
Formal Analysis of Predictable Data Flow in
Fault-Tolerant Multicore Systems

Jalil Boudjadar1, Boris Madzar2,
Juergen Dingel2, Thomas E. Fuhrman3, Ramesh S3

1 Linköping University, Sweden
2 Queen’s University, Canada

3 General Motors R&D, Warren MI USA

Abstract. The need to integrate large and complex functions into to-
day’s vehicle electronic control systems requires high performance com-
puting platforms, while at the same time the manufacturers try to reduce
cost, power consumption and ensure safety. Traditionally, safety isolation
and fault containment of software tasks have been achieved by either
physically or temporally segregating them. This approach is reliable but
inefficient in terms of processor utilization. Dynamic approaches that
achieve better utilization without sacrificing safety isolation and fault
containment appear to be of increasing interest. One of these approaches
relies on predictable data flow introduced in PharOS and Giotto. In
this paper, we extend the work on leveraging predictable data flow by
addressing the problem of how the predictability of data flow can be
proved formally for mixed criticality systems that run on multicore plat-
forms and are subject to failures. We consider dynamic tasks where the
timing attributes vary from one period to another. Our setting also al-
lows for sporadic deadline overruns and accounts for criticality during
fault handling. A user interface was created to allow automatic genera-
tion of the models as well as visualization of the analysis results, whereas
predictability is verified using the Spin model checker.

1 Introduction

Automotive electronic control systems demand increasing computing power to
accommodate the ever-growing software functionality in modern vehicles. At
the same time, the trend in automotive electronic architectures is to allocate
this increasing computational load to a reduced number of physical processing
cores in an effort to reduce size, weight, and power consumption. These trends
lead to new design challenges where an increasing number of software-based
features must be grouped into tasks which must in turn be allocated to processing
cores. The tasks assigned to a given processor may reflect different levels of
safety-criticality (referred to as “mixed-criticality integration”). These types of
mixed-criticality systems need to meet the requirements of the software processes
sharing processors and resources.

To ensure correct operation of a critical functionality that shares processing
resources with a less-critical functionality, the ISO 26262 standard for functional

safety of road vehicles [1] requires mechanisms for “freedom-from-interference”.
Accordingly, the mapping of tasks to cores and the scheduling must take into
account multiple factors such as criticality and balancing the workload while
ensuring freedom from interference and fault containment.

A system whose externally-observable behavior changes only when its inputs
(in terms of values or timestamps) change is said to be predictable [11]. Ensuring
the predictability of task sets with dynamic runtime attributes and executing
on multicore platforms with static analysis alone is very difficult due to the
interference caused by the delays for shared resources allocation. The challenge
gets even harder due to dynamic runtime and fault handling mechanisms.

Our paper introduces a formal framework for the predictability analysis of
mixed criticality task sets running on a multicore platform. The framework sup-
ports window scheduling and dynamic runtime of tasks, where the attributes
may vary from one window to another. It also supports fault-tolerance via run-
time fault handling mechanisms. In addition to the window-based predictable
data flow [6], we add support for the preservation of predictability even in cases
where the scheduling constraints are violated (deadline overruns). Using this
framework, we identify and implement a strategy for exhaustive verification of
predictability and freedom from criticality inversion. We observe that the ver-
ification can be reduced to the checking of a specific set of fixed “edge tasks”
by showing that these edge tasks never produce “tainted” (i.e., possibly not
trustworthy) output. A prototype implementation to facilitate model creation,
verification and result visualization is sketched.

The paper is organized as follows: Necessary background is discussed in Sec-
tion 2. Section 3 describes how predictability can be guaranteed through limited
observability. Sections 4 and 5 present, respectively, key parts of a formalization
of the systems we analyze and the verification approach. Section 6 sketches the
prototype and the case study we analyzed. Section 7 presents related work and
Section 8 concludes the paper.

2 Background

Freedom-from-interference in a mixed criticality real-time system can be achieved
in several ways. The most common approach segregates the different criticality
levels in such a way that they are guaranteed not to interfere (run-time guaran-
tee). Some examples of this kind of segregation include assigning each criticality
level to its own processor core, assigning a fixed (though not necessarily equal)
time slice to each criticality level, or a combination of the two.

The potential downside of the segregation of criticality levels is poor processor
utilization. If one set of segregated tasks finishes early, the spare processor time
cannot be given to another set of tasks. A common approach to setting up a task
set is to assign each task a period, budget and a priority. The task’s execution
start, end and duration may vary within the period. Such a variability comes
from several sources: inputs from the environment, sharing of the resources and
the internal behavior of the task.

A potential problem with this approach, identified by Henzinger [11], is that
the times at which a task reads and writes data vary in relation to the start
of the period. The values visible to any given task T may change depending
on its execution time and the execution order of tasks supplying T with data.
Therefore, two correct executions may produce different outputs given identical
input (see Figure 1.(a)), which leads to a violation of predictability.

2.1 Criticality

Tasks can be defined as belonging to different criticality levels. Following the
work of [7], criticality does not need to be considered during regular (fault-
free) execution. It only needs to be taken into account when a fault occurs
and load-shedding must take place. Critical tasks must be prioritized over non-
critical tasks, as they represent behavior that must occur to preserve important
properties of the system.

