
Schedulability and Memory Interference Analysis of
Multicore Preemptive Real-time Systems∗

Jalil Boudjadar, Simin Nadjm-Tehrani
Department of Computer and Information Science

Linköping University, Sweden

ABSTRACT
Today’s embedded systems demand increasing computing
power to accommodate the ever-growing software function-
ality. Automotive and avionic systems aim to leverage the
high performance capabilities of multicore platforms, but are
faced with challenges with respect to temporal predictabil-
ity. Multicore designers have achieved much progress on
improvement of memory-dependent performance in caching
systems and shared memories in general. However, having
applications running simultaneously and requesting the ac-
cess to the shared memories concurrently leads to interfer-
ence. The performance unpredictability resulting from in-
terference at any shared memory level may lead to violation
of the timing properties in safety-critical real-time systems.
In this paper, we introduce a formal analysis framework for
the schedulability and memory interference of multicore sys-
tems with shared caches and DRAM. We build a multicore
system model with a fine grained application behavior given
in terms of periodic preemptible tasks, described with ex-
plicit read and write access numbers for shared caches and
DRAM. We also provide a method to analyze and recom-
mend candidates for task-to-core reallocation with the goal
to find schedulable configurations if a given system is not
schedulable. Our model-based framework is realized using
Uppaal and has been used to analyze a case study.

Keywords
Schedulability, memory interference, processor utilization,
multicore systems, task migration, model checking.

1. INTRODUCTION
Motivated by the need of high processing capacity and the

decreasing cost of electronics, multicore platforms are find-
ing their way into safety-critical embedded systems. Follow-
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ing the same trend as automotive industry, avionic system
developers are considering the use of multicore platforms
to leverage the potential for higher performance, and re-
duce the weight of on-board computing equipment. This
is achieved by integrating different subsystems, potentially
provided by different vendors, to enable incremental Design
and Certification (iD&C) [29], recommended by the stan-
dard Integrated Modular Avionics (IMA) architecture [24].
In contrast to the classical federated architecture, IMA sup-
ports functions related to different subsystems to share the
same computing platform with an efficient use of the hard-
ware. Such a support is implemented using partitioning.

Partitioning [10] amounts to isolating, in space and time,
the system processes to make the complexity and mainte-
nance manageable. Moreover, it prevents propagating fail-
ure conditions from one system component to another, par-
ticularly from lower criticality to highly critical components,
thereby enforcing fault containment. Multicore platforms
can provide enormously larger processing capacity compared
to the classical single core platforms so that more software-
intensive systems can be deployed. However, the underlying
complexity and interference to access shared resources may
lead to lack of guarantees on schedulability and predictabil-
ity.

Focusing on the temporal partitioning, in single core plat-
forms the estimation of worst case execution time (WCET)
is based on the time spent by the longest execution path
of a process while assuming perfect memory access i.e. the
shared memory is immediately available whenever an access
request occurs. For systems with fixed priorities assigned at
a global level, a separate term (blocking delay) is added for
potential contention on shared resources. In multicore set-
tings, where different applications running concurrently on
different cores compete for the access to shared memories,
the combination of local cache misses and interference delay
for accessing a shared memory can be large and highly vari-
able depending on the platform architecture and the number
of parallel access requests. Interference represents a big chal-
lenge for the predictability of real-time embedded systems,
therefore it must be considered at the design and integration
stages.

In recent years, some progress on WCET and memory in-
terference analysis of multicore systems has been achieved
[15, 20, 8, 2, 7, 31]. In this paper, we provide a model-based
framework for formal analysis of schedulability and memory
interference of real-time applications running on multicore
platforms. Our framework enables modular description of
applications and platforms where models are described sep-
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arately, thus different mappings of an application to different
platforms can be studied as a state space exploration.

The platform consists of a set of cores each with a local
scheduler and a local cache. The cores share the cache level
2 (L2) and Dynamic Random Access Memory (DRAM). We
use the cache coloring policy [12] to arbitrate the concur-
rent access requests to L2. In addition, we adopt the pol-
icy First Ready-First Come First Serve (FR-FCFS) [22, 11]
commonly used by modern COTS-based memory controllers
to schedule the DRAM access requests. A schematic version
of the policy is modelled in section 5.2.2 (see Algorithm 1).

The application model is given by a set of periodic pre-
emptive tasks described with a fine grained behavior. Be-
sides classical scheduling parameters, the description of each
task includes the worst case resource access numbers (WCRA)
[20, 6] stating how many times the task accesses to each
shared memory for both read and write patterns. We dis-
tinguish between read and write actions to shared memories
as read actions are blocking for cores, while write actions are
not blocking and can be performed using dedicated buffers.
To make the system behavior more realistic, we spread out
the access requests to L2 and DRAM non-deterministically
during tasks execution rather than using dedicated phases
[25, 31]. This is motivated by the fact that a task execution,
and thereby the issue time of data requests, may vary from
one period to another following the changes in the compu-
tation environment.

Our model-based framework has been realized using Up-
paal [3]. We use the symbolic model checker of Uppaal
to analyze the system schedulability whereas interference-
sensitive WCET (isWCET) and core utilization are analyzed
using statistical model checking. By statistical we mean
simulating different executions but not exploring the whole
state space. We also propose an approach to support the
distribution of tasks among cores so that the whole system
becomes schedulable. This is done in two steps:

1. we analyze the system schedulability according to a
given allocation of tasks to cores. If the system is not
schedulable, we proceed to step (2).

2. we perform an analysis of core utilizations and average
interference delay per access request to shared memo-
ries, and recommend a redistribution of the workload
from overloaded cores to relatively less loaded ones by
migrating tasks, then redo process (1) with the new
recommended mapping.

The analysis process ends if a configuration is schedulable
or system is deemed not schedulable despite some load dis-
tribution within the given constraints.

To sum up, the contributions of this paper are as follows:

• Model-based framework for modular description of mul-
ticore platforms and applications.

• Rigorous analysis of schedulability using symbolic model-
checking.

• Statistical analysis of performance: core utilizations
and memory interference.

