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Malware analysts still need to manually inspect malware samples that are considered suspicious by heuristic rules. They dissect
software pieces and look for malware evidence in the code. The increasing number of malicious applications targeting Android
devices raises the demand for analyzing them to find where the malcode is triggered when user interacts with them. In this paper a
framework to monitor and visualize Android applications’ anomalous function calls is described. Our approach includes platform-
independent application instrumentation, introducing hooks in order to trace restricted API functions used at runtime of the
application. These function calls are collected at a central server where the application behavior filtering and a visualization take
place. This can help Android malware analysts in visually inspecting what the application under study does, easily identifying such

malicious functions.

1. Introduction

Collecting a large amount of data issued by applications
for smartphones is essential for making statistics about
the applications’ usage or characterizing the applications.
Characterizing applications might be useful for designing
both an anomaly-detection system and/or a misuse detecting
system, for instance.

Nowadays, smartphones running on an Android plat-
form represent an overwhelming majority of smartphones
[1]. However, Android platforms put restrictions on appli-
cations for security reasons. These restrictions prevent us
from easily collecting traces without modifying the firmware
or rooting the smartphone. Since modifying the firmware
or rooting the smartphone may void the warranty of the
smartphone, this method cannot be deployed on a large scale.

From the security point of view, the increase in the
number of internet-connected mobile devices worldwide,
along with a gradual adoption of LTE/4G, has drawn the
attention of attackers seeking to exploit vulnerabilities and
mobile infrastructures. Therefore, the malware targeting

smartphones has grown exponentially. Android malware is
one of the major security issues and fast growing threats
facing the Internet in the mobile arena, today. Moreover,
mobile users increasingly rely on unofficial repositories in
order to freely install paid applications whose protection
measures are at least dubious or unknown. Some of these
Android applications have been uploaded to such repositories
by malevolent communities that incorporate malicious code
into them. This poses strong security and privacy issues both
to users and operators. Thus, further work is needed to inves-
tigate threats that are expected due to further proliferation
and connectivity of gadgets and applications for smart mobile
devices.

This work focuses on monitoring Android applications’
suspicious behavior at runtime and visualizing their mali-
cious functions to understand the intention behind them.
We propose a platform-independent behavior monitoring
infrastructure composed of four elements: (i) an Android
application that guides the user in selecting, instrumenting,
and monitoring of the application to be examined, (ii) an
embedded client that is inserted in each application to be
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FIGURE 1: Overview of the monitoring system.

monitored, (iii) a cloud service that collects the application
to be instrumented and also the traces related to the function
calls, (iv) and finally a visualization component that generates
behavior-related dendrograms out of the traces. A dendro-
gram [2] consists of many U-shaped nodes-lines that connect
data of the Android application (e.g., the package name of
the application, Java classes, and methods and functions
invoked) in a hierarchical tree. As a matter of fact, we are
interested in the functions and methods which are frequently
seen in malicious code. Thus, malicious behavior could be
highlighted in the dendrogram based on a predefined set
of anomaly rules. An overview of the monitoring system is
shown in Figure 1.

Monitoring an application at runtime is essential to
understand how it interacts with the device, with key
components such as the provided application programming
interfaces (APIs). An API specifies how some software
components (routines, protocols, and tools) should act when
subject to invocations by other components. By tracing and
analyzing these interactions, we are able to find out how the
applications behave, handle sensitive data, and interact with
the operating system. In short, Android offers a set of API
functions for applications to access protected resources [3].

The remainder of the paper is organized as follows.
Section 2 provides the notions behind the components used
in the rest of the paper. Next, the related work is discussed in
Section 3. Next we describe the monitoring and visualization
architecture in Section 4, while we provide the details of
the implementational issues of our system in Section 5.
Later, in Section 6, we evaluate the proposed infrastructure
and the obtained results by using 8 malware applications.
Limitations and Conclusions are presented in Sections 7 and
8, respectively.

2. Background

Web Services extend the World Wide Web infrastructure to
provide the means for software to connect to other software
applications [4]. RESTFul Web Services are Web Services that
use the principles of REpresentational State Transfer (REST)
[5]. In other words, they expose resources to clients that

can be accessed through the Hypertext Transfer Protocol
(HTTP).

Regarding the Android operating system (OS), it is
divided into four main layers: applications, application
framework, middleware, and Linux kernel.

(i) Applications. The top layer of the architecture is where the
applications are located. An Android application is composed
of several components, amongst which we have Activities
and Services. Activities provide a user interface (UI) of the
application and are executed one at a time, while Services are
used for background processing such as communication, for
instance.

(ii) Application Framework. This layer is a suite of Services
that provides the environment in which Android applications
run and are managed. These programs provide higher-level
Services to applications in the form of Java classes.

(iii) Middleware. This layer is composed of the Android
runtime (RT) and C/C++ libraries. The Android RT is, at
the same time, composed of the Dalvik Virtual Machine
(DVM) (Android version 4.4. launches a new virtual machine
called Android runtime (ART). ART has more advanced
performance than DVM, among other things, by means of
a number of new features such as the ahead-of-time (OTA)
compilation, enhanced garbage collection, improved applica-
tion debugging, and more accurate high-level profiling of the
apps [6]) and a set of native (core) Android functions. The
DVM is a key part of Android as it is the software where all
applications run on Android devices. Each application that is
executed on Android runs on a separate Linux process with
an individual instance of the DVM, meaning that multiple
instances of the DVM exist at the same time. This is managed
by the Zygote process, which generates a fork of the parent
DVM instance with the core libraries whenever it receives a
request from the runtime process.

(iv) Linux Kernel. The bottom layer of the architecture
is where the Linux kernel is located. This provides basic
system functionality like process and memory management.
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The kernel also handles a set of drivers for interfacing
Android and interacting with the device hardware.

In standard Java environments, Java source code is
compiled into Java bytecode, which is stored within .class
format files. These files are later read by the Java Virtual
Machine (JVM) at runtime. On Android, on the other hand,
Java source code that has been compiled into .class files is
converted to .dex files, frequently called Dalvik Executable,
by the “dx” tool. In brief, the .dex file stores the Dalvik
bytecode to be executed on the DVM.

Android applications are presented on an Android appli-
cation package file (APK) .apk, the container of the appli-
cation binary that contains the compiled .dex files and the
resource files of the app. In this way, every Android applica-
tion is packed using zip algorithm. An unpacked app has the
following structure (several files and folders) [7]:

(i) an AndroidManifest.xml file: it contains the settings of
the application (meta-data) such as the permissions
required to run the application, the name of the
application, definition of one or more components
such as Activities, Services, Broadcasting Receivers,
or Content Providers. Upon installing, this file is read
by the PackageManager, which takes care of setting
up and deploying the application on the Android
platform.

