats.

The published litarature regarding timing variation detection in SCADA sys-
tems mostly aims at flooding-based attacks, recognizable as dramatic changes
of the network throughput [1–3]. Some works also focus on directly modeling
the inter-arrival times of periodic messages. These Intrusion Detection Systems
(IDS) usually deploy relaxed detection thresholds to avoid high false positive
rates. However, there are many attacks that only cause subtle changes on ev-
ery single inter-arrival period in between communication messages. For example,
TCP sequence prediction attacks can be difficult to recognize with existing tech-
niques. To our knowledge, there is no SCADA-specific IDS that has successfully
detected this kind of attacks.

In this paper, we propose a solution for timing-based anomaly detection
in SCADA networks by monitoring statistical attributes of traffic periodicity.
Our approach uses sampling distribution of the mean and the range to model
the inter-arrival times of repeated messages in the same master-PLC/RTU flow.
This approach has been widely used in statistical process control area to monitor
the stability of processes. The contributions of this paper are:

– Analyzing the periodicity of SCADA traffic collected from real and emulated
systems and showing that the traffic periodicity exists in both the request
and response direction including some asynchronous events.

– Presenting three attack scenarios being formed of only valid requests/responses
but breaking the traffic periodicity.

– Exploring the sampling distribution approaches for timing-based anomaly
detection and showing that the proposed IDS can detect the timing-based
attacks through changes of mean and dispersion in request/response inter-
arrival times event though the change is small in every single inter-arrival
time.

The rest of the paper is organized as follows. Section 2 provides the back-
ground. Section 3 presents the related work. Section 4 describes the threat model.
Section 5 elaborates the proposed IDS. Section 6 describes how the attacks are
generated for testing and evaluates the detection results. We conclude this paper
in section 7.

2 Background

This section provides an overview of SCADA protocols and their communication
modes. It also presents a brief introduction of sampling distribution of sample
mean and sample range.

2.1 SCADA Protocols

The communication between the master device and field devices relies on SCADA-
specific protocols built upon different communication technologies like serial



communication and TCP/IP. In this work, we analyze three different protocols:
Modbus, Siemens S7 and IEC 60870-5-104. These protocols are widely used in
SCADA systems but allow different communication modes.

– Modbus: There are several Modbus protocols: Modbus RTU and Modbus
ASCII are used in serial communication, often RS232. Modbus TCP is used
for TCP communication. In this paper, we use a dataset based on Modbus
RTU for testing and refer to it as simply Modbus. The Modbus protocol uses
a synchronous request-response communication mode. The SCADA master
initiates requests/commands stating the request type and starting address.
The field device then responds by sending the requested data.

– Siemens S7: We use the S7-0x32 proprietory protocol on top of TCP/IP stack
and refer to it as S7 in the rest of the paper. In addition to the synchronous
communications, S7-0x32 PLCs may asynchronously send messages from
predefined memory areas, called Parameter Items, under certain conditions.
Moreover, S7 protocol allows requesting multiple Parameter Items in one
message.

– IEC 60870-5-104: This is a standardized application layer protocol built upon
TCP/IP stack. The protocol allows balanced/unbalanced communications.
In the unbalanced mode, only the master can initiate communications to field
devices. On the contrary, both the master and field devices can initiate com-
munications in the balanced mode. This protocol allows both synchronous
and asynchronous messages. The field devices can send Spontaneous and
Periodic messages from predefined addresses, called Information Object Ad-
dress (IOA). We will refer to the IEC 60870-5-104 protocol as IEC104 in this
paper.

2.2 Sampling Distribution of Sample Mean and Sample Range

Sampling distribution of sample mean and sample range are two metrics widely
used in statistical process control to monitor the stability of a production process.
In these cases, quality assurance staff take a few sample sets of a certain attribute
from produced products (e.g., weight of bottles) and calculate the sample mean
and sample range for each sample set X = {x1, . . . , xW }.