• Method for reallocation of tasks to cores upon non-
schedulability of a given configuration.

The rest of the paper is organized as follows: Section 2
reviews the related work. Section 3 describes the neces-
sary background. Section 4 provides an overview of our
work. Section 5 presents the Uppaal models of framework,
whereas Section 6 describes schedulability, isWCET analysis
and method for potential reallocation of tasks. In Section 7,
a small case study is presented to show preliminary evidence
of the feasibility and efficacy of the framework. Finally, Sec-
tion 8 concludes the paper.

2. RELATED WORK
The analysis of schedulability and memory interference

of multicore real-time systems is an active research area and
can be categorized into 2 directions: computing DRAM sen-
sitive WCETs [33, 20, 11, 2] and bounding the DRAM in-
terference delays [17, 8, 27]. The common element of the
different analysis settings is: a) measuring the WCET of
each task in isolation on a single core; b) calculating the in-
terference time caused by the access to the shared resource,
e.g DRAM. The first element can be performed using dedi-
cated measurement tools like SWEET [15] and Heptane [21],
whereas the interference delays are obtained either by static
analysis or using different theories (as described below).

Schranzhofer et al. [25] introduce an analytical approach
to analyze the worst case response time of a task set run-
ning on a multicore platform. Each task runs over different
dedicated phases like acquisition, execution and replication.
The execution of a task takes place in a sequence of non-
preemptible superblocks. The shared resource (DRAM) ac-
cess requests occur only during the acquisition and replica-
tion phases of each superblock. The use of static predefined
schedules among the superblocks of different tasks results in
a static runtime where the analysis results are predictable.

In a similar way, Nowotsch et al. [20] present a theory to
compute and bound interference-sensitive WCET (isWCET)
of processes running on a multicore platform with a shared
DRAM memory. Each process is assigned a certain share of
DRAM capacity. The experiment results in [20] show that
the estimated WCET values are an overestimation of the
observed ones. Such an overestimation enormously affects
the isWCET. In both of the above works [25, 20], the static
allocation of DRAM using Time Division Multiple Access
(TDMA) policy lowers the complexity but it leads to a poor
utilization of DRAM.

Other authors [33, 11] introduce analytical frameworks
to calculate memory interference delays in multicore sys-
tems. The interference of the request under analysis is cal-
culated based on inter and intra-bank interference as well as
row-opening (loading data from a row to a row-buffer) and
precharge (moving data back from a row-buffer to a row).
Each of these elements is calculated separately. According to
the analysis results, the higher the number of sharing cores
the longer the interference will be. Since each request is an-
alyzed separately, a relevant question is how these analytical
frameworks deal with memory-intensive systems where each
process performs thousands of memory requests.

Madsen et al. [18] introduce a model-based framework to
study the impact of execution platforms on schedulability.
The platform model is given by a set of processing elements,
each of which consists of a local memory (cache), a scheduler
and a processor. However, not considering shared memories
may lead to an underestimation of the workload because,
in practice, the delays resulting from the access to shared



cache and DRAM enormously impact the response time of
tasks.

Lv et al. [17] combine the abstract interpretation of soft-
ware systems running on multicore platforms with model
checking to calculate the isWCET. The abstract interpreta-
tion aims to obtain the local cache behavior of a program
running on a given core in order to capture the precise tim-
ing information when the program accesses DRAM (cache
miss). However, characterizing each program instruction
with an execution time and an access pattern (hit/miss) is
not considered as feasible for a design phase of systems. The
authors approach would require a rather expensive analysis
of the binary code. Instead, we use a granularity at task
level.

Gustavsson et al. [8] investigate a method based on model
checking to calculate the WCETs of programs running on
multicore platforms. The authors consider both local and
shared caches as well as DRAM. The miss/hit of local and
shared caches is non-deterministic. The WCET estimate is
obtained using a binary search, which could be expensive
if the initial WCET estimates are far away from the final
values. Our work aligns with this but we use statistical
model checking, where the analysis process runs once and
performs the evaluation of thousands of different executions,
rather than repeating the binary analysis process manually.

Subramanian et al. [27] develop a scheduling scheme (MISE-
Fair) to minimize the maximum slowdown of applications
running on multicore platforms. Application slowdown is
the delay experienced by the application due to the wait
to access shared resources compared to the case when the
application runs alone on the platform. In essence, MISE-
Fair estimates the slowdown of each application and redis-
tributes the memory bandwidth to reduce the slowdown of
the most slowed-down applications. However, the minimiza-
tion of DRAM-related slowdown of tasks may impact the
scheduling at cores level.

In some of these papers, the authors calculate the isWCET
of tasks running on a given multicore platform, then ap-
ply appropriate analysis to check the schedulability. This
means that the estimated isWCET cannot be used to check
the schedulability if the application tasks run on a differ-
ent platform. So far, for each new platform the isWCETs
need to be calculated using the platform description and one
needs to rerun the appropriate schedulability analysis pro-
cess. In our work, we combine the analysis processes so that
for a given platform we check whether the application tasks
will be schedulable or not.

Compared to the state of the art, our framework enables
modular description of applications and platforms with a
flexible mapping. The application is given by a fine grained
behavior including explicit numbers of read and write re-
quests to each shared memory, whereas the platform in-
cludes a set of processing cores and a hierarchy of shared
memories. Each of these elements is separately modeled by
a template, i.e. a parameterized state-transition behavior.
To make the application model more realistic, we spread out
the access requests to L2 and DRAM non-deterministically
during task execution rather than using dedicated phases.
System configurations (consisting in an application instance,
a platform instance and a mapping of the application to the
platform) can be created by just providing template param-
eters, so that design space exploration can be performed.
We use model checking to analyze schedulability and per-

formance, in terms of memory interference and core utiliza-
tion. Moreover, a novelty of our work is the introduction a
method for reallocate tasks to cores upon non-schedulability
based on performance metrics (core utilization, average in-
terference delay per access request).