(ii) aresfolder: it contains the resources used by the appli-
cations. By resources, we mean the app icon, its strings
available in several languages, images, UI layouts,
menus, and so forth.

(iii) an assets folder: it stores noncompiled resources. This
is a folder containing applications assets, which can
be retrieved by AssetManager.

(iv) a classes.dex file: it stores the classes compiled in the
dex file format to be executed on the DVM.

(v) a META-INF folder: this directory includes MANI-
FEST.MF which contains a cryptographic signature
of the application developer certificate to validate the
distribution.

The resulting .apk file is signed with a keystore to estab-
lish the identity of the author of the application. Besides, to
build Android applications, a software developer kit (SDK)
is usually available allowing access to APIs of the OS [8].
Additionally, two more components are described in order
to clarify the background of this work: the Android-apktool
[9] and the Smali/Backsmali tools. The Android-apktool is
generally used to unpack and disassemble Android appli-
cations. It is also used to assemble and pack them. It is a
tool set for reverse engineering third party Android apps
that simplifies the process of assembling and disassembling
Android binary .apk files into Smali .smali files and the
application resources to their original form. It includes the
Smali/Baksmali tools, which can decode resources (i.e., .dex
files) to nearly original form of the source code and rebuild
them after making some modifications. This enables all
these assembling/disassembling operations to be performed
automatically in an easy yet reliable way.

However, it is worth noting that the repackaged Android
binary .apk files can only possess the same digital signature if
the original keystore is used. Otherwise, the new application
will have a completely different digital signature.

3. Related Work

Previous works have addressed the problem of understanding
the Android application behavior in several ways. An exam-
ple of inspection mechanisms for identification of malware
applications for Android OS is presented by Karami et al. [10]
where they developed a transparent instrumentation system
for automating the user interactions to study different func-
tionalities of an app. Additionally, they introduced runtime
behavior analysis of an application using input/output (I/O)
system calls gathered by the monitored application within the
Linux kernel. Bugiel et al. [11] propose a security framework
named XManDroid that extends the monitoring mechanism
of Android, in order to detect and prevent application-level
privilege escalation attacks at runtime based on a given
policy. The principal disadvantage of this approach is that the
modified framework of Android has to be ported for each
of the devices and Android versions in which it is intended
to be implemented. Unlike [10, 11], we profile only at the
user level and therefore we do not need to root or to change
the framework of Android smartphones if we would like to
monitor the network traffic, for example.

Other authors have proposed different security tech-
niques regarding permissions in Android applications. For
instance, Au et al. [12] present a tool to extract the permission
specification from Android OS source code. Unlike the other
methods, the modules named Dr. Android and Mr. Hide that
are part of a proposed and implemented app by Jeon et al.
[13] do not intend to monitor any smart phones. They aim
at refining the Android permissions by embedding a module
inside each Android application. In other words, they can
control the permissions via their module. We also embed
a module inside each Android application but it is used to
monitor the Android application instead.

In the work by Zhang et al. [3], they have proposed
a system called VetDroid which can be described as a
systematic analysis technique using an app’s permission use.
By using real-world malware, they identify the callsites where
the app requests sensitive resources and how the obtained
permission resources are subsequently utilized by the app. To
do that, VetDroid intercepts all the calls to the Android API
and synchronously monitors permission check information
from Android permission enforcement system. In this way,
it manages to reconstruct the malicious (permission use)
behaviors of the malicious code and to generate a more
accurate permission mapping than PScout [12]. Briefly this
system [3] applies dynamic taint analysis to identify malware.
Different from VetDroid, we do not need to root or jailbreak
the phone nor do we conduct the permission-use approach
for monitoring the smartphone.

Malware detection (MD) techniques for smart devices
can be classified according to how the code is analyzed,
namely, static analysis and dynamic analysis. In the former
case, there is an attempt to identify malicious code by



decompiling/disassembling the application and searching
for suspicious strings or blocks of code; in the latter case
the behavior of the application is analyzed using execution
information. Examples of the two named categories are
Dendroid [2] as an example of a static MD for Android OS
devices and Crowdroid as a system that clusters system call
frequency of applications to detect malware [14]. Also, hybrid
approaches have been proposed in the literature for detection
and mitigation of Android malware. For example, Patel and
Buddhadev [15] combine Android applications analysis and
machine learning (ML) to classify the applications using
static and dynamic analysis techniques. Genetic algorithm
based ML technique is used to generate a rules-based model
of the system.

A thorough survey by Jiang and Zhou [16] charts the most
common types of permission violations in a large data set
of malware. Furthermore, in [17], a learning-based method
is proposed for the detection of malware that analyzes
applications automatically. This approach combines static
analysis with an explicit feature map inspired by a linear-time
graph kernel to represent Android applications based on their
function call graphs. Also, Arp et al. [18] combine concepts
from broad static analysis (gathering as many features of an
application as possible) and machine learning. These features
are embedded in a joint vector space, so typical patterns
indicative of malware can be automatically identified in a
lightweight app installed in the smart device. Shabtai et al. [19]
presented a system for mobile malware detection that takes
into account the analysis of deviations in application net-
works behavior (app’s network traffic patterns). This approach
tackles the challenge of the detection of an emerging type
of malware with self-updating capabilities based on runtime
malware detector (anomaly-detection system) and it is also
standalone monitoring application for smart devices.

Considering that [17] and Arp et al. [18] utilize static
methods, they suffer from the inherent limitations of static
code analysis (e.g., obfuscation techniques, junk code to
evade successful decompilation). In the first case, their
malware detection is based upon the structural similarity
of static call graphs that are processed over approximations,
while our method relies upon real functions calls that can be
filtered later on. In the case of Debrin, transformation attacks
that are nondetectable by static analysis, as, for example,
based on reflection and bytecode encryption, can hinder an
accurate detection.

Although in [19] we have a detection system that con-
tinuously monitors app executions. There is a concern about
efficiency of the detection algorithm used by this system.
Unfortunately, in this case, they could not evaluate the
Features Extractor and the aggregation processes’ impact on
the mobile phone resources, due to the fact that an extended
list of features was taken into account. To further enhance
the system’s performance, it is necessary to retain only the
most effective features in such a way that the runtime malware
detector system yields relatively low overhead on the mobile
phone resources.

