
Maintainability of Functional Reactive Programs in a
Telecom Server Software

Klervie Toczé
Ericsson AB

Linköping, Sweden
klervie.tocze@ericsson.com

Maria Vasilevskaya
Linköping University

Sweden
maria.vasilevskaya@liu.se

Patrik Sandahl
Ericsson AB

Linköping, Sweden
patrik.sandahl@ericsson.com

Simin Nadjm-Tehrani
Linköping University

Sweden
simin.nadjm-tehrani@liu.se

ABSTRACT
Functional Reactive Programming (FRP) is claimed to be a
good choice for event handling applications. Current object-
oriented telecom applications are known to suffer from addi-
tional complexity due to event handling code. In this paper
we study the maintainability of FRP programs in the tele-
com domain compared to traditional object-oriented pro-
gramming (OOP), with the motivation that higher main-
tainability increases the service quality and decreases the
costs. Two implementations of the same procedure are cre-
ated: one using Haskell and the reactive-banana FRP frame-
work and one using C++ and the OOP paradigm. Four
software experts each with over 20 years of experience and
three development engineers working on a product subject
to study were engaged in evaluations, based on a question-
naire involving five different aspects of maintainability. The
evaluations indicate a higher maintainability profile for FRP
compared with OOP. This is confirmed by a more detailed
analysis of the code size.

CCS Concepts
•Applied computing→Telecommunications; •Software
and its engineering → Maintaining software;

1. INTRODUCTION
As mobile networks grow and become prevalent in our

lives, the users expect faster and more reliable connections
despite the increased complexity of telecom server software.
The core of such software is a large set of communication
protocols that inherently requires to handle a lot of reac-
tive behaviours. Implementation of these behaviours using
the traditional programming paradigm used in the telecom
context, i.e. OOP, creates so called accidental complexity
into already complex software. This paper contributes with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SAC 2016, April 04-08, 2016, Pisa, Italy
c© 2016 ACM. ISBN 978-1-4503-3739-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2851613.2851954

practical experience on the potential of FRP for reducing the
complexity associated with handling reactive behaviours.

FRP is a fairly new (around 20 years) area of program-
ming whose aim is to combine the strengths of the functional
approach with the need to express reactive behaviour. FRP
uses the declarative paradigm, meaning that a programmer
focuses on what to program and the compiler decides how
this will be done. Distinctly from an OOP program, when a
value changes in a FRP program, all the dependent values
are automatically updated. The FRP paradigm aims at ab-
stracting away code needed to handle events and claims to
produce small and clear programs, which are easy to reason
about. In a nutshell, FRP appears to be very promising for
reducing the complexity of telecom server applications that
are inherently reactive. That is, in turn, expected to im-
prove their maintainability. However, this claim of improved
maintainability should be first extensively evaluated.

In this paper, we report our efforts towards providing such
an evidence. We conduct a maintainability study of the
FRP paradigm applied to a part of the Long-Term Evo-
lution (LTE) base station software. Our goal is to evalu-
ate to what extent the maintainability of this software im-
proves when it is implemented as FRP in comparison with
its OOP implementation. In particular, we carry out expert-
based evaluations where the experts assess two prototypes
of the same communication protocol implemented in those
two paradigms. Additionally, we compute software metrics
that reflect objective complexity of the implementations and
compare these results with the outcome of our expert assess-
ment. We also report preliminary results on performance
aspects of evaluated implementations.

2. SYSTEM DESIGN
To conduct expert-based maintainability assessment of

functional reactive and object-oriented paradigms we first
designed a reference model which is a simplified version of
the Radio Resource Control (RRC) connection procedure
from the LTE standard. This reference model preserves the
core messaging and reactive behaviours and focuses on two
aspects: receiving/sending messages and updating stored in-
formation. From this reference model, we created two pro-
totypes implemented in Haskell (FRP prototype) and C++
(OOP prototype). These two prototypes served as targets
of the maintainability evaluation. The main goal of using

a reference model instead of the fully-fledged RRC protocol
is to achieve fairness in evaluations by abstracting away un-
necessary details of a complicated protocol. The reference
model and its implementation are briefly presented below.1

The reference model consists of 15 messages exchanged
between the User Equipment (UE), the eNodeB and the
Mobility Management Entity (MME), three high-level com-
ponents of a LTE network. The content of the these ex-
changed messages is most of the time simplified. We keep
only those fields of information that are needed for modify-
ing the stored information or for sending the response.