3. BACKGROUND
Before diving into the description of our contribution, we

introduce the scheduling fundamentals of shared resources
in multicore platforms: cores, shared caches and DRAM.
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Figure 1: Simplified multicore system architecture.

The overall system architecture we consider in this paper
is depicted in Figure. 1, where cc is the cache coloring policy
and si are CPU scheduling policies.

3.1 Core Level Scheduling
To leverage the processing performance of a computing

system, a processing unit (core in our context) can be as-
signed more than one task, only one task running at any
point in time. The arbitration between the different task
executions is performed according to a scheduling policy.

Basically, a scheduling policy determines, at any point in
time, which task from the ready queue must execute first
and whether a given task should be preempted by another.
The most commonly used scheduling algorithms are Earliest
Deadline First (EDF), Fixed Priority Scheduling (FPS) and
Rate Monotonic (RM). The key factor in selecting a task
from ready queue can be priority, remaining execution time,
etc.

Another recent alternative to schedule memory intensive
application tasks is the use of a memory-centric policy [31,
30], where tasks are sorted in the queue according to a
decreasing order of their WCRA (numbers of memory ac-
cesses). In our setting, we adopt FIFO, FPS and EDF as
scheduling policies for the individual cores, but the method
could easily be adapted to a memory-centric one.

3.2 Shared Cache Scheduling



In order to enhance the processing performance of multi-
core platforms, some of modern multicore processors 1 con-
sider a shared cache level (L2) in addition to private caches
(L1). The primary goal of sharing a cache between different
cores is to reduce the access requests to the main memory
DRAM, and by that shorten the DRAM interference time
since the interference time is strongly correlated to the num-
ber of access requests [20].

Cache coloring policy [12, 32] is an algorithm to control
the access to the shared L2 cache. It has been introduced to
aid performance optimization where physical memory pages
are mapped to cache pages, in contrast with old caching
systems where virtual memory is mapped to the cache. This
means avoiding clearance of cache pages on each context
switch. During execution, the algorithm frees the old pages
as necessary in order to make space for currently scheduled
applications (recoloring). The coloring algorithm sorts the
concurrent access requests according to their release times.

Estimating the optimal cache size for each application,
in order to minimize the cache miss ratio, is a non-trivial
task as it requires expensive analysis of the system execu-
tion. Moreover, the recoloring operation leads to a signifi-
cant overhead if the pages are not intelligently selected [12].

In our framework, we do not consider the detailed internal
architecture and size of DRAM and shared cache, we focus
rather on measuring the delays caused by the concurrent
accesses. The reason behind this is that the impact of these
characteristics on the interference is already captured when
performing the static analysis and identifying the WCRAs.
Accordingly, recoloring is beyond the scope of this paper.

3.3 DRAM Access Scheduling
Conventionally, a DRAM is shared by all the platform

processing units. However, this increases the complexity of
managing memory accesses. DRAM controllers have adopted
scheduling mechanisms similarly to processor scheduling.

Naive conventional policies, like First Come First Served
(FCFS) and Read-First, schedule access requests according
to their arrival times with a special preference to read re-
quests since they cause the processor to stall while write
requests can normally be performed using write buffers. An-
other alternative to schedule accesses to DRAM, in presence
of a three-dimensional structure (bank, row and column),
is the Hit-First policy. The Hit-First algorithm schedules
row buffer hits before misses to reduce the average memory
access latency and to improve bandwidth utilization [9, 22].
This is due to the fact that requests hitting in the row buffer
have shorter latency than a row buffer miss.

In Time Division Multiple Access (TDMA) policy [23], the
DRAM controller allocates statically a time slot to each core
to access the DRAM in a predefined manner. TDMA pro-
vides a simple and fair scheduling among all cores, however,
it does not exploit the spatial locality available in memory
access streams as it does not consider the demands coming
from different tasks at any time point.

To maximize data throughput and minimize the DRAM
latency, DRAM controllers in modern COTS-based systems
use First Ready-First Come First Serve (FR-FCFS) as a
DRAM policy [22, 19, 11]. FR-FCFS considers a detailed
DRAM structure in terms of banks, rows and columns. The
DRAM scheduler can be viewed as a 2-level filter: bank level

1E.g. Intel Core i7, AMD FX, ARM Cortex and FreeScale
QorIQ processors.

and bus level. The access requests can target different banks
separately, where they will be queued in the corresponding
bank queue. Access requests will be sorted at each bank
queue first according to their readiness. Then, the candi-
dates selected from banks level will be further sorted at bus
level where the earliest request gains access, i.e. the first re-
quest showing up at bus level among the requests being se-
lected by bank schedulers. If no request hits the row-buffer,
older requests are prioritized over younger ones.

4. ANALYSIS OVERVIEW
This section describes the inputs required by our frame-

work, and how they can be derived from a concrete software
system designed to run on a multicore platform. It also gives
a birds eye view of the analysis process.

Conventionally, task periods and deadlines (potentially
also priority and criticality levels) are identifiable during the
requirements analysis. Given such attributes and the archi-
tecture of the execution platform, we calculate the interfer-
ence sensitive WCET (isWCET) for each task and analyze
the system schedulability. isWCET is basically the sum of
WCET (on a single core) and the interference delays to ac-
cess shared cache and DRAM.

4.1 Flow Analysis
WCET estimation is crucial for schedulability analysis,

thus providing an accurate bound on the execution time
needs to be performed in a rigorous manner. Flow anal-
ysis [28, 26, 7] is a technique to estimate the WCET of a
program, it consists of simulating, or concretely running,
a program in isolation and measuring the time spent. Flow
analysis is exercized via different analysis tools, e.g. Chronos
[14], SWEET [28] and Bound-T [1]. In case of single core
platforms, memory interference is not a serious challenge
because the CPU triggers one access request at time.

In multicore settings, execution time estimation has be-
come a challenge because the number of possible interleav-
ings increases exponentially with the number of processes,
number of cores and number of shared resources [7]. In prac-
tice, concurrent programs may have astronomical numbers
of legal interleavings which makes the interleaving analysis
not feasible. An alternative is to reuse the knowledge ac-
quired from the single core analysis and just focus on the
interference resulting from the access to shared memories.