Our proposed infrastructure is related to the approaches
mentioned above and employs similar features for identi-
tying malicious applications, such as permissions, network

Journal of Electrical and Computer Engineering

addresses, API calls, and function call graphs. However, it
differs in three central aspects from previous work. First,
we have a runtime malware detection (dynamic analysis)
but abstain from crafting detection in protected environment
as the dynamic inspections done by VetDroid. While this
system provides detailed information about the behavior of
applications, they are technically too involved to be deployed
on smartphones and detect malicious software directly. Sec-
ond, our visual analysis system is based on accurate API
call graphs, which enables us to inspect directly the app
in an easy-to-follow manner in the cloud. Third, we are
able to monitor not just the network traffic, but most of
the restricted and suspicious API calls in Android. Our
platform is more dynamic and simpler than other approaches
mentioned above.

General overview of the state of security in mobile devices
and approaches to deal with malware can be found in [20],
and in the work by Suarez-Tangil et al. in [21], as well as
in recent surveys by Faruki et al. in [7] and Sufatrio et al.
[6]. Malware in smart devices still poses many challenges
and, in different occasions, a tool for monitoring applications
at a large scale might be required. Given the different
versions of Android OS, and with a rising number of device
firmwares, modifying each of the devices might become a
nontrivial task. This is the scenario in which the proposed
infrastructure in this paper best fits. The core contribu-
tion of this work is the development of a monitoring and
instrumentation system that allows a visual analysis of the
behavior of Android applications for any device on which
an instrumented application can run. In particular, our work
results in a set of dendrograms that visually render existing
API calls invoked by Android malware application, by using
dynamic inspection during a given time interval, and visually
highlighting the suspicious ones. Consequently, we aim to fill
the void of visual security tools which are easy to follow for
Android environments in the technical literature.

4. Platform Architecture

When Android applications are executed, they call a set of
functions that are either defined by the developer of the
application or are part of the Android API. Our approach
is based on monitoring a desired subset of the functions
(i.e., hooked functions) called by the application and then
uploading information related to their usage to a remote
server. The hooked function traces are then represented in
a graph structure, and a set of rules are applied to color
the graphs in order to visualize functions that match known
malicious behavior.

For this, we use four components: the Embedded client
and the Sink on the smartphone side, and the Web Service and
the Visualization component on the remote server side.

A work flow depicting the main elements of the involved
system is shown in Figure 2. In Stage 1, the application
under study and a set of permissions are sent to the Web
Service. Next, the main processing task of Stage 2, labeled
as hooking process, is introduced. In this case, hooks or
logging codes are inserted in the functions that require at
least one of the permissions specified at the previous stage.
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FIGURE 2: Schematics and logical stages of the system.

The new “augmented” application will be referred to as APP’
from now on. Stages 3, 4, and 5 consist of running APP;
saving the traces generated by APP’ in the server’s database,
and showing the results as visualization graphs, respectively.
The aforementioned infrastructure for platform-independent
monitoring of Android applications is aimed to provide
behavioral analysis without modifying the Android OS or
root access to the smart device.

4.1. Embedded Client and Sink. The monitoring system con-
sists of two elements: an embedded client that will be inserted
into each application to be monitored and a Sink that will
collect the hooked functions that have been called by the
monitored applications. The embedded client simply consists
of a communication module that uses the User Datagram
Protocol (UDP) for forwarding the hooked functions to
the Sink. Here, JavaScript Object Notation (JSON) is used
when sending the data to the Sink, which allows sending
dynamic data structures. In order to know the origin of a
hooked function that has been received by the Sink, the
corresponding monitored application adds its application
hash, its package name, and its application name to the
hooked function which we call a partial trace before sending
it to the Sink.

The partial traces are built by the prologue functions
(i.e., hook functions) that are placed just before their hooked

functions and which modify the control flow of the mon-
itored applications in order to build the partial traces cor-
responding with their hooked functions and passing the
partial traces as parameter to the embedded client. Only the
partial traces are built by the monitored application so that
we add little extra overhead to the monitored application.
The insertion of the embedded client and of the prologue
functions in the Android application that is to be monitored
is explained in Section 4.3.

The embedded client is written using the Smali syntax
and is included on each of the monitored applications at
the Web Service, at the same time that the functions hooks
are inserted, before the application is packed back into an
Android binary .apk file.

The Sink, on the other hand, is implemented as an
Android application for portability both as a service and
an activity whose service is started at the boot time. It is
responsible for receiving the partial traces issued from all the
monitored applications clients via a UDP socket, augmenting
the partial traces to get a trace (i.e., adding a timestamp and
the hash of the ID of the phone), storing them, and sending
them over the network to the Web Service. As for the activity,
it is responsible for managing the monitored applications via
a Ul sending the applications to hook to the Web Service, and
downloading the hooked applications from the Web Service.
By hooked applications, we mean the applications in which



hooks have been inserted. Once an application has been
hooked then we can monitor it.

Before storing the traces in a local database, the Sink first
stores them in a circular buffer which can contain up to 500
traces. The traces are flushed to the local database when any
of the following conditions are met: (i) when the buffer is half
tull, (ii) when the Sink service is shutting down, or (iii) upon
an activated timeout expiring. This bulk flushing enables the
Sink to store the traces more efficiently. Unfortunately, if the
service is stopped by force, we lose the traces that are present
in the circular buffer. Once the traces are persisted in the local
database, the timeout is rescheduled. Every hour, the Sink
application tries to send the traces that remain in the local
database out to the Web Service. A trace is removed locally
upon receiving an acknowledgment from the Web Service.
An acknowledgment is issued when the Web Service has been
able to record the trace in a SQL database with success. If the
client cannot connect to the Web Service, it will try again at
the next round.

When a user wants to monitor an application, a message
with the package name as payload is sent to the Sink service
which keeps track of all the applications to monitor in a list.
When a user wants to stop monitoring a given application, a
message is sent to the Sink service which removes it from its
list of applications to monitor.

4.2. The Web Service. This server provides the following
services to Sink: upload applications, download the modified
applications, and send the traces. Now the key part of the
whole system, where the logic of the method presented lies, is
the tool that implements the application, a process known as
“hooking.” In the following, we explain it. The Web Service,
implemented as a Servlet on a Tomcat web application server,
is a RESTful Web Service which exposes services to clients
(e.g., Android smartphone) via resources. The Web Service
exposes three resources which are three code pages enabling
the Sink to upload an application to hook, download a hooked
application, and send traces. The hooking process is explained
in more detail in Section 4.3.1.

