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Abstract—Despite attractiveness of multicore processors for
embedded systems, the potential performance gains need to be
studied in the context of real-time task scheduling and memory
interference. This paper explores performance-aware schedula-
bility of multicore systems by evaluating the performance when
changing scheduling policies (as design parameters). The model-
based framework we build enables analyzing the performance
of multicore time-critical systems using processor-centric and
memory-centric scheduling policies. The system architecture we
consider consists of a set of cores with a local cache and
sharing the cache level L2 and main memory (DRAM). The
metrics we use to compare the performance achieved by different
configurations of a system are: 1) utilization of the cores; and
2) the maximum delay per access request to shared cache and
DRAM. Our framework, realized using UPPAAL, can be viewed
as an engineering tool to be used during design stages to identify
the scheduling policies that provide better performance for a
given system while maintaining system schedulability. As a proof
of concept, we analyze and compare 2 different cases studies.

I. INTRODUCTION

Today’s embedded systems demand increasing computing
power to accommodate the growing software functionality.
Multicore platforms are finding their way into automotive and
avionic areas where they are a target to deploy safety-critical
applications. In avionic systems, an ultimate goal of using
multicore platforms is to leverage the computing capabilities,
reduce the weight of on-board computing equipment and lower
the energy consumption. Multicore avionic systems are usually
built by integrating different subsystems to enable incremental
Design and Certification (iD&C) [31]], recommended by the
standard Integrated Modular Avionics (IMA) architecture [26]].
However, due to the safety requirements performance can be
sacrificed, up to a certain degradation level, if the safety and
reliability are in peril. Hence, performance is aimed to be as
high as the system safety permits.

In contrast to the classical federated architecture, IMA
supports functions related to different subsystems to share the
same computing platform. Such a support is implemented us-
ing partitioning, where different partitions running on different
cores compete for the access to a set of shared resources, such
as shared memories and buses. However, having applications
running simultaneously and requesting access to shared mem-
ories concurrently leads to interference. The non predictability
resulting from interference at any shared memory level may
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lead to violation of the timing properties in safety-critical real-
time systems. Moreover, the interference on shared memories
leads cores to stall, in particular for read access requests, so
that the performance is affected as well. Hence, bounding
memory interference is a key factor to guarantee schedulability
and improve performance, e.g. [16], [21].

Many recent works have been devoted to the analysis
of safety and predictability of multicore systems [19]], [22],
[3], [8], [23]. Fewer studies focus on the compensation
of performance while maintaining the timing predictability
guarantees [30], [27], [24], [28]. Processor-centric scheduling
policies are no longer sufficient to guarantee schedulability
without accounting for unacceptable pessimism, in particular
for memory-intensive applications running on large multicore
platforms [32]. To leverage the performance of multicore
systems while avoiding crippling pessimism, the notion of
memory-centric scheduling has been introduced [32]]. How-
ever, the performance gain obtained when using memory-
centric scheduling depends on the system application and
could be less important compared to the performance achieved
when running processor-centric scheduling. When designing
a software system, there is a potential margin within which
different configurations, obtained by slightly tweaking some
of the design parameters, can functionally behave in the same
way as the original design while achieving better perfor-
mance and satisfying the predictability requirements [27]], [23]].
Moreover, it is not always trivial to classify a system as
memory-intensive or processor-intensive as it may include a
mix of applications with different natures. Hence, identifying
the scheduling policies leading to a better performance needs
extra analysis processes.

This paper proposes a formal, tool-supported performance-
aware schedulability analysis for multicore systems. Our
model-based framework enables analyzing the schedulability
and performance of multicore systems while varying the
core scheduling policies so that configurations with better
performance are identified. We adopt the Asymmetric Multi-
Processing (AMP) [15] avionic scheduling architecture, where
partitions are statically allocated to specific cores. This choice
is motivated by the need to prevent error propagation between
the applications running on different cores. The scheduling
strategies we consider are memory-centric and processor-
centric (classic CPU scheduling policies). The platform archi-
tecture consists of a set of cores, having each a local cache,
and sharing the cache level 2 (L2) and DRAM. Application
tasks are modeled with fine-grained behavior such as read



and write accesses to L2 and DRAM in addition to the
classic scheduling parameters. The performance metrics we
consider are the utilization of cores and maximum delay per
access request to shared memories (L2 cache and DRAM).
We provide rigorous schedulability analysis using symbolic
model checking, while performance metrics are measured
using statistical model checking. To sum up, the contributions
presented here are:

o A framework for modeling and formal analysis of mul-
ticore systems on platforms with a hierarchy of shared
memories, and fine-grained application descriptions.

o A method for understanding trade-offs using two metrics
to evaluate system performance: utilization of cores and
maximum interference delay per access request to shared
memories.

e Providing templates in a formal analysis tool to sup-
port automatic creation and multi-criteria comparison of
system configurations, both with processor-centric and
memory-centric scheduling.

The rest of the paper is organized as follows: Section
reviews the related work. Section [[II| describes the necessary
background. Section introduces the performance metrics.
Section presents UPPAAL templates of our framework.
Section describes the performance analysis. Section
is the analysis of 2 case studies. Section is a conclusion.

II. RELATED WORK

The performance of multicore systems has been studied
intensively. Here we focus on works manipulating real-time
scheduling strategies to achieve better performance.