Technically, static analysis tools use symbolic execution
engines to identify potential execution paths without neces-
sarily having to run the program. Such representations can
be structured in terms of control flow graph (CFG). Simi-
larly to compilers, a static analysis tool parses a source code
of a program and converts it to an intermediate representa-
tion where each state could be a class of different program
configurations. WCET is then the time spent when execut-
ing the longest path of the CFG.

4.2 Profiling
System profiling [16, 34, 11] is a measurement-based ap-

proach to estimate how many times a process accesses shared
memories. The system being analyzed is run for a sufficient
number of times, each of which for a long enough dura-
tion enabling the execution of most of the system functions
(code). The analysis focuses on each process individually,
so that for each run we track how many times a process
accesses a given shared memory. However, due to technol-



ogy limitations, the measurements can be performed at core
level only, so that the obtained access number of a given
core corresponds to the set of processes running on top of
it. In order to obtain the memory access number for each
process, one needs to run each process individually on one
core during the analysis, so that the access number obtained
corresponds only to the process being run. The number of
accesses for each core can be obtained using performance
monitor counters [34, 16], present in certain multicore plat-
forms.

Profiling and static analysis techniques can both be used
to measure WCET and WCRA [11, 34].

4.3 Formal Analysis
The output of flow analysis and profiling together with pe-

riods and deadlines, for a given allocation of tasks to cores,
will be used as input to our framework to instantiate a sys-
tem model reflecting the behavior and timing characteristics
of the given software system. Such a system model can then
be analyzed (using model checking) with respect to schedu-
lability and isWCET as detailed in Section 6.

Once the system is determined to be non-schedulable for
the given task-to-core allocation, we analyze what would be
the utilization of cores and the interference delays if some
tasks are reallocated to different cores in order to balance the
workload. We will refer to such reallocations as migration,
which should not be confused with the run-time movement
of tasks. It is simply part of a pre-runtime analysis activity.

We compare different potential migration scenarios and
recommend the configurations leading the system to be schedu-
lable. In the context of IMA where tasks are encapsulated
within partitions that are pre-allocated to given cores, one
might need to move a whole partition instead of moving
an individual task in order to satisfy both the functional-
architectural constraints and time composability property of
IMA. Besides, fault containment requirements must be re-
spected when re-allocating partitions. The functional ar-
chitectural constraints impose that the functionality of each
architectural unit -partition- is maintained if the partition
tasks do not execute on the same core. The time compos-
ability property states that the timing behavior of individ-
ual tasks will not change by the composition. In this work,
since partitions are or regions are not formally modelled,
we just focus on the impact of moving individual tasks. The
load shedding created by moving a partition can be captured
by the accumulated impact of re-allocation of its individual
tasks, and the framework can be extended to model fault
containment constraints.

Once a configuration is determined to be suitable, i.e.
having a high probability to be schedulable according to
the statistical analysis (SMC), one needs to rerun the rigor-
ous schedulability analysis (symbolic model checking). Our
framework is built to be flexible so that migrating a task
from a core to another is feasible by just updating the core-
Id parameter of such a task with the Id of the new core.

5. SYSTEM MODEL DESCRIPTION
Basically, an embedded system is comprised of an appli-

cation mapped to a platform. The application is a parallel
composition of tasks. The platform consists of a set of pro-
cessing elements, a shared cache level, a shared DRAM and
mechanisms to share and control the access to the platform
resources like processor schedulers and DRAM connectors.

We use T for the set of tasks and C for the set of cores. The
assumptions in our models are as follows:

• Tasks are periodic and preemptible during CPU exe-
cution only, i.e. a task cannot be preempted while it
is performing an access to a shared memory.

• Tasks assigned to the same core are arbitrated using a
local CPU scheduler.

• We consider a local cache (L1) for each core, only one
shared cache (L2) and one DRAM for all cores.

• We abstract each local cache using a number stating
the time taken for fetching data from it.

5.1 Application Model
An application AP = {T1, .., Tn} is a set of tasks each of

which describes the execution model of an individual pro-
cess. The process behavior is abstracted at task level us-
ing WCET and WCRA for both shared cache and DRAM2.
WCET is the pure execution time, considered in isolation,
i.e. excluding the time to fetch data. Regarding data fetch-
ing, we consider 2 attributes WCRAc and WCRAm where:
WCRAc corresponds to the maximum number of successful
accesses (hits) to the shared cache L2; WCRAm is the num-
ber of DRAM accesses (corresponds to L2 miss) performed
by a given process. Moreover, in order to distinguish be-
tween read and write accesses to each shared memory, we
denote each of the attributes with r for read and w for write,
i.e. WCRAr

c ,WCRAw
c ,WCRAr

m and WCRAw
m. This is be-

cause read requests make the core stalling (strong impact
on isWCET) while write requests do not as they can be
performed using dedicated buffers.

Accordingly, an access request to a shared memory is
given by a pattern ∈ {L2, DRAM} stating to which mem-
ory the access hits and an attribute RW indicates whether
it is a read (r) or write (w) action. Moreover, as we need
to keep track of when the requests are issued, so that FR-
FCFS algorithm determines the priorities of requests target-
ing DRAM, we use issueT. In fact, issueT is initially empty
and will be initialized by a core when the access request is
triggered. Accordingly, an access request is formally given
by req = 〈pattern, RW, issueT〉. WCRAr

c and WCRAw
c , re-

spectively WCRAr
m and WCRAw

m, of a given task are then
the numbers of read and write accesses to L2, respectively
DRAM.

Definition 1 (Task structure). A task T is given
by 〈Prd,Offset,WCET,WCRAr

c ,WCRAw
c ,WCRAr

m,WCRAw
m,

Dln,Pri〉 where Prd is the task period, Offset is the periodic
offset, WCET is the pure execution time, Dln is the rela-
tive deadline whereas Pri is the priority level associated to
T . WCRAr

c ,WCRAw
c ,WCRAr

m and WCRAw
m are described

above.