The sample mean is defined as X̄ =
∑
xi/W . It can provide a measure of

central tendency. The distribution of X̄ is called sampling distribution of the
sample mean. For a finite number of sample means X̄j , j = 1, . . . , k, one can

compute their center of distribution as ¯̄X =
∑
X̄j/k and standard deviation σX̄

by the Central Limit Theorem (CLT). Based on CLT, for any population with
mean µ and standard deviation σ, X̄ tends toward being normally distributed
with

µX̄ = µ (1)

σX̄ =
σ√
W

(2)

when the sample size increases.



The sample range Rj = max(Xj)−min(Xj) can state the natural variation
in a process. The distribution of Rj for finite sets of Xj is called sampling dis-
tribution of the sample range. The center of this distribution is R̄ =

∑
Rj/k.

People in this area usually assume the population they take samples from follows
a normal distribution. Under this assumption, one can estimate the σR with R̄
and sample size. However, we do not make any specific assumption on the dis-
tribution of the population. Instead we use quation (4) in section 5.2 to estimate
it.

Sample mean and sample range display variations from their historical distri-
bution when the process is stable. If the variations exceed predefined thresholds,
Upper Limitation (UL) and Lower Limitation (LL), it means the system con-
ditions changed. In this paper, we use mean and range to model the message
inter-arrival times. For the sake of simplicity, we refer to the sampling distribu-
tion of the sample mean and the sample range as the mean model and the range
model in the rest of the paper.

3 Related Work

IDSs that exploit the overall timing attributes such as average packet inter-
arrival time and bytes sent in a certain time interval are an active research area.
Barbosa et al. [4, 5] investigated the use of spectral analysis methods to uncover
traffic periodicity. Udd et al. [6] propose and implement the TCP sequence pre-
diction attack for the IEC104 protocol but this attack is not detected by their
IDS, which uses average inter-arrival times of packets grouped by their header
type. Other works presented so far are mostly validated with flooding/DDoS
attacks [1, 2]. The main limitation of these approaches is the “semantic gap”.
These approaches demonstrate that traffic patterns can be used for anomaly
detection but provide little insights about which packets caused the anomalies.

To enhance the detection ability for more attack types, IDSs exploiting deep
packet inspection technologies and timing models have been proposed. Sayegh
et al. [3] model the inter-arrival times between signatures (i.e., a sequence of
packets) and validate their approach with large amount of injected signatures.
Barbosa et al. [7] propose an approach to model the period of repeated requests
in an orderless group. The authors evaluate this approach with Modbus and
MMS 1 datasets without attacks and set relaxed thresholds to avoid high false
positive rates. This makes it difficult to detect subtle changes within a single
period.

More recently, sequence-aware intrusion detection systems are subject of in-
terest. Yang et al. [8], Goldenberg and Wool [9], and Kleinmann and Wool [10–
12] use deterministic finite automata to model the message sequences of IEC104,
Modbus TCP and S7 respectively. Casselli et al. [13] model the sequence of mes-
sages in discrete-time Markov chains in order to detect sequence attacks. These
approaches model the order of messages. As a result, they cannot detect timing
changes if the order of messages are not changed in the attack.

1 https://www.iso.org/standard/28059.html



4 Threat Model

Our work focuses on attacks composed of valid messages, which cannot be de-
tected by simple whitelisting. This section introduces three attack scenarios and
the expected violation of the mean and range models. This is to provide an
intuition for our approach to anomaly detection.

4.1 Flooding-based Attacks

Bhatia et al. [1] propose and implement a Modbus flooding attack. It disrupts
the operation of normal commands by sending a huge amount of same commands
with different instruction values to the same address on the targeted PLC. In
Report to the President's Commission on Critical Infrastructure Protection2, a
similar attack scenario is described. An attacker can cause water hammer effect
and damage the system by rapidly opening and closing the major control valves
on the water pipeline. These attacks rely on many repetitions of specific messages
in a short time, and thus cause decreased average message inter-arrival time and
violate the mean model as illustrated in Fig. 1. Blue points represent the sample
mean in a sliding window containing four inter-arrival times (i.e., sample size =
4).