Commonly, the most efficient algorithms for assigning task priorities, such
as Rate Monotonic Scheduling (RMS) and Earliest Deadline First (EDF), use
timing properties rather than criticality levels. Thus, a mixed strategy needs to
be set up to handle both timeliness and criticality correctly: one way of doing
this is through the use of zero-slack scheduling [7].

Criticality interacts with how faults are handled, as it is possible to be either
more lax or more strict with faults. For instance, critical tasks may be allowed
to miss their deadlines, whereas non-critical tasks would be terminated.

2.2 Zero-slack Scheduling

The idea behind the zero-slack algorithm [7] is that the worst case execution
time (WCET) of a task is often much too pessimistic when compared with the
average case execution time. Any algorithm that seeks to ensure freedom from
criticality inversion by using the WCET of lower-criticality tasks will under-
utilize the processor. It is a much more efficient use of resources if tasks are
scheduled regardless of criticality until it becomes absolutely necessary to factor
criticality into a scheduling decision. Accordingly, tasks are scheduled in one
of two modes: “normal” and “critical”. In normal mode, criticality is ignored
and an optimal scheduling strategy is used, whereas in critical mode, higher-
criticality tasks are given priority. Tasks within a criticality level are scheduled
as in normal mode.

The system usually executes in normal mode. The mode changes to critical
when all remaining critical tasks must begin executing if they are to meet their
deadlines, assuming they consume their entire execution budgets. This time point
is called zero-slack instant. A version of this algorithm, known by Simplified
Zero-Slack (ZS), uses only two criticality levels. Priorities are assigned using
EDF in “normal mode”, however in “critical mode” all high-criticality tasks are
scheduled before all low-criticality tasks. Within a given criticality level, EDF is
still used.

3 Predictability via Limited Observability

An alternative approach to manage tasks while ensuring predictability, by design,
has been defined in [12, 6]. This approach focuses on synchronizing data access
so that a given task instance will always view the system as being in the same
state regardless of when it executes within a given period (limited observability).
This is achieved by introducing an additional constraint: each task instance must
execute in its entirety within a given time window. The start (baseline) and end
(deadline) of this window are defined according to the system clock, not the
task’s CPU time. A snapshot of the data values is captured at the baseline, so
that the task instance reads from this snapshot. Any values written by the task
are not communicated to other tasks until the deadline of such a task.

To illustrate how limited observability can be used to ensure predictability,
Figure 1 shows a system with three tasks (left to right): T1, T2 and T3. Each
task passes its input unchanged to the output. The tasks have periods 14, 10
and 14 and budgets 4, 4 and 3 respectively. Priorities are T2 > T1 > T3.

Fig. 1: Predictability via limited observability.

(a). Full observability

1

1

1

2

3

3

0

1

1

2

3

3

T1 T2 T3 T1 T2 T3
A B

time

(b). Limited observability

1

2

3

0

-1

1

2

3

0

-1

T1 T2 T3 T1 T2 T3A B

time

We consider 2 different execution scenarios A and B for each observability class
(full and limited). Each execution scenario consists of 3 periods for each task.
Inputs (1, 2 and 3; on the left hand column of each execution) occur at the exact
same points in time for each execution. A displays one possible valid execution
with no task violating any constraint (budget or deadline), whereas in scenario
B some tasks overrun, e.g T1 overruns its budget during its first period. The
corresponding outputs are shown to the right of each execution. Figure 1.(a)

does not use data access synchronization (i.e., limited observability): although
there is no change in the timing or value of inputs, the outputs of A and B
differ in both value and timing, as a task can hand over its output once its
execution is over without waiting for the period expiry. Figure 1.(b) shows how
the example presented in Figure 1.(a) would behave under limited observability
achieved through data access synchronization. Regardless of being overrunning
or not, a task delivers its output at the end of its current period. This guarantees
that the output of a given task is always delivered at the same point in time.
As an example, in the execution B of Figure 1.(b) task T1 overruns but it still
delivers the output at the same point in time (end of first period) as in execution
A. The priority impact can be seen during the second execution period where T2
starts first as it is ready due its short period, after which T1 becomes ready but it
cannot preempt T2. T1 waits until the current execution of T2 terminates before
it starts running. Finally, T3 becomes ready and starts executing, however once
T2 becomes ready again it preempts it due to its higher priority. T3 resumes
early in the third period, but it gets preempted by T1 this time.

In general, predictability should reduce the need for testing compared to
the standard approach since the externally-observed behavior will not change.
Limited observability ensures system predictability in case no fault occurs. In
case of faulty behaviors, e.g. a deadline overrun, the system adapts its runtime to
amortize the faults while maintaining the limited observability, so that it might
end up being predictable despite the presence of faults (Section 4.2).

4 Formal Basis of our Framework

This section introduces a formal description of the systems that can be modeled
and analyzed in our framework.

4.1 System Specification

The system application we consider consists of a set of components {T1, .., Tm},
each of which is a set of periodic tasks Tj = {T j

1 , .., T
j
k}. Similarly, the system

platform is a set {C1, .., Cq} of homogeneous cores, each of which (Cj) is assigned
to one component (task set) Tj .