In order to make the application specification flexible, we
do not (statically) specify the identifier of the core to which
the task is assigned. The mapping will rather be given dur-
ing system instantiation. The behavior of a task is a ba-
sically a state-transition system, where states represent po-
tential configurations of the corresponding process and tran-
sitions correspond to the execution of actions and events.

2thus validity of these numbers affects the validity of the
outcomes



Figure 2: Task template model

Our Uppaal task template model is depicted in Figure. 2.
To distinguish between different tasks, we associate to each
task an identifier tId as a template parameter. The task
starts at location Init where it initializes its variables if needed,
during the offset time. Once the offset expires, the task
moves to location Ready to request the core to which it is
mapped, through a synchronization with the core scheduler
on channel reqCore. The task waits to be scheduled at lo-
cation WaitSched unless the deadline is reached by which it
moves to location DeadlineMiss and updates a global vari-
able error to true. Once a task is scheduled it updates
the status of the corresponding core inUse[]=1, and moves
to location Run where it executes. During its execution
(WCET ), a task non-deterministically triggers access re-
quests to L2 and DRAM. For each access request, the task
moves to location AccessRequest and waits until the access
request is satisfied upon which it moves back to location
Run. One can remark that, when a task is requesting and
waiting for data the clock measuring WCET is stopped (ex-
ecTime[tId]’==0 ) so that only the effective execution at
Run consumes WCET. This is implemented in Uppaal by
assigning rate 0 to the derivative of execTime[tId]. Such a
clock resumes at Run. From Run, the task joins either Exec-

Done, if the execution WCET and accesses to L2 and DRAM
(numberAccesses=WCRAr

c+WCRAw
c +WCRAr

m+WCRAw
m)

are completed before deadline, or it moves to DeadlineMiss in
case the execution or access requests are not achieved before
deadline. Once the period expires, at location ExecDone, the
task moves to Init to start a new period. The isWCET of a
task is measured by clock isWCET[tId]. The measurement
starts once a task is scheduled (location Run) and stops when

the task execution is done (location ExecDone), so that it in-
cludes both WCET and interference. The task template
can be instantiated for different tasks by just providing the
aforementioned parameters.

A task can be preempted during effective core utilization
only (at location Run) by the scheduler of the core to which it
is currently allocated, as during memory access the task is at
location AccessRequest. Once a task is preempted it moves
to location Preempted. If a ready task needs to preempt
a running task, the preempting task has to wait until the
current memory access of the running task is finished. One
can see that we do not change the core status (inUse) when
preempting a task and moving to location Preempted as the
core keeps running but with the preempting task. When a
task is preempted, neither its isWCET nor execTime clocks
can progress. The task can exit the preemption location
Preempted by either receiving a scheduling event taskSched[]?
or reaching its deadline.

Our preemption pattern does not allow the preemption of
tasks during access requests, thus it prevents a task to wait
more than once for the same access request. This aligns to
an operating system policy that has a preference for a lower
interference time as opposed to a greedy utilization of cores.

5.2 Platform Model
A platform is composed of a set of processing elements

PE, a shared cache (L2), DRAM memory and schedulers to
manage the access to L2 and DRAM. Each processing ele-
ment PE consists of a computation resource (core), a local
cache (L1) and a scheduler to dispatch tasks to run on that
core. The access time for local caches may vary from one PE



to another. Moreover, we consider the duration for an effec-
tive access (from grant to completion) to a shared memory
as a platform parameter.

5.2.1 Modeling of Processing Elements
A processing element PE is given by 〈C, sched,H〉 where

C is a core, sched is the scheduling policy (core scheduler)
adopted and H is the local cache that we abstract using its
access time LocalCacheT ime. The core model is depicted
in Figure. 3.

Figure 3: Core template model

Similarly to tasks, we assign to each core an identifier cId
as a parameter to distinguish between the different platform
cores. The core model is initially at location Available waiting
for ready tasks. Through an allocation, the core model does
not move from Available but the clock measuring its utiliza-
tion utiliz[cId] starts counting (utiliz[cId]’==inUse[cId]).
Such a clock can stop and resume according to the core sta-
tus inUse[cId] manipulated at task level. Upon an access re-
quest to a shared memory (accessExec[cId]? ), the core moves
to location CacheRequest where it waits for the expiry of the
local cache access time LocalCacheTime before performing
the access request to the shared cache L2 and joins location
Determine. The core updates the request issue time with the
current time instant issueT=discreteClk.Once the access to
L2 hits (memoryAccess==cache) and terminates, the core
moves back immediately to location Available to continue ex-
ecuting the assigned task. Otherwise, once the L2 access
terminates and misses (memoryAccess==dram) the core re-
quests access to DRAM and joins immediately the location
DRAMWait. The core blocking time on an access request (at
locations Determine and DRAMWait) depends on the access
nature. If it is a write action, the core will immediately be
unlocked by the scheduler of the targeted memory, other-
wise the core stalls until the read access finishes. Further
details regarding how to handle read and write accesses will
be provided in the description of L2 and DRAM schedulers.

The core needs to notify the running task when the cur-
rent access request is done, i.e. once the core itself is notified
by DRAM or L2 (according to the access pattern), so that
it moves back as well from location AccessRequest to Run and
accounts an access done (curAccess++). As it is not possi-
ble to associate two synchronization events with a transition
in Uppaal, we introduce two intermediate locations Interm1

and Interm2. Thus, we create a sequence of 2 synchroniza-
tions without any delay in between. We use urgentness and
committedness of Uppaal to enforce time to not elapse at a
given location (locations marked with U and C).