The file upload service allows the Sink to send the target
application to monitor and triggers the command to insert
all the required hooks and the embedded client to the
application. Also, it is in charge of storing the submitted
Android binary .apk file on the server and receiving a list of
permissions. This set of permissions will limit the amount
of hooks to monitor, hooking only the API function calls
linked to these permissions. Conversely, the file download
service allows the Sink to download the previously sent
application, which is now prepared to be monitored. A
ticket system is utilized in order to keep tracking of the
current application under monitoring. The trace upstream
service allows the Sink to upload the traces stored on the
device to the server database and remove the traces from
the devices local SQLite database. Upon receiving traces, the
Web Service records them in a SQL database and sends an
acknowledgment back to the Sink. In case of failure in the
server side or in the communication channel, the trace is
kept locally in the SQLite database until the trace is stored
in the server and an acknowledgment is received by the
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Sink. In both cases, it might occur that the trace has just
been inserted in the SQL database and no answer is sent
back. Then the Sink would send again the same trace and we
would get a duplication of traces. However, the mechanism
of primary key implemented in the SQL database prevents
the duplication of traces. A primary key is composed of one
or more data attributes whose combination of values must be
unique for each data entry in the database. When two traces
contain the same primary key, only one trace is inserted while
the insertion of the other one throws an exception. When
such an exception is thrown, the Web Service sends back an
acknowledgment to the Sink so as to avoid the Sink resending
the same trace (i.e., forcing the Sink to remove from its local
database the trace that has already been received by the Web
Service).

4.3. Instrumenting an Application. In this section, we first
describe the process of inserting hooks into an Android appli-
cation and then we show an example of a hook implementa-
tion. A tutorial on instrumentation of Android applications
is presented by Arzt et al. in [22].

However, before proceeding with the insertion of in-
strumentation code to the decompiled APK below, we
would like to clarify the effect of disassembling the up-
loaded applications, that is, the differences between the
original code and code generated after instrumentation.
Briefly, the disassembling of the uploaded application is per-
formed by using the Smali/Baksmali tool which is assem-
bler/disassembler, respectively, for the dex-format (https://
source.android.com/devices/tech/dalvik/dex-format.html).
This is the format used by Dalvik, one of the Android’s
JVM implementations. Thus, the disassembling is able to
recover an assembler-like representation of the Java original
code. This representation is not the original Java source
code (Baksmali is a disassembler, not a decompiler after
all). However, Baksmali creates both an exact replica of
the original binary code behavior and high-level enough
to be able to manipulate it in an easy way. This is why we
can add additional instructions to instrument the original
code for our purposes and then reassemble it back to a dex
file that can be executed by Android’s JVM. On the other
hand, as discussed in [22], instrumentation of applications
outperforms static analysis approaches, as instrumentation
code runs as part of the target app, having full access to
the runtime state. So, this explains the rationale behind
introducing hooks in order to trace core sensitive or
restricted API functions used at runtime of the apps. In
other words, the Smali code reveals the main restricted APIs
utilized by the apps under test, even in the presence of source
code obfuscation. We can therefore resort to monitoring
these restricted APIs and keep tracking of those Android
suspicious programs’ behavior.

4.3.1. Hooks Insertion. The hooking process is done in 6 steps:
(i) receiving the application to hook from the smartphone, (ii)
unpacking the application and disassembling its Dalvik byte
code via the Android-apktool, (iii) modifying the application
files, (iv) assembling Dalvik byte code and packing the
hooked application via the Android-apktool, (v) signing the
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Q...

5)...

(1) .class public Lcom/mainactivity/MainActivity;

(3) invoke-static/range {v2 --- v6}, log_sendTextMessage(::-)
(4) invoke-virtual/range {vl --- v6}, sendTextMessage(---)

LISTING 1: Main activity class.

2)...
4) ...

(7) return-void
(8) .end method
9)

(11) .1ocals 3

(12) .parameter payload
(13) move-object v0, pO
14) ...

(20) return-void
(21) .end method

(1) .class public Lorg/test/MonitorLog;
(3) .method public static log_sendTextMessage(---)

(5) const-string vO, “packageName: com.testprivacy,...
(6) invoke-static {v0}, sendLog(Ljava/lang/String;)

(10) .method public static sendLog(Ljava/lang/String;)

(15) new-instance v1, Ljava/lang/Thread;

(16) new-instance v2, Lorg/test/EmbeddedClient;

(17) invoke-direct {v2, vO}, init(Ljava/lang/String;)
(18) invoke-direct {v1, v2}, init(Ljava/lang/Runnable;)
(19) invoke-virtual {v1l}, start()

»

LI1STING 2: Monitor log class.

hooked application, and (vi) sending the hooked application
upon request of the smartphone.
Step (iii) can be subdivided into several substeps:

(1) adding the Internet permission in the AndroidMan-
ifest to enable the embedded client inserted in the
application to hook to communicate with the Sink via
UDP sockets,

(2) parsing the code files and adding invocation instruc-
tions to the prologue functions before their cor-
responding hooked functions: when the monitored
application is running, before calling the hooked
function, its corresponding prologue function will be
called and will build its corresponding partial trace.
The list of desired functions to hook is provided by
the administrator of the Web Service. For instance,
if the administrator is interested in knowing the
applications usage, it will hook the functions that are
called by the application when starting and when
closing,

(3) adding a class that defines the prologue functions: it
is worth noting that there will be as many prologue

functions as functions to hook. Each prologue func-
tion builds its partial trace. Since we do not log the
arguments of the hooked functions, the partial traces
that are issued by the same monitored application will
only differ by the name of the hooked function. It
is also worth noting that the prologue functions are
generated automatically.

Since every Android application must be signed by a
certificate for being installed on the Android platform, we use
the same certificate to check if the hooked application comes
from our Web Service. For this, the certificate used in the
Web Service has been embedded in the Sink application. This
prevents attackers from injecting malicious applications by
using a man-in-the-middle attack between the smartphone
and the Web Service.

4.3.2. Hook Example. Consider a case where the function
sendTextMessage, used to send short messages (SMS) on the
Android platform, is to be logged in a monitored application.
This function is called in the main activity class of the
application corresponding to the code Listing 1. As for the
class shown in Listing 2, it defines the prologue functions and
the function responsible for passing the partial traces, built



by the prologue functions, to the embedded client. For space
reasons, we will not show the embedded client.

In the main activity class corresponding to the class
shown in Listing 1, the function sendTextMessage is called
at line (4) with its prologue function log_sendTextMessage
which has been placed just before at line (3). Since the hooked
function may modify common registers used for storing the
parameters of the hooked function and for returning objects,
we have preferred placing the prologue functions before their
hooked functions. The register vI is the object of the class
SmSManager needed to call the hooked function. As for the
registers v2 to v6, they are used for storing the parameters
of the hooked function. Since our prologue functions are
declared as static, we can call them without instantiating their
class 2, and therefore we do not need to use the register v1.