The tasks of a given component Tj will be scheduled by a real-time operating
system according to a scheduling function Sched given by:

Sched j : Tj × Tj × R≥0 → Tj

where R≥0 is the time domain. The function compares 2 tasks at a given time
instant and returns the task having priority at that time point. It is described
abstractly in order to be able to model both static and dynamic priority schedul-
ing algorithms. The scheduling policies we have modeled in this framework are:
Earliest-Deadline First (EDF), Dynamic Deadline-Monotonic (DMS) and Sim-
plified Zero-Slack (ZS). Throughout this paper we will focus mainly on the ZS

policy as it enables to deal with faults and mixed-criticality, but DMS and EDF
are manipulated in the same way.

Since each component Tj can use two execution modes (normal and critical),
we distinguish two scheduling functions, Schedjn and Schedjc, to be applied in
normal and critical modes respectively. For the sake of simplicity, since compo-
nents behave in the same way and cores are identical (modular design) we will
only focus on one component T = {T1, .., Tn} running on one core C. Accord-
ingly, all the exponent notations (−j) related to the choice of a component will
be omitted. Among the tasks of a component, we identify Tc ⊆ T to be the set
of critical tasks.

Formally, each task is given by a period p, a budget b, a deadline d and
a criticality level c. Since it is not needed to distinguish between the period
and deadline of tasks in our context (assumed to have the same values), we omit
deadlines and just keep the period length which must be longer than the required
budget. The criticality level does not have an effect during regular operation, but
can be used in an overload or fault condition to prioritize tasks for load-shedding.
Following the window notion (Section 3) allowing for dynamic runtime, the task’s
attributes can vary from one period to another. Basically, a window represents
one release of the task execution. Formally, the notation wj

i = (p, b, c) states the
period, budget and criticality level of task Ti for the jth window. Accordingly, we
represent each task Ti by a sequence of windows Wi = (w1

i , w
2
i , ...) describing its

runtime. We denote the set of all potential windows byW, and assume that there
is no gap between windows i.e., the deadline of a window will be the baseline of
the next window. A task execution can be scheduled anywhere within a window.
The operating system stores a static lookup table containing all the possible
configurations (windows) for each task. To simplify notation, we use w.x to refer
to the attribute x within the window structure w.

Communication between tasks is aligned to the baselines and deadlines by the
operating system in a way that it is entirely transparent to the task. No matter
where the task is executing within its window, it will see an identical “snapshot”
taken at the baseline of the values in shared memory written by other tasks.
Any changes made after the task’s baseline will not be visible within the current
window. Similarly, any values written to shared memory by the task will not
become visible to other tasks until the deadline of the writing task. The writes
to the same memory location are applied in the order of the corresponding task
deadlines rather than when the data was actually written from the task point of
view. If a deadline and a baseline are coincident (i.e. a write and a read of the
same data in shared memory), the write is to happen before the read.

4.2 System Semantics

To simplify the semantics, we only focus on one component T = {T1, .., Tn}
running on one core since the rest of the system behaves in the same way using
the same execution rules, assuming there is no inter-component dependency.
First we introduce the following variables:

– clk is a clock variable to track the global time.
– Mode = {Normal, Critical} is the set of execution modes, and mode is a

variable to store the current execution mode of the system.
– Status = {Waiting,Running,Overrun,Done} is the set of status values,

whereas status = [1..n] is an array used to store the current status of each
task. We assume that all the status values are assigned by the operating
system (assigned to the tasks), except status Done which is triggered by the
task itself once its execution is over.

– curW is an array variable storing the current window of each task.
– Rbudget is an array variable used to track the remaining budget of each task

during runtime.
– curT ime is an array clock variable to store the start time of each period for

each task. It will be used as a baseline to track when a period expires.
– curET is an array variable used to measure the CPU time acquired by each

task during each execution. Each variable will be set to the current time
when the corresponding task is scheduled.

– ExcessT is an array variable used to store the time point when a task starts
overrunning its deadline.

The semantics is given in terms of a timed transition system (TTS) 〈S, s0,→〉
[13] where S is a set of states, s0 is the initial state and ”→” is the transition
relation. Formally, S = R≥0 ×Mode × Statusn ×Wn × Rn

≥0 × Rn
≥0 × Rn

≥0 × Rn
≥0 ,

s0 = (0, Normal, ∀i status(Ti) = Waiting,∀i curW (Ti) = w1
i , ∀i curT ime(Ti) = 0, ∀i

Rbudget(Ti) = w1
i .b, ∀i curET (Ti) = 0, ∀i ExcessT (Ti) = 0) whereas transitions are

given by rules Release1, Release2, Normal, Critical, Nrml2Crit, Crit2Nrml

and Overrun . We use notation [] to access to the internal structure and values
of each state. Updating a field, e.g a task status, within a state s leads to a
new state s′ having the same values as s except for the modified field. Initially,
the system is in normal mode and tasks are waiting to be scheduled. All clock
variables are set to 0.

Scheduling. According to the current execution mode, the operating system
schedules one of the ready tasks (having status Waiting) using the appropriate
scheduling function, Schedn or Schedc.