Fig. 1. Illustration of how a flooding attack violates the mean model

4.2 Injection Attacks

Due to lack of authentication mechanisms in many SCADA networks, an attacker
can easily capture, modify, and inject a message into the network. Morris et
al. [14] provide an overview of different injection attacks in their work. Fig. 2
illustrates the timing changes on the mean and range attributes caused by a
single message injection.

4.3 TCP sequence prediction

TCP sequence prediction is an attempt to spoof a trusted host and inject a
series of packets in a TCP session. Udd et al. [6] present a SCADA-specific TCP
sequence prediction attack. In this work, the attacker can be someone who knows

2 http://www.sei.cmu.edu/reports/97sr003.pdf



Fig. 2. Illustration of how a single injection attack violates the mean and range model

the traffic periodicity (e.g., an insider). Since the connection in SCADA networks
can last for a long time, the attacker can insert a series of packets with predicted
sequence numbers just before the real packets come. As a result, the network
equipment considers the real packets as TCP retransmission packets and drops
them. However, an attack packet may also be dropped if it comes later than the
real packet. Fig. 3 presents the changes on range attributes.

Fig. 3. Illustration of how the TCP prediction violates the range model

5 Proposed Intrusion Detection System

The proposed system contains three main modules: first, the extractor module
extracts timestamps of events (i.e., messages having same features) in the same
master-PLC/RTU flow. Second, the learner module builds the mean and range
models and defines their thresholds. Finally, the detector module runs the testing
data and raises alarms when the event inter-arrival times depart from learned
models. Fig. 4 illustrates the workflow of the experiments. The solid rectangles
are IDS modules. The extractor is written is Python and the others are in R
language.

Fig. 4. System components used in our experiment workflow



5.1 Extractor Module

Based on the assumption that the master device periodically reads/writes data
from certain memory addresses in a PLC/RTU, the extractor module identifies
unique sets of request-response events from two attributes: request type and
requested addresses. For the asynchronous events, the extractor only uses their
addresses. Each of the attributes can contain a number of features. For example,
the requested addresses of S7 comprise the Item Count (number of Parameter
Items) and the locations of Parameter Items. The Extractor then outputs the
event sets, together with their timestamps, in a protocol-independent text file.

5.2 Learner Module

The learner module is responsible for constructing the mean and range models
of event inter-arrival times and setting detection thresholds.

Mean Model. For every event set E = {e1, . . . , em+1}, there exists a cor-
responding set of inter-arrival times T = {t1, . . . , tm} in the learning dataset.

Instead of computing ¯̄X as described in section 2, we use CLT to construct the
mean model based on equations (1) and (2). Since the µ and σ are unknown, we
estimate them with the mean and standard deviation of the subpopulation T .

µ ≈ T̄ =
1

m

m∑
i=1

ti (3)

σ ≈ ST =

√√√√ 1

m− 1

m∑
i=1

(ti − T̄ )2 (4)

We set detection thresholds, UL and LL, as µX̄±NσX̄ , where N is a performance
parameter called threshold level. Note that the LL needs to be positive to provide
detection ability since all the inter-arrival times are positive.

µX̄ −NσX̄ > 0 (5)

Equations (1), (2), and (5) imply that the LL is positive when the sample set
size W > (Nσµ )2.

Range Model. We continue with the selected sample size W and event set E.
For every W+1 events, there exists a set of inter-arrival times T j = {tj1, . . . , t

j
W },

j = 1 . . . ,
⌊
m+1
W+1

⌋
. We calculate the sample range Rj and R̄ as described in

section 2 and use equation (4) to estimate σR. The UL is defined as R̄ + NσR
but we set LL as the smallest event inter-arrival time in the learning period since
the range model can be asymmetric.



5.3 Detector Module

During the detection phase, the module uses a sliding window which has the same
window size as the sample size W . The module calculates the sample mean and
sample range in each window and raises an alarm if the mean or range is outside
the UL-LL interval. We consider an alarm as a true positive if there is at least
one attack event in the window. Otherwise, the alarm would be considered a
false positive.

