
Experience Report: Memory Accesses for Avionic
Applications and Operating Systems on a

Multi-Core Platform
Andreas Löfwenmark

Avionics Equipment
Saab Aeronautics

Linköping, Sweden
andreas.lofwenmark@saabgroup.com

Simin Nadjm-Tehrani
Department of Computer and Information Science

Linköping University
Linköping, Sweden

simin.nadjm-tehrani@liu.se

Abstract—The deployment of multi-core platforms in safety-critical
avionic applications is hampered by the lack of means to ensure
predictability when processes running on different cores can create
interference effects, affecting worst-case execution time, due to
shared memory accesses. One way to restrict these interferences
is to allocate a budget for different processes prior to run-time
and to monitor the adherence to this budget during run-time.
While earlier works in adopting this approach seem promising,
they focus on application level (user mode) accesses to shared
memory and not the operating system accesses. In this paper we
construct experiments for studying a multi-core platform running
an ARINC 653 compliant operating system, and measure the impact
of both application processes and operating system (supervisor
mode) activities. In particular, as opposed to earlier works that
considered networking applications, we select four avionic processes
that exhibit different memory access patterns, namely, a navigation
process, a matrix multiplication process, a math library process
and an image processing one. The benchmarking on a set of
avionic-relevant application processes shows that (a) the potential
interference by the operating system cannot be neglected when
allocating budgets that are to be monitored at run-time, and (b)
the bounds for the allowed number of memory accesses should not
always be based on the maximum measured count during profiling,
which would lead to overly pessimistic budgets.

Index Terms—real-time; predictability; multi-core; temporal
partitioning; memory management; avionic systems; ARINC
653

I. INTRODUCTION

Multi-core platforms are prevalent in many different applica-
tion areas, but have not yet found the inroad to the safety-
critical segment, due to lack of understanding on how to
ascertain software predictability. Although the use of concur-
rent processes and shared resources is well-studied in real-
time systems, the estimation of worst-case execution time
(WCET) and maximum response time for each process is
based on well-defined regimes allowing mutually exclusive
access to each shared resource. With applications running on
multi-core platforms this option no longer exists unless all
caches are partitioned and the timing effects of accesses to the
shared memory are predictably estimated. One of the recent

approaches for scheduling critical applications on multi-core
platforms is based on the concept of multi-resource servers
(MRS) [1]. In this approach all memory accesses of all servers
are estimated and the schedule allows a budget for memory
accesses that is monitored at run-time. In this paper, we
study the extended application of this technique to safety-
critical systems, and in particular, whether a bound on memory
accesses from servers running on multiple cores suffices for
assuring predictability of the timing.

Traditionally, avionics have used functions implemented and
packaged as self-contained units (in a federated system).
Integrated Modular Avionics (IMA) [2] uses a high-integrity,
partitioned environment, that hosts multiple functions of dif-
ferent criticalities on a shared computing platform. The par-
titioning concept ensures a fault containment level equivalent
to its functionally equivalent federated system, which implies
partitioning in both space and time [3], [4]. Space partitioning
is not a new problem as this is also a concern in other types
of systems, but with the introduction of multi-core the time
partitioning property needs to be addressed as the avionics
functions can now concurrently share resources on the same
computing platform.

The main approaches for solving the problems with shared re-
sources, as summarized in our previous work [5], are: resource
management e.g. dividing the cache among tasks to minimize
the interference; resource arbitration where access to the
resource is scheduled and the task gets private access for a
period of time, which can be seen as a special case of resource
management using special hardware; and resource monitoring
where the resource usage is monitored and access can be
restricted at run-time if a provided limit is exceeded.

In this paper we look at resource monitoring systems and
shared memory in particular. In addition to the memory
accesses performed by the applications running on the differ-
ent cores, we also consider the memory accesses performed
by the real-time operating system (RTOS). Most previous
works have used a standard desktop operating system (e.g.,

Linux) when performing experiments. Linux is recognized as
not being suitable for safety-critical avionics systems, and
therefore all effects of the OS are ignored. However, this
neglects the memory accesses performed by the RTOS on
each core. For instance, system calls, memory management
for space partitioning and task switching could all introduce
an overhead in the number of memory accesses performed
from a particular core. These extra memory accesses could
interfere with memory accesses performed from other cores,
and thus affect the WCET of those applications.