An example of the monitor log class is shown in Listing
2. The name of the class is declared at line (1). At lines (3) and
(10), two functions are defined, namely, log_sendTextMessage
and sendLog. The former function, prologue function of the
hooked function sendTextMessage, defines a constant string
object containing the partial trace at line (5) and puts it into
the register v0. Then the function sendLog is called at line
(6) with the partial trace as parameter. The latter function
saves the partial trace contained in the parameter p0 into the
register v0 atline (13). Atlines (15) and (16), two new instances
are created, respectively: a new thread and new instance
of the class EmbeddedClient. Their instances are initialized,
respectively, at lines (17) and (18). Finally, the thread is started
at line (19) and the partial trace is sent to the Sink. It is worth
noting that, in these two examples, we have omitted some
elements of the code which are replaced by dots to facilitate
the reading of the code.

4.4. Visualization. The visualization of anomalous behavior
is the last component of the proposed architecture. In order
to perform a visual analysis of the applications’ behavior
in a simplified way, a D3.js (or just D3 for Data-Driven
Documents (JavaScript library available at http://d3.org/))
graph was used. D3 is an interactive and a browser-based
data visualizations library to build from simple bar charts to
complex infographics. In this case, it stores and deploys graph
oriented data on a tree-like structure named dendrograms
using conventional database tables. Generally speaking, a
graph visualization is a representation of a set of nodes and
the relationships between them shown by links (vertices and
edges, resp.).

This way, we are able to represent each of the analyzed
application’s behaviors with a simple yet illustrative repre-
sentation. In general, the graphs are drawn according to the
schema depicted in Figure 3. The first left-hand (root) node,
“Application,” contains the package name of the application,
which is unique to each of the existing applications. The
second middle node (parent), “Class,” represents the name
of the Android component that has called the API call.
The third node, “Function” (the right-hand or child node),
represents the names of functions and methods invoked
by the application. It is worth noting that each application
can include several classes and each class can call various
functions or methods.
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FIGURE 3: Schema used for the dendrograms.

In other words, function calls are located in the right-
hand side of the dendrogram. For each node at this depth we
are looking for known suspicious functions derived from a set
of predefined rules as described below.

4.4.1. Rules “Generation”. The rules aim to highlight re-
stricted API calls, which allow access to sensitive data or
resources of the smartphone and are frequently found in
malware samples. These could be derived from the static
analysis where the classes.dex file is converted to Smali
format, as mentioned before, to get information considering
functions and methods invoked by the application under
test. On the other hand, it is well know that many types of
malicious behaviors can be observed during runtime only.
For this reason we utilize dynamic analysis; that is, Android
applications are executed on the proposed infrastructure (see
Figure 2) and interact with them. As a matter of fact, we are
only interested in observing the Java based calls, which are
mainly for runtime activities of the applications. This includes
data accessed by the application, location of the user, data
written to the files, phone calls, sending SMS/MMS, and data
sent and received to or from the networks.

For the case that an application requires user interactions,
we resort to do that manually so far. Alternatively, for this pur-
pose one can use MonkeyRunner toolkit, which is available in
Android SDK.

In [18, 23], authors list API functions calls that grant
access to restricted data or sensible resources of the smart-
phone, which are very often seen in malicious code. We
base our detection rules in those suspicious APIS calls. In
particular, we use the following types of suspicious APIs:

(i) API calls for accessing sensitive data, for exam-
ple, IMEI and USIMnumbeleakage, such as getDevi-
celd(), getSimSerialNumber(), getlmei(), and getSub-
scriberld(),

(ii) API calls for communicating over the network, for
example, setWifiEnabled() and execHttpRequest(),

(iii) API calls for sending and receiving SMS/MMS mes-
sages, such as sendTextMessage(), SendBroadcast(),
and sendDataMessage(),

(iv) API calls for location leakage, such as getLastKnown-
Location() and getLatitude(), getLongitude(), and
requestLocationUpdates(),

(v) API function calls for execution of external or par-
ticular commands like Runtime.exec(), and Ljava/
lang/Runtime; -> exec(),



Journal of Electrical and Computer Engineering

androidapplicationl.json ¥ | & Goodware /) Adware ¥ Malware

androidapplicationl O

MoviePlayer

Class or function Search

SendTextMessage(7132, 846976)

SendTextMessage(7132, 846977)

SendTextMessage(7132, 846978)

SendTextMessage(7132, 846979)

FIGURE 4: The simplified dendrogram of the malware FlakePlayer has been generated using the D3. Note that at the upper left corner of the
figure there is a combobox to select the monitored malware (here, for simplicity, we use a shortened version of package name of the app,
i.e., androidapplicationl). Besides, lining up to the right of the combobox, there are three activated checkboxes, labeled as Goodware in blue,
Adware in orange, and Malware in red. Also, at the upper right corner of the figure, there is a search button that allows us to look for classes
or functions. The complete package name of the malware FakePlayer is org.me.androidapplicationl.MoviePlayer.

(vi) API calls frequently used for obfuscation and load-
ing of code, such as DexClassLoader.Loadclass() and
Cipher.getInstance().

Here the rule module uses the above-mentioned API calls
to classify the functions and methods invoked on the runtime
of the applications into three classes, that is, Benign, Adware,
or Malware. So in this way, we can generate IF-THEN rules
(cf. rules-based expert systems). Next we show example rules
that describe suspicious behavior. Some of the rules generated
by us are similar or resemble the ones in [24], namely,

(1) arule that shows that the examined app is not allowed
to get the location of the smart device user:

IF Not (ACCESS_FINE_LOCATION) AND CALL_
getLastKnownLocation THEN Malware,

(2) another rule which might detect that the application
is trying to access sensitive data of the smartphone
without permission:

IF Not (READ_PHONE_STATE) AND CALL_
getImei THEN Malware.

Our approach selects from the database those functions
that have been executed that match the suspicious functions
described in the rules. Package name and class name of such
function are colored accordingly to the “semaphoric” labeling
described in Section 6.1.

To illustrate the basic idea we choose a malware sample,
known as FakePlayer, in order to draw its graph. Thus, by
means of running the filtering and visualization operations
we end up with the graph of the malware, shown in Figure 4.

The system allows adding new rules in order to select and
color more families of suspicious functions.

5. Testbed and Experimentation

Before introducing the reader into the results of using the
monitoring and visualization platform, we need to explain
the testbed. We first describe the experiment setup; then we
follow the steps of running the client-side Sink.

5.1. Experiment Set Up. All the experiments have been re-
alized on a Samsung Nexus S with Android Ice Cream
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FIGURE 5: User interface of the Sink. (a) Choosing the application, (b) selecting the menu for permissions, (c) electing the permissions, and

(d) steps of the monitoring process.

Sandwich (ICS). The Nexus S has a 1 GHz ARM Cortex A8
based CPU core with a PowerVR SGX 540 GPU, 512 MB of
dedicated RAM, and 16 GB of NAND memory, partitioned
as 1 GB internal storage and 15 GB USB storage.