Normal :

∀ s ∈ S, Ti ∈ T | s.mode = Normal, s.status(Ti) = Waiting
∧ ∀Tj ∈ T Schedn(Ti, Tj , s.clk) = Ti

s −→ s[status(Ti) := Running, curET (Ti) := clk]

Critical :

∀ s ∈ S, Ti ∈ Tc | s.mode = Critical, s.status(Ti) = Waiting
∧ ∀Tj ∈ Tc Schedc(Ti, Tj , s.clk) = Ti

s −→ s[status(Ti) := Running, curET (Ti) := clk]

In both rules, the task to be scheduled (Ti) potentially preempts another
task Tj (if Tj is already running). If so, the status of Tj needs to be updated
to Waiting, and its actual remaining budget needs to be recalculated using the

previous value (Rbudget(Tj)) and the CPU time used from its last scheduling
time point until the preemption, i.e. Rbudget(Tj) = Rbudget(Tj) − (s.clk −
curET (Tj)). We don’t embed these statements in the scheduling rules just to
avoid duplicating the scheduling rules for two cases: 1) CPU is free; 2) there is a
lower priority task Tj currently running. The status of Ti is updated to Running
and the current time is recorded (curET (Ti) := clk) to keep track of how long
Ti has been running.

Mode Switches. When the zero-slack instant is reached, the execution mode
switches to Critical and only critical tasks are allowed to execute. Once all
critical tasks are satisfied in their current windows, the mode switches back to
Normal.

Nrml2Crit :

∀ s ∈ S, Ti ∈ Tc | s.mode = Normal, Tis.status(Ti) = Waiting
∧ s.curW (Ti).p + s.curT ime(Ti)− s.clk ≤ s.Rbudget(Ti)

s −→ s[mode := Critical]

Crit2Nrml :
∀ s ∈ S, Ti ∈ Tc | s.mode = Critical, s.status(Ti) 6= Waiting

s −→ s[mode := Normal]

When the remaining time of the current window, calculated from the baseline
curT ime, is less than or equal to the remaining budget of a critical task the
mode switches to Critical. One can remark that we can predict the mode change
only for the current execution windows. When all critical tasks (Tc) are either
terminated or running, the execution mode switches back to Normal where tasks
will be scheduled accordingly using rules Normal and Critical.

Fault Handling. There are three possible failure modes that the system can
experience: task failure, budget violation and deadline violation.

Task Failure. Task failure is the most obvious failure mode: a task either incor-
rectly calculates its outputs or suffers other catastrophic failures e.g., unexpected
termination. Handling this type of faults is beyond the scope of this work.

Budget Violation. The execution budget defined in the configuration of the exe-
cution window represents the maximum amount of time that a task consumes in
correct operation. Exceeding this budget is considered a fault of the task itself
(incorrect operation) or of the system integrators (incorrect execution budget).

When a violation is detected, the operating system can take one of two
possible actions: either the budget violation is ignored or the offending task
is terminated. Ignoring the violation is possible as the task set should not be
designed to use 100% of the available processor time. Ideally, the overrun will
eventually be absorbed by the available slack (idle ticks) and the system will
return to normal. Terminating the task ensures that the assumptions made by
the operating system continue to hold, however the behavior of the system as a
whole could become wildly incorrect.

Deadline Overrun. A task must finish its execution before its deadline. Violating
the deadline is considered a fault, but not necessarily of the task in question: it
is possible that the task missed its deadline due to other tasks misbehaving, or
due to an incorrect configuration.

Deadline violation is more serious than budget violation and some compen-
satory actions must be taken. The simplest option is to terminate the offending
task. The other option is to delay the deadline until the task has finished exe-
cuting. In this case, the current deadline and the next baseline are delayed until
the task enters a completed state. The next deadline of the task experiencing
an overrun is not delayed, rather, the next window is shortened. This guaran-
tees that the overrunning task still sees the same snapshot of shared data at
its baseline. The operating system achieves this by delaying any task’s baseline
and deadline occurring during the overrun, except for the overrunning task, and
applies them in the same order in which they would normally occur after the
overrun has completed. The next windows of these tasks are also shortened in
the same way as for the overrunning task. In Figure 3, task T2 violates its dead-
line and causes a delay (dashed arrow). The baseline of task T1 occuring within
this overrun period is delayed as well. The deadline of T1 remains at the same
position relative to the original deadline (dotted arrow), with the effective size
of the window reduced appropriately.

Fig. 3: Overrun delays

T1 T2

By shortening subsequent windows, it is
possible that a cascade of deadline violations
will be created. However, as illustrated in
Figure 4, the slack present in the system
should ideally allow the overruns to be ab-
sorbed and allow the system to return to
normal operation. For this mechanism to
work, the system cannot operate under full
load. A safety margin must be included in
the system design, with more processor ca-
pacity available than is required by the tasks
under normal operation. The size of this
safety margin would depend on the allow-
able overrun.

Having all tasks meet their deadlines is a sufficient condition for predictabil-
ity, as shown by PharOS [6]. However, it is not a necessary one: if the overrun
can be absorbed such that the final outputs still occur when they are supposed
to, predictability can be preserved despite schedulability being violated due to
the overrun.

Overrun :

∀ s ∈ S, Ti ∈ T | s.status(Ti) ∈ {Waiting,Running}
∧ s.curT ime(Ti) ≥ s.curW (Ti).p

s −→ s[status(Ti) := Overrun,∀Tj ∈ T ExcessT (Tj) := clk]

Rule Overrun describes when an overrun occurs. Basically, when a task
reaches the end of its current window curW (Ti).p (which coincides with the

deadline) before completion an (effective) overrun case is declared. The current
time clk is stored in variable ExcessT () of task Ti in order to calculate the
overrun duration once the task execution is done. Moreover, in order to postpone
the deadlines and baselines occurring during the overrun, we also communicate
the overrun start to the other running tasks (∀Tj ∈ T ExcessT (Tj) := clk) so
that the current window of each task will be delayed as well (fake overrun) with
the same duration as for the overrunning task.