We evaluate our hypothesis on the T4240, a state-of-the-
art multi-core System on Chip (SoC) from Freescale, using
avionic representative applications and an ARINC 653 [3]
compliant RTOS that we extend for monitoring the memory
accesses of all applications, but also the accesses by the RTOS
itself.

The contributions of this paper are:

• We perform experiments on memory access monitoring
on a multi-core platform relevant for avionic systems.
Specifically, we run four different avionic applications
with different memory access patterns, to illustrate the
diversity of memory access patterns.

• We show the magnitude of the RTOS memory accesses
and that they should be considered when analyzing inter-
core interference.

• We show that simply using the maximum measured
number of memory accesses as the budget is not always
the best option, since it could lead to an overly pessimistic
budget in the same way the theoretical analysis would.

While the measurements in this paper are based on a given
platform and a given set of applications, thereby not of general
value, they clearly indicate the need for an additional term
in the previously proposed general models for budget-based
multi-core resource allocation. This term would have to bound
the operating system induced memory accesses so far missing
from the models.

The remainder of this paper is structured as follows. Related
research and background are discussed in Sections II and III.
Section IV introduces our methodology and in Section V we
present our experimental results. We discuss some aspects of
the results in Section VI and in Section VII we conclude the
paper.

II. RELATED WORK

Although a lot of research has been performed on multi-
processor systems (e.g., [6]–[8]), focus of the great majority
of these works is throughput and performance, not worst-
case guarantees and predictability, thereby they are not further
discussed here.

How to efficiently utilize all cores in a safety-critical multi-
core system is a research topic receiving a substantial amount

of interest. Pellizzoni et al. [9] attempt to overcome the
problems with non-predictable COTS components by introduc-
ing a system execution model, PRedictable Execution Model
(PREM), which introduces two new hardware devices, real-
time bridge and peripheral scheduler, to make the schedul-
ing of I/O peripherals more deterministic. They also divide
tasks into intervals (compatible and predictable), similar to
Schranzhofer [10], where the predictable interval is further
divided into a memory phase and an execution phase. During
the memory phase shared memory accesses are performed
to fill the cache with the data needed for the execution
phase, which is performed without memory accesses and cache
misses. The I/O peripherals can access main memory during
an execution phase without contention.

For hardware platforms allowing accesses to shared resource
to be scheduled (e.g., using time division multiple access
(TDMA)), the accesses can be arbitrated and the interference
can be eliminated. Such a platform was used by Schranzhofer
et al. [10] to analyze the worst-case response time (WCRT).
Three different access models are examined: dedicated, general
and hybrid access. An analytical worst-case analysis frame-
work considering blocking/no-buffered accesses to a shared
resource was proposed and evaluated for all three models.
They showed that separating computations and accesses to
the shared resource is important for accurately computing
the WCRT. Whitham et al. [11] describe a hardware mech-
anism for explicit reservation of cache memory to reduce the
cache-related preemption delay observed when tasks share a
cache.

Resource arbitration using TDMA may lead to under-
utilization and may not be the best choice when both pre-
dictability and performance are important [12], it also requires
special hardware support. Giannopoulou et al. [13] use the
dedicated access model from [10] and suggest a scheduling
policy for a mixed-criticality multi-core system with resource
sharing without the need for special hardware support. The
policy prevents timing interference among the tasks of dif-
ferent criticality levels by allowing only a statically known
set of tasks with the same criticality level to execute on the
cores at any time. To achieve more efficient resource utiliza-
tion, static and dynamic barriers are used for synchronization
on the global level, and on the core level a flexible time-
triggered scheduling strategy is used. This enforces timing
isolation between criticality levels and enables composable and
incremental certifiability. The cost is run-time overhead for
the clock and barrier synchronization between the cores. An
approach similar to Giannopoulou’s was proposed by Mollison
et al. [14] who presented a two-level hierarchical scheduling
framework for mixed-criticality tasks. The top-level schedules
container tasks, which in turn contain the “normal” tasks. Each
container consists of tasks of the same criticality level and
uses a given scheduling strategy. Biondi et al. [15] present
a framework for component-based design in multi-processor
real-time systems under partitioned scheduling. They map
components to virtual processors implemented through reser-