We have explored different Android applications in order
to evaluate the whole framework; some of these samples have
been taken from the Android Malware Genome Project (The
Android Malware Genome Project dataset is accessible at
http://www.malgenomeproject.org/):

(i) FakePlayer malware,
(ii) SMSReplicator malware,
(iii) iMatch malware,
(iv) DroidKungFul malware,
(v) DroidKungfud malware,
(vi) The spyware GoldDream in two flavors,

(vii) GGTracker malware.

5.2. Client-Side Monitoring. The activities in Figure 5(a) dis-
play all the applications installed on the device that did
not come preinstalled, from which the user selects a target
application to monitor. Once an application is selected, the
next step is to choose which permission or permissions the
user wants to monitor. This can be observed in the third
snapshot (white background) of Figure 5(c). Following the
permissions clearance, the interface guides the user along
several activities starting with the uploading of the selected
application which is sent to the Web Service where the
hooks are inserted. After this hooking process has finished,
the modified application is downloaded from the Web Ser-
vice. Afterwards, the original application is uninstalled and
replaced by the modified application. Finally, a toggle allows

starting and stoping monitoring of the application at any time
by the user.

We focus on the functions of the Android API that
require, at least, one permission. This allows the user to select
from the Sink those permissions that are to be monitored
at each application. This allows understanding how and
when these applications use the restricted API functions. The
PScout [12] tool was used to obtain the list of functions in
the “API permission map.” This way, the permission map
obtained contains (Android 4.2 version API level 17) over
thirty thousand unique function calls and around seventy-
five different permissions. Besides, it is worth mentioning
here that we refer to those associated with a sensitive API as
well as sensitive data stored on device and privacy-sensitive
built-in sensors (GPS, camera, etc.) as “restricted API func-
tions.” The first group is any function that might generate a
“cost” for the user or the network. These APIs include [8],
among others, Telephony, SMS/MMS, Network/Data, In-App
Billing, and NFC (Near Field Communication) Access. Thus,
by using the API map contained in the servers database,
we are able to create a list of restricted (“suspicious”) API
functions.

The trace managing part is a service that runs in back-
ground with no interface and is in charge of collecting the
traces sent from the individual embedded clients, located
on each of the monitored applications. It adds a timestamp
and the hash of the device ID and stores them on a
common circular buffer. Finally, the traces are stored in
bulk on a common local SQLite database and are period-
ically sent to the Web Service and deleted from the local
database.

In summary, the required steps to successfully run an
Android modified instrumented application are listed in
Figure 5(d) and comprise the following.
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Step 1 (select permissions). Set up and run the platform.
Choose an application APP to be monitored on the device.
Elect the permission list.

Step 2 (upload the application (APK)). Then, when this com-
mand is launched to upload the applications to the Web
Service, the hooking process is triggered.

Step 3 (download modified application). This starts the
downloading of the hooked application.

Step 4 (delete original application). This command starts the
uninstallation process of the original application.

Step 5 (install modified application). This command starts
the installation process of the modified application using
Android’s default application installation window.

Step 6 (start monitoring). Finally, a toggle is enabled and
can be activated or disabled to start or stop monitoring that
application as chosen by the user.

6. Results

To evaluate our framework, in this section we show the
visualization results for several different applications to both
benign and malicious. Then we proceed to evaluate the Sink
application in terms of CPU utilization and ratio of partial
traces received. Finally, we estimate the CPU utilization of a
monitored application and its responsiveness.

6.1. Visual Analysis of the Traces. As mentioned before, a set
of predefined rules allows us to identify the suspicious API
functions and depending on its parameters (e.g., application
attempts to send SMS to a short code that uses premium
services) we assign colors to them. This enables us to quickly
identify the functions and associate them with related items.
On top of that, by applying the color classification of each
node of the graph associated with a function in accordance
with the color code (gray, orange, and red) explained below,
it allows a “visual map” to be partially constructed. Fur-
thermore, this graph is suitable to guide the analyst during
the examination of a sample classified as dangerous because,
for example, the red shading of nodes indicates malicious
structures identified by the monitoring infrastructure.

In particular, to give a flavor to this analysis, the den-
drogram of FakePlayer in Figure 4 provides the user with
an indication of the security status of the malware. Different
colors indicate the level of alarm associated with the currently
analyzed application:

(i) Gray indicates that no malicious activity has been
detected, as of yet.

(ii) Orange indicates that no malicious behavior has been
detected in its graph, although some Adware may be
presented.

(iii) Red indicates in its graph that a particular appli-
cation has been diagnosed as anomalous, meaning
that it contained one or more “dangerous functions”
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described in our blacklist. Moreover, it could imply
the presence of suspicious API calls such as send-
TextMessage with forbidden parameters, or the case
of using restricted API calls for which the required
permissions have not been requested (root exploit).

So, itis possible to conduct a visual analysis of the permissions
and function calls invoked per application, where using some
kind of “semaphoric labeling” allows us to identify easily the
benign (in gray and orange colors) applications. For instance,
in Figure 4 there is a presence of malware, and the nodes are
painted in red.

The dendrogram shown for FakePlayer confirms its
sneaky functionality by forwarding all the SMS sent to the
device to the previously set phone number remaining unno-
ticed. For the sake of simplicity, we reduce the API function
call sendTextMessage(phoneNo, null, SMS Content, null, null)
to sendTextMessage(phoneNo, SMS Content). It uses the
API functions to send four (see Figure 4) premium SMS
messages with digit codes on it in a matter of milliseconds.
Of course, sending a SMS message does not have to be
malicious per se. However, for example, if this API utilizes
numbers less that 9 digits in length, beginning with a “7”
combined with SMS messages, this is considered a costly
premium-rate service and a malware that sends SMS mes-
sages without the user’s consent. The malware evaluated sends
SMS messages that contain the following strings: 846976,
846977, 846978, and 846979. The message may be sent to a
premium SMS short code number “7132,” which may charge
the user without his/her knowledge. This implies financial
charges. Usually, when this malware is installed, malicious
Broadcast Receiver is enrolled directly to broadcast messages
from malicious server to the malware, so that user cannot
understand whether specific messages are delivered or not.
This is because the priority of malicious Broadcast Receiver
is higher than SMS Broadcast Receiver. Once the malware
is started, sending the function call sendTextMessage of SMS
Manager API on the service layer, a message with premium
number is sent which is shown in Figure 4.

6.2. Interactive Dendrograms. In general, it is needed to
conduct the visual analysis from different perspectives. To do
that we have developed an interactive graph visualization. So,
we have four options or features in the D3 visualization of the
application to monitor, namely, (a) selection of full features of
the application (Goodware checkbox, Adware checkbox, and
Malware checkbox), (b) the Goodware checkbox indicating
that the app is assumed to be Goodware, (c) the Adware
checkbox of the application, and (d) the Malware checkbox
to look for malicious code. The analyst can choose to observe
a particular Java class or function by typing the name of
it inside the search box and clicking on the related search
button.