6 Evaluation

To evaluate the effectiveness of proposed IDS, we implement and test the attacks
stated in section 4. This section contains the description of datasets and the re-
sults regarding the detection accuracy and timing performance of our approach.

6.1 Datasets

The experiments use three datasets: (1) An emulated S7 traffic from 4SICS3

ICS Lab with real Siemens devices, (2) A Modbus system log from real control
networks for building ventilation systems provided by the company Modio, and
(3) An IEC104 traffic from the virtual SCADA network RICS-EL that is de-
veloped in our project, emulating an electricity utility network extending FOI
Cyber Range And Training Environment (CRATE)4, as shown in Table 1.

We use the first 1/10 of data for learning and the remaining for testing.
We find that the request-response events (X-req/X-res) come in pairs and have
identical T̄ and ST rounded up to first decimal place. In addition, these events
have lower Variance to Mean Ratio (VMR) compared with spontaneous events.

Table 1. Overview of datasets and event sets used for experiments

Duration # of Events Event set # of Events T̄ [s] ST [s]

S7 14 hrs 106378
S-req
S-res

53189
53189

1.0
1.0

0.014
0.014

Modbus 5 days 161062

M-req1
M-res1
M-req2
M-res2

5984
5984
1197
1197

59.9
59.9
297.9
297.9

2.8
2.8
25.1
25.1

IEC104 24 hrs 61714 I-Spont 16831 4.9 2.9

Fig. 5 illustrates the extracted events from the learning period for the three
datasets. The Y axes indicate the sequence number of events in each event set

3 https://download.netresec.com/pcap/4sics-2015/4SCICS-GeekLounge-151022.pcap
4 Swedish Defense Research Agency (https://www.foi.se)



and X axes present the arrival times of these events. In S7 traffic, there exists
only one pair of request-response event sets, S-req and S-res, which are pre-
sented as blue and red circles. In Modbus traffic, the extractor identifies 97 pairs
of event sets in a master-PLC flow. These 97 pairs of event sets are further
grouped by their sizes. The group 1 and 2 event sets present a persistent com-
munication pattern, in which we select one event set in each group and refer to
them as listed in Table 1. Though group 3 event sets contain too few events for
learning, by manual examination, their events actually arrive around every 12
hours. By contrast, IEC104 traffic lacks persistent request-response periodicities.
The request-response events only exists in a short period of time (from 4300-
4800 seconds) and there is a rate change between 4400-4500 seconds. Most of the
communications are spontaneous events and only event sets from IOA 10091 and
10092 show persistent and stable communication patterns. We select the 10091
event set for testing and refer to it as I-spont. Other spontaneous events are
either not persistent (IOA 10001, IOA 5005) or not stable (IOA 10010-10017).

Fig. 5. Event arrival times of identified event sets for S7, Modbus and IEC104 data

6.2 Attack Generation

We implement an attack generator in Python to insert synthetic events for at-
tacks presented in section 4. The generator divides testing data into many seg-
ments (see below) and inserts an attack in each segment. This section presents
how to insert an attack for each attack type.

– Flooding-based Attack: We identify that the shortest event period in all
our datasets is about 1 second. We generate synthetic flooding attack events
every 100ms with some random variations. The variations are produced from
Gaussian distribution with standard deviation of 10ms. An attack lasts for
1 minute. A segment is 20 minutes long for S7 dataset and 100 minutes long
for the others.

– Injection Attack: The generator inserts one event in the beginning of ev-
ery segment with the random variations sampled from the same Gaussian
distribution as above. It also adopts the same setting of segments as above.

– Prediction Attack: The generator uses the learned T̄ and ST of inter-arrival
times. It attempts to insert one malicious event in the time that is one ST
ahead of T̄ . An attack repeats the insertion 100 times in series. A malicious



event will be accepted only when it arrives earlier than the original event.
Otherwise, it will be discarded silently. A segment is 1000 events long.