vation servers. During integration, the virtual processors are
assigned to the physical processors. The framework enables
resource sharing among independently developed real-time
applications. Since the resource access protocol makes use of
FIFO non-preemptive spinlocks to ensure mutual exclusion
among the processors, the approach is not really viable for a
system where the whole memory is the shared resource.

An approach to avoid the shared resource interference while
still using multiple cores was described by Fuchsen [16]. An
ARINC 653 compliant partitioning model is used where a
safety-critical partition would run on its own core and during
its partition window no other partitions are allowed to run
on any of the other cores. When no critical application is
running, several partitions may use the cores or all cores can
be assigned to one partition. This eliminates shared resource
interference on the critical applications, but it is also quite
expensive since many cores may be unused in several time
windows.

Monitoring the shared resource usage is yet another approach,
which can be done in a way similar to the CPU-monitoring
concept of ARINC 653 where each partition is limited in
the amount of allocated CPU-time. By using the performance
monitor counters found in most CPUs, it is possible to track
for example the consumed memory bandwidth and enforce
limitations on the number of memory accesses to prevent
contention. Yun et al. [17] use performance counters to get
information on memory accesses to separate real-time and
non-real-time tasks. They concentrate the critical tasks to one
core (the critical core) and the other cores (interfering cores)
contain the non-critical tasks. Run-time monitoring is used to
throttle the memory accesses by the interfering cores if more
memory requests than allocated are performed. The focus of
the work is to schedule the critical tasks while the impact
on the non-critical tasks is minimized. This approach may
result in under-utilization if the critical tasks do not execute
often.

In another work by Yun et al. [18] the concept of a memory-
performance critical section is introduced, where a task uses
an API to indicate it requires a high memory bandwidth and
the OS regulates the other cores. This is designed to protect
soft real-time applications and can result in heavy penalties on
co-running applications. A more general approach is proposed
by Inam et al. [1], where a multi-resource server (MRS) is
presented. The server maintains two different budgets; one
for the CPU usage and one for the number of memory
requests, but the memory throttling is proposed per server
instead of per core, and several servers can execute on a core.
Nowotsch et al. [19] target an integrated approach of worst-
case timing analysis for multi-core and a run-time monitoring
mechanism. In addition to existing single-core WCET estima-
tion techniques, the authors analyze the maximum number of
shared resource accesses per shared resource. Based on these
estimates they introduce a new phase, the interference-delay
analysis, to account for the additional interference caused by

shared resources. This way they can separate the analysis
of tasks scheduled to execute in parallel and analyze each
task in isolation, followed by the interference-delay analysis
to estimate the multi-core WCET. However, compared to our
work, none of the works based on monitoring have taken the
memory accesses by the RTOS into account, which is the focus
of this paper.

III. BACKGROUND

In this section, we review the basic concepts relevant to our
work.

A. ARINC 653

ARINC 653 [3] is a software specification in avionics systems.
Central to ARINC 653 is the concept of partitioning, whereby
the applications are partitioned with respect to space (memory
partitioning) and time (temporal partitioning). A partition is a
program unit of the application to satisfy these partitioning
constraints. An ARINC 653 compliant RTOS supports robust
partitioning, which allows partitions with different criticality
levels to execute on the same computing platform, without
affecting one another spatially or temporally, in the context
of an IMA architecture. ARINC 653 defines an Applica-
tion Programming Interface (API) called APlication/EXecutive
(APEX), allowing applications to move between ARINC 653
compliant RTOSes without rewriting the whole application.
The APEX API contains services to manage partitions and
processes, to handle inter- and intra-partition communication,
and also services for error handling.