Putrycz et al.[24] present a survey on performance analysis
techniques for COTS-based systems and discuss the trade-off
between the design models used to capture system design and
the performance attributes to be measured. They identified
delays and throughput as main performance metrics. In a sim-
ilar way, Chhibber and Garg[9]] present a set of performance
metrics (throughput, energy consumption, memory contention,
etc) and criteria (time, cost, accuracy) to compare a set of
multicore platforms. Lofwenmark and Nadjm-Tehrani [21]]
presented a validation methodology for benchmarking of
WCET using avionic platforms.

Major recent works [34], [[16] introduce analytical frame-
works to calculate memory interference in multicore systems.
The interference of the parallel requests is calculated based
on banks interference as well as row-opening and precharge
(moving data back from a row-buffer to a row). Since each re-
quest interference is calculated separately, a relevant question
is how these frameworks deal with memory-intensive systems
where each process performs thousands of requests.

Teodoro et al. [30] propose new scheduling strategies,
Performance-Aware Dequeue Adapted Scheduler (PADAS)
and Performance-Aware Multiqueue Scheduler (PAMS), to
improve the performance of multicore systems. The platform
consists of a set of cores with different clock frequencies.
The execution model is implemented in terms of code an-
notations. In PADAS, tasks are sorted in one ready queue
(global) based on the acceleration (speedup) expected by

each task. A task is assigned to a core based on whether
the core frequency satisfies the task acceleration or not. In
PAMS, local scheduling is adopted for each core type so
that tasks having certain range of acceleration are sorted in
the appropriate queue according to a descending order of the
acceleration. This framework relies on an efficient task-to-
core mapping to achieve better performance. Tasks response
time is the performance metric used to compare configurations
having different scheduling policies. Our work aligns with
this approach [30], but it differs by using system benchmarks
rather than code annotations. Moreover, by adopting the AMP
scheduling strategy we assume that identifying the optimal
task-to-core mapping is beyond the scope of our paper.

Diamond et al. [12] study the performance of multicore
systems and discuss the challenges of measuring the perfor-
mance. Due to the strong influence of data access to the shared
memories (interference) on the system execution, shared cache
capacity, shared memory bandwidth and DRAM page conflicts
are identified as performance determining factors. A system
performance is relatively good if the flops, instructions, and
loads per cycle, which describe how hard cores and memories
are working, approach maximum values.

Subramanian et al. [28], identify memory interference-
induced slowdown as a performance metric. Slowdown is the
delay experienced by the application, due to waiting for access
to shared resources, compared to the case when the application
runs alone on the platform. The authors build a simple model
to capture and analyze such a performance metric and develop
a scheduling scheme (MISE-Fair) to minimize the maximum
slowdown. In essence, MISE-Fair estimates the slowdown of
each application and redistributes the memory bandwidth to
reduce the slowdown of the most slowed-down application.
However, minimizing the DRAM-related slowdown of tasks
may impact scheduling at the level of cores.

Yao et al. [32]] motivate the use of memory-centric schedul-
ing for multicore systems as processor-centric scheduling poli-
cies introduce unacceptable pessimism. The authors propose
a global memory-centric scheduling algorithm and study the
execution slowdown while varying the number of cores. A
conclusion is that the memory-centric policy can schedule
twice as many tasks compared to processor-centric schedul-
ing. Our work aligns with this approach [32], but we adopt
local scheduling (AMP), and arbitrary memory access patterns
during task executions rather than dedicated access patterns.

Compared to the state of the art [32], [30], [34]], we use more
detailed models to capture multicore platform architectures
and fine-grained application descriptions. Platforms include
a hierarchy of shared memories, and application tasks have
explicit numbers of read and write requests to each shared
memory. We use model checking to analyze schedulabil-
ity and performance while varying some design parameters
(scheduling policies). To make the system behavior more
realistic by spreading out the access requests to L2 and DRAM
non-deterministically during task execution rather than using
dedicated phases [32]. Our model-based framework supports
automatic configuration creation. In fact, by feeding our frame-
work with a single set of parameters at least 5 different config-
urations can be created. The difference from one configuration



to another is the scheduling policies of the individual cores.
The scheduling policies currently included are: First-In-First-
Out (FIFO), Fixed Priority Scheduling (FPS), Rate-Monotonic
(RM), Earliest Deadline First (EDF) and memory-centric. The
performance of each configuration is automatically captured
using model checking, and evaluated with processor-related
(utilization) or memory-related (access request delay) metric.

III. BACKGROUND

This section introduces benchmarking, as a technique to
measure tasks execution time (WCET) and maximum number
of memory accesses (WCRA), as well as the background of
our work.

In our work, we use the cache coloring policy (CC) [17] to
arbitrate concurrent access requests to the shared L2 cache
. In addition, we adopt the policy First Ready-First Come
First Serve (FR-FCFES) [25], [16] used by modern COTS-
based memory controllers to schedule the DRAM access
requests. The system application is given by a set of task
sets, each of which is statically assigned to a given core.
Besides WCET and deadlines, tasks have explicit read and
write access numbers for shared cache L2 and DRAM. We
distinguish between read and write access requests to shared
memories as read actions make cores stall, while write actions
are not blocking and can be performed using dedicated buffers.
Tasks assigned to the same core will be scheduled using either
memory-centric or processor-centric scheduling.