Figures 6 and 7 illustrate a big picture of the whole
behavioral performance of the malware Droid KungFul whose
package name is com.nineiworks.wordsXGN, and the mali-
cious function calls are invoked. For the sake of simplicity,
we shorten the package name of DroidKungFul to wordsXGN
in the dendrogram. As a matter of fact, we apply a similar
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FIGURE 6: Visualization of the DroidKungFul malware with full features chosen (i.e., all the checkboxes are activated).

TABLE 1: Malware family, detection rules, and suspicious functions.

Malware family Detection rules

Suspicious functions

FakePlayer preset numbers) THEN Malware
. IF (SEND_SMS) && (CALL_sendTextMessage() with

SMSReplicator pre(set numbers; TH]éN Malware 0

iMatch IF Not (ACCESS_FINE_LOCATION) && IF
(SEND_SMS) THEN Malware
[IF (INTERNET) && IF Not

DroidKungFul (ACCESS_FINE_LOCATION)] || [IF
(READ_PHONE_STATE) && IF (INTERNET)] THEN
Malware

DroidKungFu4 ’ITF H(II:JI;T\ITI\I:JI{:II‘\AI’E};) && IF (READ_PHONE_STATE)

GoldDream [IF (READ_PHONE_STATE) && IF Not

(Parman) (SEND_SMS)] || [IF Not (READ_PHONE_STATE) &&

IF (INTERNET)] THEN Malware

[IF (READ_PHONE_STATE) && IF Not

GoldDream (Dizz)
&& IF (INTERNET)] THEN Malware
[IF (READ_PHONE_STATE) && Not

GGTracker

&& IF (INTERNET)] THEN Malware

IF (SEND_SMS) && (CALL_sendTextMessage() with

(SEND_SMS)] || [IF Not (ACCESS_FINE_LOCATION)

(SEND_SMS)] || [IF Not (ACCESS_FINE_LOCATION)

sendTextMessage(7132, null, 846976, null, null)

sendTextMessage (1245, null, {From: 123456789 Hi how
are you}, null, null)

requestLocationUpdates(); send TextMessage()

getLatitude(); getLongitude(); getDeviceid();
getLIneINumber(); getImei()

getDeviceid(); getLInelNumber(); getSimSerial();
getImei();

getDeviceld(); getLInelNumber(); getSimSerial();
sendTextMessage(); getImei()

getDeviceld(); getLInelNumber(); getSimSerial();
sendTextMessage(); requestLocationUpdates();
getImei()

getDeviceld(); getLInelNumber(); getSimSerial();
sendTextMessage(); requestLocationUpdates();
getImei()

labeling policy to the other dendrograms. Moreover, we
have the dendrograms for the DroidKungFu4 in Figure 8. In
particular, in the graph of Figure 8(a), we conduct the visual
inspection by using full features (i.e., all the checkboxes active
simultaneously) looking for red lines (presence of malware,
if that is the case). Furthermore, in the graph of Figure 8(b),
now we can focus our visual examination in the malicious
functions carried out by the application. The visual analysis
of the DroidKungFul and DroidKungFu4 includes encrypted

root exploits, Command & Control (C & C) servers which
in the case of DroidKungFul are in plain text in a Java class
file, and shadow payload (embedded app). In Table1, we
have some of the suspicious function calls utilized by the
malware which pop up from the dendrograms. Regarding
the IF-THEN rules, the allowed clauses or statements in
our infrastructure are permissions and API functions calls.
The fundamental operators are Conditional-AND which is
denoted by &&, Conditional-OR which is denoted by ||,



Journal of Electrical and Computer Engineering

wordsXGN.json v | 0 Goodware () Adware © Malware

13

I Search

ActivityManager getMemorylInfo(android.app.ActivityManager$Memorylnfo;)
4 8 getRunningServices(int;)
getFilesDir()
Context O<: startService(android.content.Intent;)
setFlags(int;)
Intent O—<: addFlags(int;)
PackageManager O—<: getApplicationInfo(java.lang.String;int;)
getInstalledPackages(int;)
. getLongitude()
Location Q—<: getLatitude()

Wifilnfo ()

WifiManager ()

@ getMacAddress()

@ getConnectionInfo()

Handler ()
wordsXGN ()

@ sendMessage(android.os.Message;)

Process killProcess(int;)
myPid()

getDeviceld()
TelephonyManager O—<: getLinelNumber()

SearchService

getApplicationInfo()
setUsbEnabled()
execStartApp(java.lang.String|];)
isVersion221()

runsh(java.lang.String;java.lang.String;)
getNetOperater(android.content.Context;)
1sInstalled(android.content.Context;java.lang.String;)

Utils O

getTelManager(android.content.Context;)
getImei(android.content.Context;)

System ()

@ loadLibrary(java.lang.String;)

Timer )

@ schedule(java.util. TimerTask;long;long;)

FIGURE 7: Visualization of the malicious API calls detected by our system for DroidKungFul. Note the chosen options of the monitored
malware in the dendrogram at the upper left side. First, we shorten version of the package name (wordsXGN) of the malware in the combobox.
Next we have three checkboxes, namely, Goodware, Adware, and Malware. In this graph, only the red checkbox has been activated in order

to conduct the visual analysis. The full package name of DroidKungFul is com.nineiworks.wordsXGN.

and Not. For example, if the examined app does not have
permission to send SMS messages in the AndroidManifest file
and that app trys to send SMS messages with the location of
the smartphone THEN that application may have malicious
code. The rule generated for this case is shown below:

IF Not (SEND_SMS) && (ACCESS_FINE_LOCA-
TION) THEN Malware.

Here, malicious code and malware are interchangeable
terms. The possible outcomes are Goodware or Malware.
Nevertheless, the proposed infrastructure might be capable
of evaluating a third option, Adware, in a few cases. In this
paper we do not describe the IF-THEN rules for the third kind
of outcome. In this work, we restrain the possible outcomes
to the two mentioned options.

We have used 7 rules in our experimentation which are
listed in Table 1 (note that rules 1 and 2 are the same). We have
listed in Table 1 the most frequently used rules. They mainly
cover cases of user information leakage.

The most frequently used detection rules that we have
utilized in our experimentation are listed in Table 1 (second
column).

6.3. Client-Side CPU Use Analysis. We define the CPU uti-
lization of a given application as the ratio between the time
when the processor was in busy mode only for this given
application at both the user and kernel levels and the time
when the processor was either in busy or idle mode. The CPU
times have been taken from the Linux kernel through the files
“/proc/stat” and “/proc/pid/stat” where pid is the process id
of the given application. We have chosen to sample the CPU
utilization every second.