Through the release of a new window, the configuration of a task will be
updated according to rule Release1.

Release1 :

∀ s ∈ S, Ti ∈ T | s.status(Ti) = Done, s.ExcessT (Ti) = 0
∧ s.curW (Ti) = wx

i , s.curT ime(Ti) = s.curW (Ti).p
∧ ∀Tj ∈ T s.status(Tj) 6= Overrun

s −→ s[status(Ti) := Waiting, curT ime(Ti) := clk, curET (Ti) := 0,
curW (Ti) := wx+1

i , Rbudget(Ti) := wx+1
i .b]

Release2 :

∀ s ∈ S, Ti ∈ T | s.status(Ti) = Done, s.ExcessT (Ti) > 0
∧ s.curW (Ti) = wx

i

s −→ s[curW (Ti) := wx+1
i , curW (Ti).p := wx+1

i .p− (clk − ExcessT (Ti)),
curT ime(Ti) := clk, curET (Ti) := 0, Rbudget(Ti) := wx+1

i .b,
status(Ti) := Waiting]

Rule Release1 describes the expiry of a window wx
i and the release of a

new window wx+1
i of a task Ti successfully executed during the previous window

wx
i , i.e. without missing its deadline (s.curT ime(Ti) = s.curW (Ti).p) and none

of the other tasks is currently overrunning its own deadline. The status as well
as the variables we introduced to monitor the task execution are reinitialized
accordingly. When the effective overrun of a task is over, all the other postponed
tasks will be released with their new windows. Rule Release2 describes how the
new window length of each task will be reduced with any overrun delay from the
previous window.

In both rules Release1 and Release2, one can remark that a task cannot
release a new window if any other task is overrunning. This ensures that all
deadlines and baselines occurring during an overrun are postponed until the
overrun terminates.

5 Verification

As long as the tasks complete before their deadlines, the system described in
Section 4 is predictable. This includes cases where execution budget violations
occur. Thus, a combination of task set and fault model which is free from deadline
violations is said to be schedulable and, by design, predictable [6].

The more interesting cases are those where the task set is not always schedu-
lable. However, the task set could still be predictable: deadline violations could

be absorbed by utilizing idle processor time or output values of certain tasks
could be ignored in the given execution mode.

In order to be able to inject faults intentionally and verify the system’s pre-
dictability accordingly, we extend the system model described in Section 4 with
the following:

– For each task window wj
i = (p, b, c), by how much (overrun o ∈ R≥0) the

task will exceed its budget should it enter a fault state, i.e. wj
i = (p, b, c, o).

– We also allow for a description to be added to each task to specify how the
input values are used to compute the outputs.

The final number of faults that can be absorbed depends on the length of
overruns and the free time slot (λ) of the processor, i.e.,

∑
i

∑
j wj

i .o ≤ λ. The
analysis of predictability is performed by exhaustively checking that for each
set of valid timestamped inputs, the system always produces the same set of
timestamped outputs — with all possible combinations of faults allowed by the
system configuration. The verification process either concludes that the system
is predictable, or provides a counterexample in which the predictability is not
preserved. The predictability can be analyzed using 2 approaches: direct and
indirect.

5.1 Direct Approach to Analyze Predictability

The most direct approach for checking the predictability considers all possible
sets of timestamped inputs, combines them with all possible failure modes, and
checks that the same set of timestamped outputs is always produced for each
respective set of inputs. This is not as daunting a task as it may first seem. The
tasks are periodic and the number of configurations is finite. The system will
eventually start to repeat previously-explored states at which point the search
can stop. Additionally, as the task behavior is assumed to be correct, the range of
possible inputs does not need to be fully examined. However, this approach still
consumes much time and resources as well as being not cheaply implementable
using Spin.

5.2 Indirect Approach to Analyze Predictability

As mentioned earlier, the system is predictable by design in no-fault cases. There-
fore, to verify predictability it is necessary to analyze which behaviors the sys-
tem exhibits when a fault occurs, and which of those behaviors will result in
a violation of the predictability. Our approach is based on the following three
observations and steps:

Inputs only happen at read times. Each input/output has two parameters:
a data value and time. The data value is beyond the influence of the system
and is assumed to always be correct and valid. The timing of input arrival is
technically beyond the control of the system as well; however, the system controls

Fig. 4: Absorbing a deadline overrun

(a). Predictability preserved

T1 T2 T3

(b). Predictability not preserved

T1 T2 T3

when it reads in the value of the input parameter. This is a reduction of many
possible cases to one: the input can arrive anywhere between reads, but all these
scenarios are effectively equivalent to the input arriving at the read time. If the
system is predictable with inputs that are timestamped at the read time, it is
also predictable if the actual arrival times are used.