A. Systems Benchmarking

Throughout this section we describe how the inputs required
by our model-based framework are obtained from an actual
system, in particular WCETs and WCRAs. Putrycz et al [24]
propose benchmarking to measure a set of execution attributes
and performance characteristics of software systems. The
output of a system benchmarking will be used to reconstruct a
behavioral model of the system, which can be used in turn for
simulation and analysis purposes. Benchmarking is known as
an expensive operation that involves several iterative rounds
in order to reach conclusive decisions.

Flow analysis [29]], [8] is a technique to estimate the WCET
of a program. It consists of simulating, or concretely running, a
program in isolation and calculating WCET. Technically, static
analysis tools use symbolic execution engines to identify po-
tential execution paths. Such representations can be structured
in terms of control flow graph (CFG). WCET is then the time
elapsed when executing the longest path of the CFG. Static
analysis has been applied to the analysis of software systems
via different analysis tools, e.g. SWEET [29].

System profiling [35], [L6], [20] is a measurement-based
approach to estimate the execution time of a process and how
many times it accesses shared memories. The system being
analyzed is run for a sufficient number of times, each of
which for a long enough duration enabling the execution of
most of the system functions (code). The analysis focuses on
each process individually, so that for each run we measure
WCET and track how many times the process accesses a given
shared memory. The number of accesses can be obtained using

Performance Monitor Counters (PMCs) [20], [35]], available in
certain multicore platforms. PMCs provide the ability to count
L2 misses for both data and instructions per core.

Profiling and static analysis techniques are not mutually
excluded. Both techniques can be used to measure WCET and
WCRA.

B. Processor-centric Scheduling

To leverage the processing performance of a computing
system, a processing unit (core in our context) can be assigned
more than one task, however only one task can execute
effectively at any point in time. The arbitration between
the execution of different tasks is performed according to a
scheduling policy.

Basically, a scheduling policy determines, at any point in
time, which task from the ready queue must execute first
and whether a given task should be preempted by another.
Such a ready queue can be either local for a given core (local
scheduling) or common for a set of cores (global scheduling).
The key factor in selecting a ready task can be assigned to the
priority, remaining execution time, etc.

C. Memory-centric Scheduling

With the goal to reduce memory interference in multicore
systems, a recent alternative to schedule memory-intensive
application tasks is the use of a memory-centric policy [32].
Tasks assigned to the same core are sorted in the ready queue
according to a decreasing order of their WCRA (numbers of
memory accesses).

In our framework, we distinguish between the access num-
bers to L2 and DRAM. Hence, when comparing 2 tasks we
prioritize first the task having more DRAM access requests as
DRAM access is more expensive than accessing shared cache
L2. If both tasks have the same DRAM access number of
requests we refer then to their L2 access numbers where task
having higher number will be scheduled first.

D. Shared Memory Access Scheduling

In order to enhance the processing performance of multicore
platforms, some modern multicore processors E] consider a
shared L2 cache besides private caches (L1-cache). The pri-
mary reason of sharing a cache between different cores is to
reduce the access requests to the main memory DRAM [22].

Cache coloring policy [17], [33] is an algorithm to control
the access to the shared cache L2. It has been introduced to
aid performance optimization where physical memory pages
are mapped to cache pages, in contrast with old caching
systems where virtual memory is mapped to the cache. This
entails avoiding the clearance of cache pages on each context
switch. During execution, the algorithm frees the old pages
as necessary in order to make space for currently scheduled
applications (recoloring). The coloring algorithm sorts the
concurrent access requests according to their release times.

IE.g. Intel Core i7, AMD FX, ARM Cortex and FreeScale QorIQ proces-
SOrS.



Similarly, DRAM controllers in modern COTS-based sys-
tems use First Ready-First Come First Serve (FR-FCES)
policy [25], [16] to schedule accesses. FR-FCFS considers a
detailed DRAM architecture structured in terms of banks, rows
and columns. The access requests can target different banks
separately, where they will be queued in the corresponding
bank queue with a special preference to read requests since
they cause the processor to stall. Access requests will be
sorted at each bank queue first according to their readiness.
Thereafter, the candidates selected from banks level will be
further sorted at bus level where the earliest request gains
access, i.e. the first request showing up at bus level among
the requests being selected by bank schedulers. If no request
hits the row-buffer, older requests are prioritized over younger
ones. A request hits a row buffer if it has high row buffer
locality, i.e it targets a row being recently accessed.

In our framework, we do not consider the detailed internal
architecture and size of DRAM and shared cache. We focus
instead on measuring the delays caused by the concurrent
accesses. Cache recoloring and estimation of the optimal cache
size for each application are beyond the scope of this paper.