The three components run on the same Linux machine
(Ubuntu 14.04 LTS 64-bit equipped with a Intel Core i7-
4500U Haswell CPU and 8Gb of DDR3 RAM) and they
communicate with each other using the TCP protocol.2 The
components were compiled using version 4.8.1 of GCC (OOP
prototype) and version 7.6.3 of GHC (FRP prototype).

3. MAINTAINABILITY EVALUATION
The maintainability evaluation of the two prototypes con-

sisted of a combination of expert assessments and of struc-
tural measures. This combination is considered to be the
most efficient way to assess software maintainability [?].

3.1 Design of the Expert Assessment
Seven software experts from Ericsson3 participated in the

maintainability assessment. Four experts have 20 years of
experience in software development but not in the LTE base
station. Prior to the study, two experts named the func-
tional paradigm as their favourite and two named the object-
oriented one. This means that the expert group was not bi-
ased towards one paradigm. Three other experts were used
as application experts when constructing the questionnaire.
Although seven experts may seem a small number, we have
not seen a study with that many experts, who moreover have
a long practical experience of software maintainability.

The assessment is performed using a questionnaire built of
four parts: (1) expert information, (2) separate assessment,
(3) comparative assessment, and (4) expert self-evaluation.

The first part contains four questions regarding the ex-
perts’ experience. The second part investigates maintain-
ability of each prototype considered in isolation. It contains
13 questions for each prototype assessing different maintain-
ability characteristics (simplicity, modularity, expandabil-
ity) and maintainability as a whole. To construct this second
part, we adapt the Air Force Operational Test and Evalua-
tion Center (AFOTEC) pamphlet [?], which provides guide-
lines and standardized questionnaires to evaluate software
maintainability using experts. We selected a subset of six
questions (out of 35) relevant to our study. Those questions
(and the ones additionally included by the authors) were
validated by the three experts working on the LTE base sta-
tion who possess good understanding of the maintainability
problems. The comparative assessment part contains 5 ques-
tions evaluating which prototype is the best with regards to
simplicity, understandability, modularity, expandability and
maintainability as a whole. Finally, the last part of the
questionnaire contains 7 questions asking, for example, how

1Details can be found in the thesis by Toczé [?]
2In the context of the reference model, it is similar to the
real-time signalling used in the real base station
3http://www.ericsson.com/

much time was spent studying each program.
To conduct the evaluation, the four reviewing experts were

provided with an online version of the designed question-
naire, the source code for both prototypes, and the sequence
diagrams of the reference model.

3.2 Separate Assessment
The experts were asked to indicate to which degree they

agree to 13 statements related to three maintainability char-
acteristics (simplicity, modularity, and expandability) and to
maintainability as a whole. Simplicity can be decomposed
into program size, control structure complexity, data struc-
ture complexity, straightforward coding and understandabil-
ity. A modular software is composed of largely independent
parts. A program is expandable when it is easy to make
changes and to add new parts to it. To indicate the degree
of agreement, we adopted the AFOTEC scale [?] which is a
scale from 1 (decidedly disagree) to 6 (decidedly agree).

Figure 1 plots the average score for each question for both
prototypes. Moreover, we categorised these scores in three
maintainability levels derived from AFOTEC maintainabil-
ity thresholds.

Figure 1: Average score on each question

Figure 1 clearly visualises that on the whole the FRP pro-
totype has higher scores than the OOP prototype. There
are only two questions where the OOP prototype performs
equally or outperforms the FRP one. These two questions
assess the overall simplicity (question 6) and modularity
(question 10) of the prototypes.

Figure 1 also shows that 11 out of 13 attributes were evalu-
ated as having a good maintainability level for the FRP pro-
totype (the light-grey area). There are only two attributes
(overall understandability and simplicity), that correspond
to questions 4 and 6, that were assessed as having a passable
maintainability level. On the contrary, the OOP prototype
has three questions with a good maintainability level (i.e.
questions 5, 6, and 10) and one with a poor maintainability
level (i.e. question 1), the majority of the questions having
a passable maintainability level.

3.3 Comparative Assessment

In order to validate that the separate assessment is reason-
able, the comparative assessment asks the same experts to
compare the two prototypes with each other with regards to
the previous three maintainability characteristics (simplic-
ity, modularity and expandability), and to maintainability
as a whole. We also look at a specific part of simplicity:
understandability. The 5 questions in this part asked the
experts to choose which prototype was the best with re-
gards to the five characteristics mentioned above. Figure 2
shows the frequencies of the obtained answers.