Figure 4: Scheduler template model

Figure. 4 depicts the core scheduler model. Initially at
location Init waiting for a ready task, the core moves to lo-
cation Allocate1 while queuing the identifier of the requesting
task. If the core queue contains only one element
(queue.length==1 ), which is the identifier of the newly added
task, that task will immediately be scheduled otherwise the
scheduler just moves back to Init, where it analyzes whether
the newly added task has priority over the current running
task. If so (hp(curTask[cId])>1 ), the scheduler preempts the
current running task (when it is not performing an access
to a shared memory) and sorts the ready queue while mov-
ing to location Allocate2. From that location, the scheduler
schedules immediately the task having the highest priority
in the queue. Channel taskPreempt is urgent, thus when-
ever the synchronization is available the transition from Init

to Allocate2 is immediately triggered.
Once the core is released by the current running task

through a signal on channel releaseCore due to execution
termination, the scheduler moves to Release while removing
the first element of the core queue. If the queue is still
not empty, the scheduler calls the adopted scheduling policy
sortQueue() of core cId to sort the queue and moves to loca-
tion Allocate2, whereafter it schedules the task corresponding
to the first element in the queue. Function sortQueue(cId)
refers to the scheduling policy of core cId, which is a core
parameter in our model and can be FIFO, FPS or EDF.

5.2.2 Modeling of Shared Memories
This section describes the modeling of shared memories L2

cache and DRAM as well as their schedulers. We consider
both shared memories, L2 cache and DRAM, as black boxes
and assume that the effective access duration3 for fetching
data is constant, regardless of the physical location in the
memory. The interference delay for an access request is de-
fined by the waiting time from the issue of the access request
until the access is granted.

DRAM=〈DRAMStruct, DRAMSched, DRAMAccessTime〉
is composed of a structure DRAMStruct (abstracted using
the behavioral model depicted in Figure. 5), a scheduler
DRAMSched (Figure. 6), and the length of time for an ef-
fective access DRAMAccessTime. The DRAM access time
simulates the duration of fetching data from a physical ad-
dress in DRAM once the access is scheduled. This is in fact
to enable our abstraction of the DRAM internal architecture

3The time interval from the instant when the access is
granted until the data delivery instant.



to capture the delay for accessing a DRAM bank/row. Our
DRAM model can be viewed as a one-bank memory that is
shared between all cores, but it can easily be extended for
several banks by just duplicating the DRAM structure and
assigning each to one core only [33].

The DRAM behavior model (Figure. 5) is simple. How-
ever, its allocation is complex as we will see in the descrip-
tion of Figure. 6. DRAM is initially waiting at location Idle

for an access request, either read or write. The DRAM can
be allocated, by its scheduler, to a given core i perform-
ing a read request DRAMReqR[i]? and moves to location
Read. Similarly, DRAM can be targeted with a write request
DRAMReqW?.

One can see that for write access requests the identifier of
the involved core is missing. This is because write requests
are not blocking, thus no need to keep track of which core
needs to be unlocked once the access is done. At locations
Read and Write, the DRAM waits for the expiry of the ac-
cess time DRAMAccessT ime then moves to location Done.
From Read, once the access time expires the DRAM unlocks
the involved core through a synchronization dramAccess-
Done[currentCore]!, whereas from location Write no unlock
action is needed. From Done, DRAM notifies its scheduler
that the current access is done.

Figure 5: DRAM template model

We adopt the FR-FCFS policy to arbitrate accesses to
DRAM. We assume that row opening and reload actions
are instantaneous, so that we do not need to consider any
preference based on the already open row policy [11]. This
leads to considering the attribute issueT (issue time) of each
request as a readiness. Hence, we characterize each request
to DRAM with a new attribute arrivalT, besides issueT.
In fact, issueT stores the time instant when the request is
issued, whereas arrivalT stores the instant when the request
reaches the corresponding bank queue. Thus, we compare
requests first based on their issue times (readiness) where
an earlier request has priority over later ones. If requests
have the same issue time, then the request having an earlier
arrivalT has priority over requests having later arrivalT. A
sketch of the FR-FCFS is shown in Algorithm 1.

The DRAM scheduler is depicted in Figure. 6. Initially
at location Init, upon the receive of an access request dram-
Req[i]? from any core i the DRAM scheduler inserts such
a request together with the identifier of the requesting core
into the queue and moves to location Allocate1. If such a
request is a write (rwAction==Write), the requesting core
will immediately be unlocked (dramAccessDone[l]! ) as loca-
tion is committed Allocate1. Moreover, if the write request
is alone in the queue (queue.length==1 ) it will immediately
be scheduled at location Unlocked.

In case of a read request (rwAction==Read), the DRAM
scheduler does not unlock the requesting core after queuing
the request. It just schedules the access (DRAMReqR[DRAM.

Algorithm 1 Sketch of the FR-FCFS algorithm

1: Int j
2: for each new request r do
3: for i ∈ [0, q.length] do
4: if (r.issueT < q[i].issueT ) Or ((r.issueT =

q[i].issueT ) And (r.arrivalT < q[i].arrivalT )) then
5: j := i
6: i := q.length
7: else
8: j := i
9: end if

10: end for
11: insert(r, j)
12: end for

queue.elt[0].core]! ) if the current request is alone in the
queue. In all of the four scenarios, the scheduler moves back
to location Init.

Once an access request finishes, the scheduler is notified by
the DRAM through a synchronization event releaseDRAM?
and moves to Release while removing the head of the queue.
If the queue is still not empty, the scheduler calls the algo-
rithm FR-FCFS to sort the queue as other requests might
have joined during the execution of the last access. At lo-
cation Allocate2, the scheduler schedules the request in the
first element of the queue queue.elt[0] using the appropri-
ate channel (DRAMReqR or DRAMReqW ) according to the
request nature; read or write.

Due to space limitations, we omit describing the shared
cache L2 and its scheduler. In essence, L2 has the same
elements as DRAM , except that it uses a separate queue
to store its requests. Similarly, L2 scheduler has the same
behavior as that of DRAM but it operates on the L2 queue
using the cache coloring policy. However, since we do not
consider the internal pages of L2, the coloring policy adopted
in our framework behaves in similar way to FCFS policy.

Finally, a platform P is described as 〈〈PE1, .., PEm〉,
DRAM,L2〉. One can see that updating the specification
of one platform ingredient does not necessarily affect the
others.