E. Statistical Model Checking

We use UPPAAL [10] to perform a formalized statistical sim-
ulation of our models, known as Statistical Model Checking
(SMC). SMC enables quantitative performance measurements
instead of the Boolean (true, false) evaluation that symbolic
model checking techniques provide. UPPAAL enables describ-
ing systems as a set of concurrent processes called network
of timed automata. Each timed automaton is represented by
a behavioral component called template. Processes are stat-
ically created by instantiating the underlying templates with
actual parameters. Basically, a timed automaton is a state-
transition system where transitions are labeled with potential
synchronization events (described with in our
models). The execution of a transition is guarded by potential
time and data constraints (described with green statements in
our models), and may lead to update variables and control flow
(described with blue statements in our models). Moreover, the
stay duration of a timed automaton at a given location can be
subject to a time constraint called invariant (described with

in our models) where it is allowed to wait only
while the invariant constraint is satisfied. The system safety
and liveness properties can be expressed using Computation
Tree Logic (CTL). A variation of UPPAAL called UPPAAL
SMC enables performing statistical and quantitative analysis.
We can summarize the main features of UPPAAL SMC as
follows:

o Stopwatches [7] are clocks that can be stopped and re-
sumed without a reset. They are very practical to measure
the execution time of preemptive tasks.

o Probability evaluation Pr [bound] (P) for a property
P to be satisfied within a given simulation time and/or
number of runs specified by bound.

e Simulation and estimation of the expected
minimum or maximum value of expressions over
a set of runs, E[bound] (min:expr) and

E[bound] (max:expr), for a given simulation
time and/or number of runs specified by bound.

Statistical model checking does not provide complete cer-
tainty that a property is satisfied, but only verifies it up to a
specific confidence level [11]], given as an analysis parameter.

IV. PERFORMANCE METRICS

This section defines the performance metrics we have
chosen as a basis to compare memory-centric and processor-
centric scheduling policies. We analyze the performance on
a set of independent runs Runs = {mi,7o,...}, randomly
generated according to a probabilistic semantics [[11]. A run
7 of a system S is an infinite sequence:

™ = So(to, 60)81(t1,€1) e Sn(tn, en) e

where each state s; gives information about a system con-
figuration including the state of each task (e.g. idle, ready,
running, blocked) and resource (e.g. idle, occupied) at state ¢;
so is the initial state. Each e; indicates an event (triggering,
queued or completing) signifying a transition from state s; to
Si+1. Timestamp % indicates the time from system initiation
until event ey. Every subsequent timestamp ¢; (with ¢ > 1)
indicates the duration between events e;_; and e;. Moreover,
for a given run 7w we introduce the following:

o InUse; (C) € {0,1} states whether the core C is in
use in state s of m or not |2l A core is in use if it is
either effectively executing a workload or stalling due
read access requests to L2 and DRAM.

. Issuedf(req) indicates at which state of 7 the access
request req performed by core C' has been issued.

. Grantedf (req) states the earliest state at which the re-
quest req performed by core C' has been granted.

Definition 1 (Core utilization): The utilization U~ (C') of a

core C' for a given run 7 up to the time bound (simulation
length) £ is given by the following:

> ((tig1 — i) x InUsez T (C))
r . tip1<L
Uz (C) = (limsup
t—L L

) x 100

The average utilization of a core C' over the set of runs
Runs, analyzed for the same time interval length £, will be
the sum of core utilizations of the individual runs over the
number of runs:

Definition 2 (Interference of access requests): We  define
the interference delay of an access request req to a shared
memory performed by a core C' in a run 7 as follows:
ReqDelay€ (req) = Granted< (req) — Issued< (req).

In a similar way, we define the maximum delay of the
requests Req. performed by a core C over a run 7 by:

RegDelayS = max(RegDelay€ (req | req € Reqc))

2In fact, we handle Boolean values as either 0 or 1.



The average of maximum interference delays performed by
a core C over the set of runs Runs can be calculated as follows:
j=|Runs|

> Rquelayfj
j=1

C
RquelayRuns = | Runs ‘

Interference delays are important factors for the tasks’
response time and schedulability, i.e. the longer interference
delays are the longer response time will be. As access requests
to L2 and to DRAM do not have the same interference delays
and impact on the system execution, later on we distinguish
between L2_RegDelayS,,, and DRAM_RegDelayS,, as the
interference delays of a given core C' to access L2 and DRAM
respectively.

V. SYSTEM MODEL DESCRIPTION

The platform we consider consists of a set of cores (process-
ing elements), one shared cache level and a shared DRAM.
The application is given by a set of periodic tasks mapped
to different cores. However, sporadic tasks can be considered
as well without any change in the system models. Mainly,
application tasks are characterized by their computation times
WCET (measured when each task runs in isolation), and the
worst case resource access numbers (WCRA) to DRAM
and shared cache L2 for both read and write patterns. Access
requests to shared memory are non-deterministically spread
out along the task execution. The reason behind this is that
the task execution, and thereby the issue time of data requests,
may vary from one period to another following the changes
in the computation environment.

We use T for the set of tasks and C for the set of cores. The
overall system architecture we consider is depicted in Fig. [T}
where S1, 52, S3 and S4 are scheduling policies.

Fig. 1. Simplified multicore system architecture.
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The assumptions about the systems we consider are:

« Tasks are periodic, and consume the entire budget WCET
for each period.

o Tasks assigned to the same core are arbitrated using a
local scheduler.

o We consider a local cache (L1) for each core, only one
shared cache (L2) and one DRAM for all cores.

—

{ Tasks

L2-cache

DRAM

A. Application Model

An application AP = {T1,..,T,} is a set of tasks each of
which describes the execution model of an individual process.
The process functionality is abstracted at task level using
WCET, and WCRA for both L2 and DRAM. WCET is the
pure execution time, captured in isolation when a task runs
alone on a single core. Regarding data fetching, we consider
2 attributes WCRA . and WCRA,,, where: WCRA . corresponds
to the maximum number of successful accesses (hits) to L2;
WCRA,, is the number of DRAM accesses (corresponds to
L2 miss) performed by a given process. Moreover, in order
to distinguish between read and write accesses to each shared
memory, we denote each of the attributes with r for read and w
for write, i.e. WCRA], WCRAY , WCRA;,, and WCRA},. Such
attributes are identifiable using program/cache analysis tools
[14], e.g. PAG tool [2], on a given platform architecture.