The CPU utilization of the Sink application has been
measured in order to evaluate the cost of receiving the partial
traces from the diverse monitored applications, processing
them, and recording them in the SQLite database varying the
time interval between two consecutive partial traces sent. We
expect to see that the CPU utilization of the Sink increases as
the time interval between two consecutive partial traces sent
decreases. Indeed, since the Sink must process more partial
traces, it needs more CPU resource. This is confirmed by
the curve in Figure 9. The CPU utilization has a tendency
towards 30% when the time interval between two consecutive
partial traces received tends to 10 ms because the synthetic
application takes almost 30% of the CPU for building and
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FIGURE 8: Dendrograms of the tested application. (a) Graph of the DroidKungFu4 in full features, and (b) graph of the malicious functions
invoked by DroidKungFu4. The full package name of DroidKungFu4 is com.evilsunflower.reader.evilXindongl3.
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FIGURE 10: Difference of CPU utilization between an application
monitored and nonmonitored.

sending partial traces, and the rest of applications utilize the
rest of the CPU resource. When no monitored applications
send partial traces to the Sink and the Sink is running in the
background (i.e., its activity is not displayed on the screen), it
consumes about 0% of the CPU.

The CPU utilization of a synthetic application has also
been measured in order to evaluate the cost of building and
sending the partial traces to the Sink while the time interval
between two consecutive partial traces sent was varied. We
expect to see a higher CPU utilization when the application is
monitored. Indeed, since the synthetic application must build
and send more partial traces, it needs more CPU resources.
This is confirmed by Figure 10. We note that the increase of
CPU utilization of the application can be up to 28% when
it is monitored. The chart shows an increase in application
CPU utilization to a level up to 38% which is justified when
the monitoring is fine-grained at 10 ms. However, this high
frequency is not likely to be needed in real applications.

6.4. Responsiveness. We define an application as responsive
if its response time to an event is short enough. An event
can be a button pushed by a user. In other words, the appli-
cation is responsive if the user does not notice any latency
while the application is running. In order to quantify the
responsiveness and see the impact of the monitoring on the
responsiveness of monitored applications, we have measured
the time spent for executing the prologue function of the
synthetic application. We have evaluated the responsiveness
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of the monitored application when the Sink was saturated by
partial traces requests, that is, in its worst case. The measured
response time was on average less than 1 ms. so, the user does
not notice any differences when the application is monitored
or not, even though the Sink application is saturated by partial
traces. This is explained by the fact that UDP is connectionless
and therefore sends the partial traces directly to the UDP
socket of the Sink without waiting for any acknowledgments.

7. Limitations

So far we illustrated the possibilities of our visual analysis
framework by analyzing 8 existing malicious applications. We
successfully identified different types of malware accordingly
to the malicious payload (e.g., privilege escalation, finan-
cial charges, and personal information stealing) of the app
while using only dynamic inspection in order to obtain the
outcomes. Even though the results are promising, they only
represent a few of the massive malware attacking today’s
smart devices. Of course, the aim of this system is not to
replace existing automated Android malware classification
systems because the final decision is done by a security
analyst.

Although, here, we propose a malware detector system
based on runtime behavior, this does not have detection
capabilities to monitor an application’s execution in real time,
so this platform cannot detect intrusions while running. It
only enable detecting past attacks.

Also, one can figure out that malware authors could try
avoiding detection, since they can gain knowledge whether
their app has been tampered with or no. As a result, the actual
attack might not be deployed, which may be considered a
preventive technique. Moreover, it is possible for a malicious
application to evade detection by dynamically loading and
executing Dalvik bytecode at runtime.

One of the drawbacks of this work could be the manual
interactions with the monitored application during runtime
(over some time interval). Also, the classification needs a
more general procedure to get the rule-based expert system.
The natural next step is to automate these parts of the process.
For example, in the literature there are several approaches
that can be implemented in order to automatically generate
more IF-THEN rules [15] or to resort to the MonkeyRunner
kit available in Android SDK to simulate the user interactions.
Of course, the outcomes of the 8-sample malware presented
here are limited to longest time interval used in the study,
which was 10 minutes. Extending this “playing” time with the
app using tools for the automation of user’s interactions could
provide a more realistic graph and better pinpoint the attacks
of the mobile malware.

Another limitation of this work is that it can only
intercept Java level calls and not low level functions that can
be stored as libraries in the applications. Thus, a malicious
app can invoke native code through Java Native Interface
(JNI), to deploy attacks to the Android ecosystem. Since our
approach builds on monitoring devices that are not rooted,
this approach is out of the scope of our research.

It is worth mentioning that our API hooking process
does not consider the Intents. The current version of the
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infrastructure presented in this paper is not capable of
monitoring the Intents sent by the application, as sending
Intents does not require any kind of permission. Not being
able to monitor Intents means that the infrastructure is not
able to track if the monitored application starts another
app for a short period of time to perform a given task, for
instance, opening a web browser to display the end-user
license agreement (EULA). Also, adding this feature would
allow knowing how the target application communicates with
the rest of the third party and system applications installed on
the device.

Ultimately, this framework could be useful for final users
interested in what apps are doing in their devices.

8. Conclusions

We provide a monitoring architecture aiming at identify-
ing harmful Android applications without modifying the
Android firmware. It provides a visualization graph named
dendrograms where function calls corresponding to prede-
fined malware behaviors are highlighted. Composed of four
components, namely, the embedded client, the Sink, the Web
Service, and the visualization, any Android application can
be monitored without rooting the phone or changing its
firmware.

The developed infrastructure is capable of monitoring
simultaneously several applications on various devices and
collecting all the traces in the same place. The tests performed
in this work show that applications can be prepared to be
monitored in a matter of minutes and that the modified
applications behave as they were originally intended to,
with minimal interference with the permissions used for.
Furthermore, we have shown that the infrastructure can be
used to detect malicious behaviors by applications, such as the
monitored FakePlayer, DroidKungFul and DroidKungFu4,
and the SMSReplicator and many others taken from the
dataset of the Android Malware Genome Project.

Evaluations of the Sink have revealed that our monitoring
system is quite reactive, does not lose any partial traces, and
has a very small impact on the performance of the monitored
applications.

A major benefit of the approach is that the system is
designed as platform-independent so that smart devices with
different versions of Android OS can use it. Further improve-
ments on the visualization quality and the user interface
are possible, but the proof of concept implementation is
demonstrated to be promising. For future work, we plan
to extend the current work in order to develop a real-time
malware detection infrastructure based on network traffic
and on a large number of apps.
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