5.3 System Model
In order to make our framework flexible, the application

and platform are specified separately then mapped together.
A system model S is given by an application AP = {T1, .., Tn},
a platform P = 〈PE , DRAM,L2〉 and a mapping M : AP →
PE assigning each task to a processing element PEi ∈ PE .

6. SCHEDULABILITY AND INTERFERENCE
ANALYSIS

In this section, we describe how the schedulability will
be analyzed inpresence of computed interference (isWCET).
Moreover, in case of non-schedulability, based on core uti-
lization and assumed delay per access request to shared
memories we recommend task migration between cores so
that a new potentially schedulable configuration can be iden-
tified.

6.1 Schedulability Analysis
In our framework, system schedulability is analyzed as

a reachability property using symbolic model checking [5].



Figure 6: DRAM scheduler model

Following our task model, whenever a process misses its
deadline it joins immediately the location DeadlineMiss (by
which the global variable error is updated to true). Thus,
the schedulability analysis process simply checks whether
any task can reach its own DeadlineMiss location. Techni-
cally, to quantify on all tasks regardless of their identifiers
we use the following CTL (Computation Tree Logic) query
supported by Uppaal, where

∀[]

denotes invariance over all reachable states, and ! denotes
negation:

∀[] !error (1)

Using this query, the checker explores the whole state space
and examines that in any state the value of variable error is
false.

6.2 isWCET Estimation
The interference sensitive WCET (isWCET) of a task is

the execution time including the effective execution (WCET),
the delays caused by the interference to access shared mem-
ories as well as the effective access time to memories (L1, L2
and DRAM). Following the task model (Figure. 2), once a
task is scheduled the clock isWCET starts measuring time
until the effective execution (WCET) is finished and all the
task access requests are completed (location ExecDone). To
do so, we simulate the system execution for X time units,
each simulation runs for Y time units and accumulate the
isWCET values of given tasks (T1, .., Tn) using the following
Uppaal SMC query:

simulate X [<= Y ] {isWCET[T1], .., isWCET[Tn]} (2)

The simulation time Y should be greater than the least
common multiplier of the task periods. In fact, the larger
X and Y are the more accurate the results will be. To
display the isWCET of a task T in terms of a probability
distribution, the following SMC query can be used:

E[clk <= Y ;X](max : isWCET[T ]) (3)

where the E operator identifies the trace (given X and Y
constraints) in which maximum isWCET is obtained4.

4Uppaal provides different presentations of the data col-

Figure 7: Probability distribution of isWCET of a
given task.

Figure. 7 depicts a case where the x-axis shows the time
units (simulation times) as used for all quantities below. It
shows the probability distribution of the isWCET of a task
T generated using query (3) where X = 103 and Y = 104. T
runs in parallel with 3 other tasks mapped to 2 cores, each
core serves 2 tasks. T has Prd=100, WCET=15, Dln=71,
13 read/write access to L2 (WCRAc = 13) and 8 accesses to
DRAM (WCRAm = 8). Value 24 is the most likely because
it has the highest probability (0.87), not far from the average
isWCET 24.12.

6.3 Utilization Analysis
To estimate the utilization of cores, we need to run the

execution simulation several times (X) each of which lasts
for Y time units. We accumulate for each simulation the
core utilization time via clock utiliz[cId], and then consider
the maximum value using the following SMC query:

simulate X [<= Y ] utiliz[cId] (4)

The utilization percentage of a given core is then ob-
tained by dividing the accumulated utilization time over
the total simulation time Y . Figure. 8 shows the average
accumulated utilization time of 2 individual cores (C0 and

lected during repeated runs, e.g. cumulative density func-
tion and distribution function. As long as any run reaches
a isWCET > deadline this step has served its purpose and
thereby we do not do further statistical analysis.



Figure 8: Simulation of cores utilization.

C1) for 1000 simulations. Each simulation runs for 10000
clock ticks (query (4)). Thus, the utilization of core C0 is
2223/104 ∗ 100 = 22.2%.

6.4 Task Migration
In case a given system is not schedulable, it might be pos-

sible to find another schedulable configuration by moving
some tasks between cores. However, in practice one might
need to know whether a task can functionally be allocated
to another core, since the IMA architecture standards as-
sume that the system is structured in terms of functional
blocks called partitions. As stated earlier, this paper does
not model partitions and shows the tasks reallocation prin-
ciple.

Based on the utilization of cores and average delay per
access request to L2 and DRAM, we recommend to move
tasks from cores with heavy workload to the ones having
less workload. To migrate a task from one core to another,
we estimate what would be the target core utilization given
its current utilization, WCET of the task to be migrated and
the workload generated by read accesses to L2 and DRAM
(WCRAr

c and WCRAr
m) of that task, i.e. number of read

accesses multiplied by the average delay per request.
The fact that read requests are blocking, contributes con-

siderably to the utilization by making the cores stall. On
the other hand, write accesses are not blocking and have a
smaller impact on the utilization, even though write accesses
make the waiting queue longer, which some how might delay
other read accesses. Currently, we ignore the workload gen-
erated by write accesses when probing migration scenarios.

Migrating a task T to a core C having a utilization U
leads to a new utilization U ′ of C given by:

U ′ = U+ (T.WCET + T.WCRAr
c × ar

c+
T.WCRAr

m × ar
m)/T.Prd

(5)

where ar
c and ar

m are the average delays per read access re-
quests to L2 and DRAM respectively. To obtain the average
delay per access request to L2 and DRAM of a task T , we
use query (4) on 2 other clocks Ur

c and Ur
m to accumulate the

delays spent by that task when performing all its read re-
quests to L2 and DRAM, respectively. Namely, when a task
moves to location AccessRequest to perform a read access, the
delay at that location will be accumulated to either Ur

c or
Ur

m according to the request pattern. The average delays
ar
c and ar

m are then obtained by dividing the accumulated
delays Ur

c and Ur
m by the number of requests WCRAr

c and
WCRAr

m respectively.
We compare different potential migration scenarios and

recommend the configurations leading to a more balanced

workload between cores. The new configurations will first
be analyzed using Uppaal SMC via query (6), so that we
obtain a probability on the system schedulability, where

<>

denotes existance of some path in which the respective prop-
erty (here error) holds.