6.3 Detection Accuracy

We present the detection accuracy using True Positive Rate (TPR), False Posi-
tive Rate (FPR) and Overall Detection Rate (ODR). TPR is defined as number
of true alarms divided by number of windows with attacks, FPR is defined as
number of false alarms divided by number of windows without attacks, and ODR
is number of detected attacks divided by number of attacks.

There are two tunable parameters in the proposed IDS, sample/window size
(W ) and threshold level (N). We do the following experiments with W = 5 and
N = 4 for the S7 and Modbus datasets; W = 5 and N = 3 for IEC104 dataset.
Fig. 6 shows the FPRs of range detector under different settings when we run
the S7 test data without any inserted attacks. The FPRs in other datasets are
similar. This shows stable FPRs over different sample sizes.

Fig. 6. False positive rates observed when tunning the W parameter (S7 data)

Table 2 is a summary of the detection performance in percentage (%). The
results average the measures over segments. For the flooding attack, the mean
model performs well (i.e., has high TPR) for all the datasets as we expected. To
our surprise, the range model also has over 99% TPRs on flooding attack in the
Modbus and IEC104 datasets. This is because the event inter-arrival times and
ranges in Modbus and IEC104 datasets are in the order of seconds. However,
the event inter-arrival times of flooding attack are in the order of milliseconds.
Therefore, the revised range after the attack in milliseconds become lower than
LL. For the injection attack, both the mean and range model perform well on
request-response event sets. However, it is difficult to detect a single injected
event in IEC104-spont events due to the high VMR. For the prediction attack,
only the range model can be used to detect this kind of event as expected and
its TPR is a bit lower since the IDS spends more time to detect an attack (see
next section). However, it still shows a high ODR. All of the cases have FPR
under 1.4%.

6.4 Timing Performance

The Mean-Time-to-Detection (MTTD) measurement is based on Average Num-
ber of Events (ANE). More specifically, it records the time when the IDS raises



Table 2. Detection performance

Flooding Injection Prediction

Mean Range Mean Range Mean Range
TPR FPR TPR FPR ODR TPR FPR TPR FPR ODR TPR FPR TPR FPR ODR

S-req 99.9 0.01 59.1 0.8 100 96.2 0.01 100 0.8 100 0.1 0 90.6 0.8 99.8
S-res 99.9 0.2 56.4 1.1 100 96.6 0.2 99.5 1.1 100 0.2 0.2 91 1.1 99.5
M-req1 99.8 0 99.6 1.1 100 83.3 0 83.3 1.1 100 0 0 92.8 1.3 99.1
M-res1 99.8 0 99.6 1.1 100 83.3 0 83.3 1.2 100 0 0 91.9 1.4 99.1
M-req2 99.8 0 100 0 100 83.1 0 100 0 100 4.9 0 100 0 100
M-res2 99.8 0 100 0.3 100 83.1 0 100 0.3 100 4.9 0 100 0.3 100
I-spont 99.8 0.4 98.1 1.1 100 2.4 0.4 3.7 1.1 13.3 2.8 0.4 72.4 1.1 92.8

its first alarm for an attack and counts how many events have passed since the
beginning of the attack. ANE averages the measurements over segments. The
MTTD is therefore defined as ANE×Avg period. The Avg period is 100ms for
flooding attacks and learned T̄ of each dataset for the other attacks. Table 3
shows the ANE and MTTD for different attacks. Most of the time, the proposed
IDS can detect attacks immediately but prediction attacks take longer time to
detect on average.

Table 3. Average number of event and mean-time-to-detection for different attacks

Flooding Injection Prediction

ANE MTTD ANE MTTD ANE MTTD
S-req 0.05 5ms 0.025 25ms 5.72 5.7s
S-res 0.05 5ms 0.025 25ms 5.72 5.7s
M-req1 0.4 40ms 0.08 4.8s 5 299.5s
M-res1 0.08 8ms 0.08 4.8s 5 299.5s
M-req2 0.08 8ms 0.08 23.8s 4 1190.8s
M-res2 0.08 8ms 0.08 23.8s 4 1190.8s
I-spont 3.87 387ms 3 14.7s 5 24.5s

7 Conclusions

SCADA traffic exhibits persistent and stable communication patterns. This pa-
per studied three attack scenarios formed by valid requests only and then pro-
posed an anomaly detection system, which uses sampling distribution of sample
mean and sample range to model the timing of repeated events. We tested and
evaluated the proposed IDS with Modbus, S7, and IEC104 traffic. The proposed
IDS performs well in all the request-response events, resulting in over 99% for
overall detection rate and less than 1.4% for false positive rates. However, it is



difficult to detect a single injected message on spontaneous events due to the
high VMR of the inter-arrival times.