Only monitor “edge” task timing. Every task set is assumed to have a
task for reading input and another for writing output; these two tasks are called
edge tasks. The edge tasks perform the input and output at their baselines and
deadlines, respectively. If either the input baseline or the output baseline has to
be moved to satisfy the data flow requirements, predictability is lost. Consider,
e.g., Figure 4 where T1 is an input task, T3 is an output task and the processing
task T2 is overrunning. The overrun can be absorbed, thus neither the baseline of
the input task nor the deadline of the output task will be delayed. In Figure 4.(a),
even though the baseline of T2 gets delayed the input and output times remain
unchanged, so the predictability is not violated. However, in Figure 4.(b) the
predictability is violated as T1 reads its inputs at a later time, i.e., the new
baseline of T1 occurring during the overrun of T2 is delayed by the dashed
arrow until T2 completes.

To capture edge tasks, we introduce the following:

– We define each data x = (v, a) by a value v and an arrival time (stamp) a.
– The inputs and outputs of each task T , consisting each of a set of data, are

given by T.input and T.input respectively.
– We identify the tasks being as edges with T through function Edge(T) =
{Ti | T.output ∩ Ti.input 6= ∅}.

In order to maintain the predictability guaranteed by design, one needs to main-
tain the same relative order between the baseline/deadline of the edge tasks. In
some cases, e.g. non critical settings, this can be achieved by just delaying the
deadline of the faulty task as well as the baseline of its edge tasks.

Flag outputs of forcibly terminated tasks. In the most permissive operat-
ing mode, where execution budget violations are ignored and deadline violations
result in delays, checking data values is not necessary as the system guarantees

correct data flow by eschewing timing enforcement. However, in a more restric-
tive mode that involves forced task termination, e.g hard critical systems or due
to the non availability of processor free slots, the data values do need to be
checked. This is done by verifying whether a task that was terminated by the
operating system is involved in calculating a data value. If a terminated task was
involved anywhere in the chain, the output is no longer reliable because it is not
guaranteed whether the task completed the calculation successfully before being
terminated. To this end, we introduce a new status Forced which will be assigned
to any task once its misses its deadline. The termination rule is similar to rule
Overrun, which is applicable when s.curT ime(T) ≥ s.curW (T).p (deadline
missed) and updates the status of T in the following: status(T) := Forced.

To check the involvement of the output of a terminated task in the calculation
of other tasks data, we add a “tainted” flag to data values as they are passed
between tasks. The flag is set when a task that is supposed to write a given value
is forcefully terminated, and it is propagated by all other data-dependent tasks.
If a tainted value is observed among the output, it results in a violation of the
predictability. To flag the output of tasks, we introduce the following:

– The involvement of data x in the calculation of the output of a task T is
given by predicate Involved(x, T). Such a predicate can easily be derived
from the functional description of tasks.

– To taint the output of a task T once it is forcibly terminated, we introduce
Taint(T.output) as a predicate. Taint() is initially initialized to false, i.e.
∀T, Taint(T.output) = false.

– The flag function Flag(T), used to propagate the taint from a forcibly ter-
minated task T to the output of its (descendent) edge tasks, is given by:

Flag(T) =

{
Taint(T.output) := true If Edge(T) = ∅

Or (∀Ti ∈ Edge(T), ∀x ∈ T.output ¬Involved(x, Ti))

(Taint(T.output) := true) ∧(Flag(Ti | ∀Ti ∈ Edge(T))) Otherwise

The predictability violation can then simply be checked through the existence
of tainted outputs. Using model checking, we quantify over all system states S
by exploring all the tasks T . Formally, the predictability is preserved if for any
non forcibly terminated task the outputs are not tainted:

∀s ∈ S ∀T ∈ T , s.status(T) 6= Forced⇒ Taint(T.output) = false

6 Implementation and Application

Our system description has been modeled using the Promela language, allow-
ing for verification of predictability of arbitrary task sets. The usefulness of the
verifier lies in its ability to perform an exhaustive search. The verification exhaus-
tively explores all possible executions and checks for predictability violations. If
a system is not predictable, a counterexample demonstrating the violation is
provided. A graphical front end was created to simplify task set definition and
result parsing. This utility generates the required Promela model based on the

parameters supplied by the user and pre-written skeleton code. It also parses the
counterexample trail files produced by the verifier into a graphical representation
of the task-to-processor assignment over time.

6.1 Spin Modifications

The counterexample trail files produced normally consist of the states and tran-
sitions visited by the verifier leading up to a state violating the predictabil-
ity. This allows a trail file to be “replayed” by Spin. Within the trail file, the
states are identified by their state numbers—a property internal to Spin that
cannot be relied upon or (easily) determined given the source Promela model.
The counterexample file becomes meaningless, as the state numbers cannot be
mapped to actual behavior of the system. Even if the trail file is replayed and
the source Promela statements displayed, they are meaningless to the user since
the Promela code is automatically generated.

To overcome this, we have extended Spin to support state annotations using
the existing Promela label syntax. Promela supports C-style labels (label:),
used as targets for goto statements as well as identifying special states (end,
progress, etc.). An additional special label type, annotation, is added. Any
text included in the label is attached to the state and propagated to the generated
verifier. The verifier, in turn, includes the text of these states in the trail files it
produces. Annotation labels are merged and lifted when state merging happens,
or within constructs that only produce one state (e.g., dstep) from a block of
Promela code. A list of all annotations that fall within a state is included in the
trail file in these cases. Meaningful data can now be extracted from the trail file.