An access request to a shared memory is given by a
pattern € {L2, DRAM} stating to which memory the access
hits and an attribute RW indicating whether it is a read
(r) or write (w) action. As we need to keep track of when
the access requests are issued, so that FR-FCFS algorithm
determines the priorities of requests targeting DRAM, we
introduce the attribute issueTime which is initially empty
and will be initialized by a core when the access request is
effectively triggered. Accordingly, an access request is given

by req = (pattern, RW,issueTime). WCRA., and WCRAY,
respectively WCRA;, and WCRA},, of a task are then the

numbers of read and write accesses to L2, respectively DRAM.

Definition 3 (Task structure): A task T is given by
(Prd, Offset, WCET, WCRA!,, WCRAY , WCRAT,, , WCRAY, , Din, Pri, C')
where Prd is the task period, Offset is the periodic offset,
WCET is the pure execution time, DIn is the relative
deadline, and Pri is the priority level associated to 7.
WCRA?,, WCRAY , WCRA],, and WCRA?., are described above.
C is the core identifier to which the task will mapped.

Fig. 2. Task template model
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Fig. 3. Core template model
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Our UPPAAL task template model is depicted in Fig. [2]
We associate to each task an identifier tId as a template
parameter to distinguish between different tasks. The task
starts at location Init, and once the offset expires it moves to
location Ready to request the core (C) it is mapped to, through
a synchronization on channel reqgCore. The task waits to be
scheduled at location WaitSched unless the deadline is reached
by which it moves to location DeadlineMiss and updates a
global variable error to true. Once a task is scheduled , it
moves to location Run to execute and the status of the corre-
sponding core gets updated inUse[c]=1 to start accumulating
the core utilization. During its execution (WCET), a task non-
deterministically triggers access requests to L2 and DRAM.
For each access request, the task moves to location AccessRe-
quest and waits until the access request is satisfied upon which
it moves back to location Run. One can remark that, when a
task is requesting and waiting for data the clock measuring
the expiry of WCET is stopped (execTime[tld]’==0) so that
only the effective execution at Run consumes WCET. This is
implemented in UPPAAL by assigning rate O to the derivative
of execTime[tld]. From Run, the task joins either ExecDone,
if the execution WCET and accesses to L2 and DRAM
(numberAccesses=WCRA_+WCRA +WCRA, +WCRA,.) are
achieved before deadline, or it moves to location DeadlineMiss
otherwise. The task template can be instantiated for different
tasks by just providing the aforementioned parameters.

B. Platform Model

A platform is given by a set of processing elements PE,
sharing L2 and DRAM, and schedulers to manage the access
to L2 and DRAM. Each processing element PE is given by
a computation resource (core), a local cache memory and a
scheduler to dispatch tasks to run on that core. The access
time for local caches may vary from one PE to another.

1) Modeling of Processing Elements: A processing element
PE is given by (C,sched, H) where C is a core, sched
is the scheduling policy (core scheduler) adopted and H
is the local cache that we abstract using its access time
LocalCacheTime. The core model is depicted in Fig. 3]

Similarly to tasks, we assign to each core an identifier cId
as a parameter to distinguish between the different platform
cores. The core model is initially at location Available waiting
for ready tasks. Through an allocation, the core model does
not move from Available but the clock measuring its utilization
utiliz[cld] starts counting (utiliz/cld]’==inUse[cld]). Such

Fig. 4. Scheduler template model
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a clock can stop and resume according to the core status
inUse[cld], i.e. manipulated by the task template. Upon an
access request to a shared memory (accessExec[cld]?), the
core moves to location CacheRequest where it waits for the
expiry of the local cache access time LocalCacheTime before
performing the access request to the shared cache L2 and joins
location Determine. The core updates the request issue time
with the current time instant issueTime=discreteClk. At that
location, the clock measuring the core delay for the current
access to L2 starts (L2_RegDelay[cld]’==1). Once the access
to L2 hits (memoryAccess==cache) and terminates, the clock
L2_RegDelay[cld] gets stopped (L2_RegDelay[cld]’==0) and
the core moves back immediately to location Available to
continue executing the assigned workload. Otherwise, once
the L2 access terminates and misses (memoryAccess==dram)
the core requests access to DRAM and joins immedi-
ately the location DRAMWait, whereby the clock measuring
the core delay for the current access request is released
(DRAM_RegDelay[cld]’==1). Once the current access is com-
pleted, clock DRAM_ReqgDelay[cld] gets stopped while hold-
ing the measured delay. Upon the release of new access
requests, from location Available, clocks L2_RegDelay[cld]
and DRAM_ReqgDelay[cld] are reset.

The core blocking time on an access request (at locations
Determine and DRAMWait) depends on the access nature. If
it is a write action, the core will immediately be unlocked
by the scheduler of the targeted memory, otherwise the core
stalls until the read access request completes. Further details
regarding how to handle read and write accesses will be
provided in the description of L2 and DRAM schedulers.