Pr[<= Y ](<> error) (6)

In fact, this query runs a set of simulations of the system ex-
ecution each for a duration Y , and checks how many (if any)
simulations satisfy the property error, i.e. encounter a dead-
line miss. The probability is then obtained by dividing the
number of simulations satisfying the property over the total
number of simulations. Configurations having high proba-
bility to be schedulable will then be analyzed further using
symbolic model checking (query (1)) to obtain deterministic
evidence on the system schedulability.

As an illustration, the task T analyzed in Figure. 7 is
first assigned to a core C1 giving a high utilization 70.4%
compared to core C0 22.2% as shown in Figure. 8. We
analyze what would be the utilization of C0 if T is mi-
grated to it, given its current utilization U = 22.2% and
both ar

c = 0.79 and ar
m = 0.97 estimated during simulation.

The utilization of C0 if T is assigned to it would become
U ′ = 0.222 + 0.33 = 55.2%. The utilization of the original
core C1 will be reduced accordingly by 33%. The statistical
analysis of schedulability for the system after migrating task
T to core C0 generates a probability p ∈ [0, 0.009] that the
system misses a deadline. We consider this probability to
be low enough for further analysis of the configuration using
symbolic model checking.

When analyzing this example using query (1), the analy-
sis shows that the new configuration is actually schedulable.
The idea behind using statistical analysis (SMC) first is that
the analysis using SMC is cheap (in terms of resources, anal-
ysis time and memory space) compared to symbolic model
checking. In this experiment, SMC consumed 8.53 seconds
and 7.96MB memory space, whereas symbolic model checker
consumed 46.39 seconds and 582.52MB.

7. CASE STUDY
In order to illustrate our method, we analyze a component

of an autonomous vehicle system [13] presented earlier. The
task functions are obtained from the PARSEC benchmark
suite [4] and used to capture different components of com-
plex real-time embedded applications such as sensor fusion
and computer vision in an autonomous vehicle system.

Essentially, the application consists of 4 periodic tasks
T1 (StreamCluster), T2 (Ferret), T3 (Canneal) and T4 (Flu-
idAnimation) running on 2 identical cores (C0 and C1) shar-
ing L2 and DRAM. T1 and T2 are assigned to C0, whereas
T3 and T4 execute on C1. We calculated the WCRA by di-
viding the time spent by each task to fetch data over the
average duration for one access from [13]. As the numbers
of access requests to shared cache and DRAM are not ex-
plicitly distinguishable in [13], we rely on the analysis results
obtained by Ye et al. [32] using the cache coloring policy,
where only 22.2% of the access requests hit L2 while 77.8%
of the requests need to access to DRAM.

The characteristics of the task set are shown in Table 1,
where the offset is omitted since all tasks have offset equal
to zero. WCRAc and WCRAm are given in terms of (reads;



writes). All time units are given in milliseconds (ms). The
platform description is given in Table 2, where H is the ac-
cess time for the core local cache. The time taken for effec-
tive accesses to L2 (L2AccessT ime) and DRAM (DRAM−
AccessT ime) are 1/103 and 1/102 ms respectively.

Table 1: Attributes of the task set

Task Prd WCET WCRAc WCRAm Dln

T1 400 120 (40; 0) (110; 10) 400
T2 1200 130 (60; 60) (136; 273) 1200
T3 1800 500 (134; 266) (705; 705) 1800
T4 6000 440 (314; 626) (1828; 1462) 6000

Each of the statistical analysis results of the case study
has been calculated from 1000 simulations. Each simulation
experiment runs for 1 million clock ticks. The accumulated
utilization times of cores C0 and C1 are depicted in Figure. 9.
During 1 million time units, cores accumulate 419983 and
360350 respectively. Thus, the average utilization of C0 is
42% and the average utilization of C1 is 36%. Schedula-
bility analysis shows that the system is schedulable. The
estimated maximum isWCETs of tasks T1 and T2, respec-
tively T3 and T4, in terms of probability distributions, are
depicted in Figure. 10 and Figure. 11, respectively. Accord-
ingly, the most likely isWCET values of the case study tasks
are 261, 262, 971 and 972 respectively. One may need to con-
sider the maximum values for safety reasons. It is obvious
that tasks performing more read requests, in particular to
DRAM, produce longer isWCET.

Since the system requirements are met and the core work-
loads are modest and relatively comparable, there is no need
to migrate any task. The longest analysis time spent by Up-
paal is when running the statistical analysis to measure the
core utilizations. In fact, for a simulation having 1000 runs
each of which lasts for 1 million clock tick (a total of 109

clock ticks) Uppaal spent 3426.7 seconds. The performance
and analysis results from the case study are encouraging but
further studies are needed on scalability to larger systems.

Figure 9: Accumulated core utilization.

Table 2: Platform description and mapping

Core Sched policy H Mapped tasks

C1 EDF 1/103 T1, T2

C2 EDF 1/103 T3, T4

Figure 10: Probability distribution of isWCET for
tasks (T1, T2).

Figure 11: Probability distribution of isWCET for
tasks (T3, T4).

8. CONCLUSION
This paper introduces a model-based framework for schedu-

lability and memory interference analysis of multicore pre-
emptive real-time systems. The framework captures both
the multicore platform model, having a hierarchy of shared
memories, and a system application given in terms of pe-
riodic preemptible tasks. In case of non-schedulability, we
provide a technique to analyze the utilization of cores and
study the impact of task migration with the goal to find
potential mappings with which the system becomes schedu-
lable. Our framework is realized using timed automata and
stopwatch clocks of Uppaal, while the analysis of schedu-
lability, memory interference and performance is performed
using model checking technique.

As future work, interesting directions are to model and an-
alyze more complex architectures, such as networked multi-
processor platforms and system on chips, analyze an actual
avionic case study including partitions, fault containment
aspects as well as cases where task re-allocation is neces-
sary, and study the scalability of our framework.
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