6.2 Promela Model

The Promela model is divided into three parts: a set of tasks, the scheduler,
and the environment. The task code is entirely generated by the interface, based
on the user parameters. The scheduler and environment are mostly constant
between different task sets, with different sections enabled and disabled via pre-
processor macros depending on user inputs.

Each task is comprised of five blocks of Promela code, which are invoked
at the appropriate times: initialization, baseline, deadline, execution tick and
forced termination. Initialization code allows the task to push values to the
global descriptor table. Baseline and deadline code are called at each baseline
and deadline respectively. Execution tick (“run”) code is called once per every
scheduling tick that the task is assigned processor time. Finally, forced termina-
tion code is called when the task needs to be terminated unexpectedly. Regular
termination, if needed, is supposed to be handled by the run code.

The scheduler code is entirely deterministic—all non-deterministic choices
happen within the tasks, as it is assumed that the scheduler is fault-free. This
code is executed once per tick, and is responsible for updating task timing in-
formation and choosing which tasks get assigned processor time.

The environment consists mainly of the scheduler loop. It calls the task-
specific code and the scheduler code at the appropriate times. The environment
and scheduler together are meant to represent the operating system’s role.

6.3 Interface

A cross-platform Java GUI (Figure 6) was created to simplify creating task sets
and modifying parameters. The interface allows users to enter task-specific code,
as well as general parameters such as number of cores and enforcement modes.
It then generates the final Promela model, automating certain repetitive tasks
(e.g., inserting a task identifier in the proper places) that are too complex for the
C pre-processor normally used by Spin for such purposes. Finally, if a trail file is
produced, the GUI generates a visualization showing how the defined tasks were
scheduled and when the predictability violation occurred. For further details
regarding the implementation, we refer readers to [14].

Fig. 6: The Java graphical interface.

6.4 Case Study: Active Safety Demo

To show the applicability of our framework, we have analyzed a realistic example
from the automotive domain. The most relevant parts of the task set description
are given in Table 1. Various system configurations have been analyzed—different
numbers of cores and allowable faults, along with different scheduling algorithms
and enforcement modes. The size of the state space and therefore both the
execution time and memory requirements increase as the number of permitted
faults increases, because each fault represents a non-deterministic choice that
needs to be made once per scheduling tick per task, causing a branch in the
search tree. The search tree becomes very broad with many faults, but the depth
remains tractable.

All optimizations performed by Spin when generating the verifier (e.g., state
merging) were enabled. The performance of the verifier on some representative
configurations can be seen in Figure 7. The results shown are with critical tasks
permitted to fail. Each scheduling algorithm produced broadly similar results,
so only the results for EDF are shown. The performance of both the verifier

Table 1: Parameters and data flow of the active safety demo task set, (C
= Criticality, W = Window Size, B = Budget, O = Overrun amount, on
fault). See [14] for descriptions of the values.

Task C W B O Values Read Values Written

AdaptiveCruise Hi 10 3 3 APP BPP CO CSS TD VS ABT APT

AutoSteering Hi 10 3 3 ASO LMP SWA AST

InputProcessing Hi 40 6 4 (Environment) APP ASO BPP CO CSS
LMP SWA SWT TD VS

ManualBraking Lo 40 6 4 BPP MBT

ManualPropulsion Lo 40 6 4 APP MPT

ManualSteering Lo 40 6 4 SWA MST

OutputArbitration Hi 40 6 4 APP ABT APT ASO
AST BPP CO MBT MPT
MST SWT

BT COI PT SOI ST

OutputProcessing Hi 40 6 4 BT COI PT SOI ST (Environment)

itself and the visualization generation is very good on a modern system (Core
i7, 16GB RAM), the entire process generally taking less than a second for a
realistic number of faults. Further analysis results are available in [14].

Fig. 7: Analysis results of the case study.

Cores Faults States Time Predictable?

1 0 2178 0.010s No

2 0 2231 0.002s Yes

2 1 19468 0.025s Yes

2 4 44369 0.052s No

4 4 632906 0.682s Yes

4 32 20055317 22.9s Yes

7 Related Work

In the literature, several frameworks for the predictability analysis of real-time
systems have been proposed [10, 9, 8, 17, 5]. However, only few proposals consider
multicore platforms and dynamic attributes of tasks.

The authors of [8] presented a model-based architectural approach for im-
proving the predictability of real-time systems. This approach is component-
based and utilizes automated analysis of task and communication architectures.
The authors generate a runtime executive that can be analyzed using the MetaH
language and the underlying toolset. Such a work does not deal with multicore
or criticality.

Garousi et al introduced a predictability analysis approach [10], for real-time
systems, relying on the control flow analysis of the UML 2.0 sequence diagrams as
well as the consideration of the timing and distribution information. The analysis
includes resource usage, load forecasting/balancing and dynamic dependencies.
Our work differs because it supports dynamic runtime and fault handling.

The authors of [3] introduced a compositional analysis enabling predictable
deployment of component-based systems running on heterogeneous multi pro-

cessors. The system is a composition of software and hardware models according
to a specific operational semantics. Such a framework is a simulation-based anal-
ysis, thus it cannot be used as a rigorous analysis means for critical systems.

The authors of [16] defined a predictable execution model for COTS (com-
mercial -off-the-shelf) based embedded systems. The goal is to control the use of
each resource in such a way that it does not exceed its saturation limit. However,
such a claim cannot always be maintained because of the non-determinism in
the behavior of tasks and their environment.