The core needs to notify the running task when the current
access request is done, i.e. once the core itself is notified
by DRAM or L2, so that the task moves back as well from
location AccessRequest to Run and accounts a granted access
(curAccess++). As it is not possible to entitle a transition
with two synchronization events in UPPAAL, we introduce two
intermediate locations Interm1 and Interm2. Thus, we create
a sequence of 2 synchronizations without any delay between
them. We use urgentness and committedness of UPPAAL to
enforce time to not elapse at a given location (locations marked
with U and C).

Fig. @] depicts the core scheduler model. Initially at location
Init waiting for a ready task, the core moves to location
Allocate1 while queuing the identifier of the requesting task. If
the core queue contains only one element (queue.length==1),
which is the identifier of the newly added task, that task will
immediately be scheduled otherwise the scheduler just moves
back to Init. Once the core is released by the current running



task, through a signal on channel releaseCore, the scheduler
moves to Release while removing the first element of the
queue. If the queue is still not empty, the scheduler calls the
adopted scheduling policy sortQueue() of core cld to sort the
queue and moves to location Allocate2, whereafter it schedules
the task corresponding to the new first element in the queue.
Function sortQueue(cld) refers to the scheduling policy of core
cld, which is a core parameter in our model and can be FIFO,
FPS, EDF or memory-centric.

2) Modeling of Shared Memories: This section describes
the modeling of L2 cache, DRAM and their schedulers.
A DRAM=(DRAMStruct, DRAMSched, DRAMAccessTime) is
given by a structure DRAMStruct (Fig.[5), a scheduler DRAM-
Sched (Fig. [6) and the time duration for an effective access
DRAMAccessTime. The DRAM access time simulates the
duration of fetching data from a physical address in DRAM
once the access is scheduled. This is in fact to enable our
abstraction of the DRAM internal architecture to capture the
delay for accessing a DRAM bank/row. Our DRAM model can
be viewed as a one-bank memory which is shared between all
cores, but it can easily be extended for several banks by just
duplicating the DRAM structure and assigning each to one
core only [34]. Moreover, we assume that the instantiation of
our L2 and DRAM models satisfies the JEDEC standard [[1]],
which dictates the operation and timing constraints of memory
devices.

The DRAM structure model (Fig. [3) is initially waiting
at location Idle for an access request, either read or write.
DRAM can be allocated, by its scheduler, to a given core
i performing a read request DRAMReqR[i]? and moves to
location Read. Similarly, DRAM can be targeted with a write
request DRAMReqW?.

One can see that for write access requests the identifier of
the involved core is missing. This is because write requests
are not blocking, thus no need to keep track of which core
needs to be unlocked once the access is completed. At
locations Read and Write, the DRAM waits for the expiry
of the access time DRAM AccessTime then moves to lo-
cation Done. From Read, once the access time expires the
DRAM unlocks the involved core through a synchronization
dramAccessDone[currentCore]!, whereas from location Write
no unlock action is needed. From Done, DRAM notifies its
scheduler that the current access is done.

Fig. 5. DRAM template model
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We adopt the FR-FCFS policy to arbitrate accesses to
DRAM. We assume that row opening and reload actions
are instantaneous, so that we do not need to consider any
preference based on the already open row policy [16]. This
leads us to consider the attribute issueTime of each request as a
readiness. Hence, we characterize each request to DRAM with
another new attribute arrivalT, besides to issueTlime. In fact,

issueTime stores the time instant when the request is issued,
whereas arrivalT stores the instant when the request reaches
the corresponding bank queue. Thus, we compare requests first
based on their issue times (readiness) where an earlier request
has priority over later ones. If requests have the same issue
time, then the request having an earlier arrivalT has priority
over requests having later arrivalT.

The DRAM scheduler is depicted in Fig. [6] Initially at
location Init, upon the receive of an access request dram-
Req[i]? from any core i the DRAM scheduler inserts such
a request together with the identifier of the requesting core
into the queue and moves to location Allocatel. If such a
request is a write (rwAction==Write), the requesting core will
immediately be unlocked (dramAccessDone[l]!) as location
is committed Allocate1l. Moreover, if the write request is
alone in the queue (queue.length==1) it will immediately be
scheduled at location Unlocked. In case of a read request
(rwAction==Read), the DRAM scheduler does not unlock
the requesting core after queuing the request, but it just
schedules the access (DRAMReqR[DRAM.queue.elt[0].core]!)
if the current request is alone in the queue, i.e. DRAM is not
occupied. In any case, the scheduler moves back to Init.

Once an access request is finished, the scheduler is notified
by the DRAM through a synchronization event release DRAM ?
and moves to Release while removing the head of the queue.
If the queue is still not empty, the scheduler calls the algorithm
FR-FCEFS to sort the queue as other requests might join during
the execution of the last access. At location Allocate2, the
scheduler schedules the request in the head of the queue using
appropriate channels (DRAMReqR or DRAMReqW) according
to the request pattern; read or write.

Fig. 6.  DRAM scheduler model
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Due to space limitations, we omit describing the shared
cache L2 and its scheduler. In essence, L2 has the same
elements as DRAM , except that it uses a separate queue
to store its requests. Similarly, L2 scheduler has the same
behavior as that of DRAM scheduler but it operates on the
L2 queue using the cache coloring policy. However, since we
do not consider the internal pages of L2, the coloring policy
we adopt behaves in similar way to FCES policy.

Finally, a platform P is given by ((PE1, .., PE), DRAM, L2).
One can see that updating the specification of one platform
ingredient does not necessarily need to update the others.