Acknowledgement

This work was completed within RICS: the research centre on Resilient Informa-
tion and Control Systems (www.rics.se) financed by Swedish Civil Contingencies
Agency (MSB). The authors would also like to thank the support by Modio.

References

1. Bhatia, S., Kush, N., Djamaludin, C., Akane, J., Foo, E.: Practical Modbus Flooding
Attack and Detection. Proceedings of the Twelfth Australasian Information Security
Conference (AISC) (2014).

2. Valdes, A. Cheung S.: Communication pattern anomaly detection in process control
systems. IEEE Conference on Technologies for Homeland Security (HST) (2009).

3. Sayegh, N., Elhajj, H.I., Kayssi, A., Chehab, A.: SCADA Intrusion Detection Sys-
tem Based on Temporal Behavior of Frequent Patterns. 17 th IEEE Mediterranean
Electrotechnical Conference (2014).

4. Barbosa, R.R.R., Sadre, R., Pras, A.: A First Look into SCADA Network Traffic.
IEEE Network Operations and Management Symposium (NOMS) (2012).

5. Barbosa, R.R.R., Sadre, R., Pras, A.: Towards Periodicity Based Anomaly Detec-
tion in SCADA Networks. IEEE Conference on Emerging Technologies & Factory
Automation (2012).

6. Udd, R., Asplund, M., Nadjm-Tehrani, S., Kazemtabrizi, M., Ekstedt, M.: Exploit-
ing Bro for Intrusion Detection in a SCADA System. Proceedings of the 2nd ACM
International Workshop on Cyber-Physical System Security (CPSS) (2016).

7. Barbosa, R.R.R., Sadre, R., Pras, A.: Exploiting traffic periodicity in industrial
control networks. International Journal of Critical Infrastructure Protection, vol. 13,
pp. 52-62, Elsevier Science Publishers B. V. (2016).

8. Yang, Y., McLaughlin, K., Sezer, S., Yuan, Y., Huang, W.: Stateful Intrusion De-
tection for IEC 60870-5-104 SCADA Security. IEEE PES General Meeting (2014).

9. Goldenberg, N., Wool, A.: Accurate modeling of Modbus/TCP for intrusion detec-
tion in SCADA systems. International Journal of Critical Infrastructure Protection,
vol. 6, no. 2, pp. 63-7, Elsevier Science Publishers B. V. (2013).

10. Kleinmann, A., Wool, A.: Accurate Modeling of the Siemens S7 SCADA Proto-
col for Intrusion Detection and Digital Forensic. The Journal of Digital Forensics,
Security and Law, vol. 9, no. 2, open access publisher (2014).

11. Kleinmann, A., Wool, A.: A Statechart-Based Anomaly Detection Model for Multi-
Threaded SCADA Systems. International Conference on Critical Information Infras-
tructures Security (CRITIS) (2016).

12. Kleinmann, A., Wool, A.: Automatic Construction of Statechart-Based Anomaly
Detection Models for Multi-Threaded SCADA via Spectral Analysis. Proceedings of
the 2nd ACM Workshop on Cyber-Physical Systems Security and Privacy (2016).

13. Caselli, M., Zambon, E., Kargl F.: Sequence-aware Intrusion Detection in Industrial
Control Systems. Proceedings of the 1st ACM Workshop on Cyber-Physical System
Security (CPSS) (2015).

14. Morris, T.H., Gao, W.: Industrial Control System Cyber Attacks. Proceedings of
the 1st International Symposium for ICS & SCADA Cyber Security Research (2013).