The authors of [4] introduced a predictability analysis framework for real
time systems given by a set of independent components running on a single core
platform. Data flow is abstracted using dependability whereas predictability is
compositionally analyzed through schedulability as a sufficient condition. How-
ever, simplifying the architecture to obtain a compositional analysis might not
be practical for modern COTS-based embedded systems.

In [15], the authors introduce data flow graphs as a scheduling means for data
flow within single core systems so that liveness and boundness are guaranteed.
The schedulability analysis of data flow is then performed by translating data
flow graphs to graph-based real-time tasks. A study of the applicability of such
a framework for multicore systems having dynamic runtime is very interesting.
In a similar way, the authors of [2] introduce a model of data flow computation
to overcome the restrictions of classical data flow graphs by allowing dynamic
changes during runtime. The dynamism of data flow graph is expressed by 2
parameters: the number of data required (rate) for each flow and the activa-
tion/deactivation of communications between the functional units. Compared to
that, our framework considers a static topology of the data flow graph encapsu-
lated within the dynamic runtime of tasks however the data flow timeliness can
vary in accordance with faults (overruns).

8 Conclusion

In this paper, we have introduced a formal framework and model checking based
approach for the predictability analysis of mixed criticality task sets running on
multicore platforms. The framework supports window scheduling and dynamic
tasks bahavior, and allows for failures to be handled at runtime. We formulated
a system description and modeled it in Promela. A GUI was implemented to
increase ease of use and Spin was extended to support the generation of visual-
izations. The analysis results for a realistic example are encouraging and suggest
that the approach might scale to industrial settings.

We greatly simplify the analysis by observing that only monitoring “edge”
tasks for delays and checking outputs for values tainted by terminated tasks is
needed. Interesting future work would be to model the data flow separately from
tasks behavior, in similar way to [2], to make our framework more flexible.

Acknowledgment

This work is supported by the Natural Sciences and Engineering Research Coun-
cil of Canada, as part of the NECSIS Automotive Research Partnership with
General Motors, IBM and Malina Software Corp.

References

1. ISO 26262-1:2011 Road vehicles–Functional safety. Technical report, ISO, 2011.
2. V. Bebelis, P. Fradet, A. Girault, and B. Lavigueur. BPDF: A statically analyzable

dataflow model with integer and boolean parameters. In EMSOFT ’13, pages 3:1–
3:10. IEEE Press, 2013.

3. E. Bondarev, M. Chaudron, and P. de With. Compositional performance analysis
of component-based systems on heterogeneous multiprocessor platforms. In SEAA
’06., pages 81–91, Aug 2006.

4. A. Boudjadar, J. Dingel, B. Madzar, and J. H. Kim. Compositional predictability
analysis of mixed critical real time systems. In FTSCS’15, volume 596 of CCIS,
pages 69–84. Springer, 2015.

5. A. Boudjadar, J. H. Kim, K. G. Larsen, and U. Nyman. Compositional schedula-
bility analysis of an avionics system using UPPAAL. In Proceedings of ICAASE’14,
pages 140–147, 2014.

6. D. Chabrol, C. Aussagues, and V. David. A spatial and temporal partitioning
approach for dependable automotive systems. In IEEE Conference on Emerging
Technologies Factory Automation, pages 1–8, 2009.

7. D. de Niz, K. Lakshmanan, and R. Rajkumar. On the scheduling of mixed-
criticality real-time task sets. In RTSS’09, pages 291–300, 2009.

8. P. Feiler, B. Lewis, and S. Vestal. Improving predictability in embedded real-time
systems. Technical Report CMU/SEI-2000-SR-011, Dec 2000.

9. J. Fredriksson. Improving Predictability and Resource Utilization in Component-
Based Embedded Real-Time Systems. PhD thesis, Mälardalen University, 2008.

10. V. Garousi, L. C. Briand, and Y. Labiche. a unified approach for predictabil-
ity analysis of real-time systems using UML-based control flow information. In
MoDELS, volume LNCS 3844, 2005.

11. T. A. Henzinger. Two challenges in embedded systems design: Predictability and
robustness. Philosophical Transactions of the Royal Society A: Mathematical, Phys-
ical and Engineering Sciences, 366:3727–3736, 2008.

12. T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto: A time-triggered language
for embedded programming. In Embedded Software, pages 166–184. Springer, 2001.

13. T. A. Henzinger, Z. Manna, and A. Pnueli. Timed transition systems. In Pro-
ceedings of the Real-Time: Theory in Practice, REX Workshop, pages 226–251.
Springer-Verlag, 1992.

14. B. Madzar. Modelling and verification of predictable data flow in real-time systems,
M. Sc thesis. Queen’s University Canada, 2015.

15. M. Mohaqeqi, J. Abdullah, and W. Yi. Modeling and analysis of data flow graphs
using the digraph real-time task model. In 21st International Conference on Reli-
able Software Technologies, volume 9695 of LNCS, pages 15–29. Springer, 2016.

16. R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and R. Kegley.
A predictable execution model for COTS-based embedded systems. In RTAS’11.

17. S. Yau and X. Zhou. schedulability in model-based software development for dis-
tributed real-time systems. In WORDS’02, pages 45–52, 2002.