C. System Model

In order to make our framework flexible, the application
and platform are specified separately then mapped together. A
system model S is given by an application AP = {T1,..,T,,},
a platform P = (PE, DRAM, L2) and a mapping M : AP —
‘PE assigning each task to a processing element PE; € PE.

VI. PERFORMANCE ANALYSIS
A. Schedulability Analysis

In our framework, the system schedulability is analyzed as
a reachability property using symbolic model checking [S]].
Whenever a process misses its deadline it joins immediately
the location DeadlineMiss (where the global variable error
is updated to true). Thus, the schedulability analysis simply
checks whether any task can reach its own DeadlineMiss
location. To quantify on all tasks regardless of their identifiers
we use the following CTL query supported by UPPAAL:

V[ ferror (1)

B. Memory Interference Analysis

To analyze the delays of access requests performed by a
given core, we need to run the execution simulation several
times (X)) each of which lasts for Y time units. The simulation
time Y should be greater than the least common multiplier of
periods of the tasks mapped to such a core. In fact, the larger
X and Y are the more accurate the results will be. To display
the maximum interference delays of a core C, to access L2
and DRAM respectively, in terms of probability distributions
we use the following SMC queries:

Elclk <=Y; X|(max : L2_RegDelay|C|) (2)
Elclk <=Y; X|(max : DRAM_RegDelay[C]) (3)

Fig. [7] shows the probability distributions of the request
delays to L2 and DRAM of a core C' where X = 103
and Y = 10% Values 2.96 and 4 are the most likely L2
and DRAM access delays respectively because they have the
highest probabilities.

Fig. 7.
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C. Utilization Analysis

To analyze the utilization of cores, we need to run the
execution simulation several times (X) each of which lasts
for Y time units. We accumulate for each simulation the core

Fig. 8. Simulation of cores utilization.
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utilization time via clock utiliz/cld], we consider then the
maximum value using the following SMC query:

simulate X [<=Y] utilizjcId] (4)

The utilization degree of a given core is then obtained by
dividing the accumulated utilization time over the total simula-
tion time Y. Fig. [§] shows the average accumulated utilization
time of 2 individual cores (Cy and C) for 1000 simulations.
Each simulation runs for 10000 clock ticks (query (4)). Thus,
the utilization of core Cy is 2223/10% x 100 = 22.2%.

The fact that read requests are blocking, they contribute
majorly in the cores utilization by making cores stalling. On
the other hand write accesses are not blocking and have a less
important impact on the utilization, even though write accesses
make the waiting queue longer, which some how might delay
other read accesses.

D. Performance Comparison

We use the multi-objective Pareto frontier to compare
the performance of system configurations having different
scheduling policies. We emphasize that we compare different
configurations of the same system, where only scheduling
policies vary from a configuration to another. Hence, our
framework cannot be used to compare unrelated systems. To
perform comparison, one can keep varying scheduling policies,
while schedulability and functional requirements are satisfied,
until better performance is achieved.

When comparing two configurations X1 and X2, if con-
figuration X'1 achieves smaller numbers for all metrics (core
utilization, L2 and DRAM interference) compared to X5 then
X, is identified to be achieving better performance than
X,. However, if the performance values achieved by both
configurations overlap, i.e. a configuration has a higher value
in one metric and a lower value in another, we compare
the differences obtained for individual metrics: how large the
difference between the utilization of X1 and X2 is compared
to the difference between the interferences achieved by X1
and X2. To illustrate the comparison, we use Fig. E} After
normalizing the metric values (using the highest obtained
value as reference), we compare the difference between the
utilization of X1 and X2 to the difference between the
interference of X1 and X?2.



Fig. 9. Performance comparison using the Pareto frontier.
w1 |mmmmmes X2-o
=} :
= 1
& 0,8 i
o i
& o6 X1.
=
s 04 :
< .
o 1
80,2 i
i
0
0 20 40 60 80 100%

CORE UTILIZATION

The core utilization of configuration X2 is 60% less than
that of X1 while the DRAM interference achieved by X1 is
40% less than that of X 2. The performance gain achieved by
X2 (60% for utilization) is greater than that achieved by X1
(40% for DRAM interference), which could qualify X2 to
be better than X1 in terms of performance. In the general
case, we need to consider the L2 interference as another
dimension in the comparison. For more realistic comparisons,
engineers can associate to each resource a utilization cost and
a priority/criticality so that the comparison will rely on the
utilization cost of each resource rather than the utilization
time. Accordingly, the configuration leading to the cheapest
cost (accumulated for all resources) will be the most suitable.

VII. CASE STUDY

In this section, we consider two case studies: a Mission
Control Computer avionic system (MCC) [13] and an Au-
tonomous Vehicle Component (AVC) [18]. We analyze and
compare the performance achieved by each case study when
running processor-centric and memory centric scheduling. The
diversity of the case studies gives a practical experience on
what is the appropriate scheduling policy to be used for each
application category to achieve higher performance.

As WCRAs are not provided in the original MCC bench-
mark, we calculate them by dividing the time spent by each
task to fetch data over the average duration for one access.
Moreover, as the numbers of access requests to shared cache
and DRAM are not explicitly distinguishable in both case
studies, we rely on the analysis results obtained by Ye et al.
[33]] where only 22.2% of the access requests hit the L2 cache.