Figure 2: Results of the comparative assessment

According to Figure 2 the experts assess the FRP program
as the simplest one. Interestingly this may seem in contra-
diction with the results from the separate assessment where
the average score given to question 6 (”Overall, the program
is simple”) is higher for the OOP prototype. This indicates
that simplicity is difficult to assess ”as a whole” for the ex-
perts and should instead be only investigated through more
precise statements. Therefore, we decided not to consider
the results on simplicity as a whole for our conclusions.

The results for understandability indicate that the experts
assess both programs as equally understandable. However,
as it was mentioned by two experts in the comments, this
may be biased towards the paradigm which the expert knows
best. According to the experts, the programs are equally
modular and the FRP one is the most expandable. How-
ever, one expert indicates that he/she found both prototypes
equally expandable so choosing one over the other may not
be relevant. Finally, Figure 2 shows that both programs are
assessed as equally maintainable.

Hence, apart from the issue with the simplicity, the com-
parative assessment confirms the evaluation results obtained
for the separate assessment.

3.4 Software Metrics
In this section, we compare the two prototypes with re-

gards to software metrics related to the size of the code. Riaz
et al. [?] conclude in their review that the code size metrics
are the most successful software maintainability predictors
that can be calculated easily.

The results show that when taking into account manu-
ally written files the OOP prototype represents 1469 lines of
code. This is 1.5 times more lines than in the FRP proto-
type. It is a significant difference: more code to write means
a higher probability to introduce mistakes which will later
require maintenance.

When focusing on event-handling code, differences be-

tween the prototypes are also distinct. For example, receiv-
ing a UE message (decoding it and calling the function to
handle it) is coded in 12 lines in the OOP prototype and in
2 lines in the FRP one. This is because the FRP prototype,
in addition to having higher abstractions for event-handling
with the FRP framework, benefits also from the high ab-
straction level of Haskell. Since Haskell and C++ are good
representatives for each paradigm, our study contributes to
confirming the claim of functional programming to produce
more concise code.

3.5 Preliminary Performance Evaluation
Although performance aspects were not the main con-

cern in our study, a preliminary performance evaluation was
conducted using two scenarios: a peak load and a spread
load. In the peak load study, an increasing number of UEs
(from 100 to 1000) were powered on simultaneously, while
the spread load study consisted in simulating a mean arrival
rate of 100 UEs per second (up to 5000 attached UEs).

The OOP prototype is faster to attach UEs than the FRP
prototype in both studies. It is up to 10 times faster in a
peak load scenario with 1000 UEs and 8 times faster in a
spread load scenario. Moreover, the CPU share is on average
51.06% (std. dev. is 5.45%) for the FRP prototype and
6.75% (std. dev. is 0.35%) for the OOP prototype.

4. CONCLUSIONS
This study was initiated by a group of software engineers

considering alternatives to traditional paradigms with the
long term goal of shifting part of the LTE software to another
more maintainable paradigm. Such a shift would be critical
and can not rely on ”common beliefs” but requires empirical
evidence on maintainability and performance.

Our analysis showed that when the two programs were as-
sessed separately, the FRP prototype obtained better scores
than the OOP one. Those results were confirmed by the
comparative assessment. The calculated software metrics
showed that FRP gives more compact code than OOP. This
implies that the OOP prototype is more complex and, thus,
less maintainable than the FRP one.

Thus, we can conclude that FRP has a large potential to
improve maintainability in telecom server software. How-
ever, performance aspects need to be investigated further,
in particular in real situations with a non-simplified and op-
timized software.

5. REFERENCES
[1] Air Force Operational Test and Evaluation Center.

Software maintainability evaluation guide. 1996.

[2] B. Anda. Assessing software system maintainability
using structural measures and expert assessments. In
Proceedings of the 2007 IEEE International Conference
on Software Maintenance (ICSM 2007), pages 204–213.
IEEE, 2007.

[3] M. Riaz, E. Mendes, and E. Tempero. A systematic
review of software maintainability prediction and
metrics. In Third International Symposium on
Empirical Software Engineering and Measurement,
pages 367 – 377. IEEE, 2009.

[4] K. Toczé. Functional reactive programming as
programming model for telecom server software.
Master’s thesis, Linköpings universitet.