A. MCC Example

MCC is a partial specification for a hypothetical avionic
mission control computer system dedicated to combat and
attack aircrafts. The application we consider is a composition
of 15 tasks having the characteristics shown in Table [I, where
WCRA,. and WCRA,,, are given in terms of (reads; writes),
and all time values are in milliseconds. Tasks are grouped
in 4 components running on four identical core [6]. Each
component is statically mapped to one core.

The performance achieved by the system configurations
where all cores run either FPS or memory-centric scheduling
is depicted in Table|I} in terms of ps for memory interference.

The performance achieved when running FPS scheduling
is absolutely better than that of memory-centric scheduling.
While having almost the same cores utilization, the memory
interference delays obtained with memory-centric scheduling

TABLE I
ATTRIBUTES OF THE MCC TASKS

[Task [ Prd | Offset | WCET | WCRA, | WCRA,,, | Din |
71 10 0 i T 0) 3 D 5
T, | 40 0 2 GI)) 20; 2) 40
75 | 40 10 1 22 TN 70
T, | 40 20 2 ©:; 0) T 0) 0
T5 | 40 30 I T 0) [€H)) 0
Ts 55 0 3 @ 13) | (450 | 55
T | 52 16 6 G2 20; 5) 52
Ts 52 32 3 120 | @ 52
To 30 20 6 @D (13, 2) 30
Tio | 100 | 0 7 G (18, 5) 100
Ti1 | 100 | 50 3 ©: 0) ©: 2) 100
T2 | 200 | 0 I T2 3.9 200
Tis | 200 | 100 2 G 0) {s; 2) 200
Tia | 400 |0 6 G D (18; 5) 400
Ti5 | 1000 | O 5 T 0) & 2) 400

TABLE II

PERFORMANCE RESULTS OF THE MCC SYSTEM

Sched Core L2Req DramReq Utilization
policy (most probable) | (most probable) (%)
COo 4.0 15.3 10.1
Cl 5.0 15.25 12
FPS C2 5.26 15.25 11.8
C3 6.05 15.0 34.9
COo 5.1 15.19 10
. Cl 6.2 15.25 11.5
MCentric ¢ 6.05 163 113
C3 6.1 15.33 35

are mostly larger than that of FPS, with a difference up to
27% for L2 and 7% for DRAM. The analysis results are easily
distinguishable, without using Pareto frontier, and identify FPS
as the more efficient scheduling policy for the MCC system.

B. AVC Example

AVC is a component of an autonomous vehicle system [[18]].
The task functions are obtained from the PARSEC benchmark
suite [4] and used to capture different components of complex
real-time embedded applications such as sensor fusion and
computer vision in autonomous vehicle systems.

Essentially, the application consists of 4 periodic tasks T3
(StreamCluster), T (Ferret), T35 (Canneal) and 7} (FluidAni-
mation) running on 2 identical cores (Cy and C') sharing 1.2
and DRAM. Similarly to MCC system, the characteristics of
the task set are shown in Table [IIl where all time values are
in milliseconds. We analyze such a task set with both cores
running either EDF and memory-centric scheduling policies.
The performance achieved by both configurations is depicted
in Table where all units are in ps. One can observe that
there is no difference in terms of cores utilization between
the AVC configurations running EDF and memory-centric
scheduling. However, memory-centric scheduling achieves
better performance regarding the delays to access L2 and

TABLE III
ATTRIBUTES OF THE AVC TASKS
[ Task [ Prd | Offset | WCET | WCRA. | WCRA,, [ DIn_|
Ty 400 0 120 (40; 0) (110; 10) 400
P 1200 | O 130 (60; 60) (136; 273) 1200
T3 1800 | O 500 (134; 266) | (705; 705) 1800
Ty 6000 | O 440 (314; 626) | (1828; 1462) | 6000




TABLE IV
PERFORMANCE RESULTS OF THE AVC COMPONENT

Sched Core L2Req DramReq Utilization
policy (most probable) | (most probable) (%)
COo 1.94 4.16 45.1
EDF Cl 2.01 4.12 44.8
MCentri CO 1.90 2.99 45.1
e e 1.93 4.08 449

DRAM than EDF’s. The performance gain obtained when
using memory-centric scheduling varies from 1.5% to 39%.
This could be related to the fact that the AVC component is
memory-intensive.

The longest analysis of the aforementioned case studies
lasts for 730.77 seconds, whereas the used memory space is
about 46.5MB. To study the scalability, we created a synthetic
set of 30 tasks running on 8§ cores, by just duplicating the
MCC description. The longest analysis time, obtained when
analyzing the utilization, is 1067.1 seconds whereas the largest
used memory space is 223.7MB. The analysis time and used
memory space are encouraging and suggest that our framework
might scale to larger systems.

VIII. CONCLUSION

This paper presents a methodology for formal analysis of
schedulability of multicore real-time systems. It supports mak-
ing engineering decisions at design stage based on a platform
model with a shared memory hierarchy, and combines it with
alternative scheduling policies (processor-centric or memory
centric). For each schedulable configuration, the framework
automatically computes performance metrics related to differ-
ent resources. Thus, trade-offs between alternative platforms
for a given task characterization are quantifiable.

Among interesting directions for future work we envision
more extensive scalability studies, variations in the memory in-
tensiveness of applications, adding other resource dimensions
(e.g. energy), and application to more realistic case studies
including systems with networked multicore platforms.
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