Partitions are scheduled in a static cyclic schedule, which
prescribes when and for how long a partition can execute.
The major frame time determines the length of the repeating
schedule, and each major frame is divided into partition
windows with a specified start time within the major frame and
a duration. A partition can be scheduled in arbitrarily many
partition windows within a major frame.

A partition consists of one or more processes that combine to
provide the functions associated with that partition. Processes
within a partition share the same memory address space,
and are scheduled according to a priority-based preemptive
scheduling scheme. The naming convention using the terms
partition and process is somewhat confusing as for general
purpose operating systems the terms process and thread are
often used, where the processes are separated in memory and
the threads share the memory address space. In this paper we
use the nomenclature of ARINC 653.

All resources needed by a partition are statically allocated in
a configuration file. This includes for instance the number
of processes, the memory requirements and inter-partition
communication channels. During partition initialization all
resources used by the partition are created. When the nor-
mal mode execution starts it is no longer possible to create
additional processes.

The current revision of ARINC 653 is for single-core proces-
sors, but work is currently ongoing by the Airlines Electronic
Engineering Committee (AEEC) APEX subcommittee1 to
adapt the standard for use on multi-core processor architec-
tures.

B. Hardware Architecture

The T42402 belongs to the state-of-the-art Freescale QorIQ T
series. The T4240 consists of 12 Power Architecture R©e6500
cores. Each core supports two hardware threads, which soft-
ware views as two virtual CPUs, and thus rendering a total of
24 (virtual) cores. The e6500 cores are clustered in banks of
four cores sharing 2 MB level 2 (L2) cache, but with private
32 KB L1 data and instruction caches.

The e6500 core provides three privilege levels to provide
different levels of protection for software to operate under.
This allows for building systems that provide partitioning and
virtualization. Hypervisor mode is the highest privilege level;
it allows access to all instructions and resources, the supervisor
mode is the next level; it has access to several privileged
instructions, and user mode is the unprivileged and lowest
level; this is where most normal applications run.

To implement the space and time partitioning of ARINC 653,
the RTOS can execute in hypervisor or supervisor mode and
the applications execute in user mode. In the rest of the paper
we will use the term supervisor mode for the mode in which
the RTOS is executing, regardless of whether it executes in
supervisor or hypervisor mode.

IV. METHODOLOGY

This paper aims to evaluate the hypothesis that RTOS mem-
ory accesses on one core could interfere with applications
executing on other cores when memory budgets have been
determined only using knowledge about the behavior of the
applications.

We use four applications, described in Section IV-D, with
different memory access characteristics to evaluate the relation
between the number of memory accesses (i.e. L2 cache misses)
performed by the applications and the number of memory
accesses performed by the RTOS. In addition, we measure the
number of memory accesses performed by the RTOS during
the allocated partition windows.

The applications are run for approximately 30 minutes, the
length of a typical mission, after which the applications output
the collected data.

1http://www.aviation-ia.com/aeec/projects/apex/
2http://www.freescale.com/webapp/sps/site/prod summary.jsp?code=

T4240

A. Hardware Platform

All experiments are performed on a Freescale T4240QDS3

development board using one cluster of four physical cores.
Only one of the two hardware threads is used in each physical
core, giving a total of four virtual cores in the cluster sharing
one L2 cache. The L2 cache is however disabled since we are
only interested in cache misses, and the L1 cache is invalidated
before each partition window so the same preconditions apply
to all partition windows.

The T4240QDS system is connected to a probe for loading
software into the memory, running the experiments and de-
bugging. All data is collected over a RS232 serial link.

B. Software Platform

We use a proprietary ARINC 653 compliant research RTOS,
extended by us as described in Section IV-C. The system is
run in an asymmetric multiprocessing (AMP) configuration,
meaning separate RTOS instances on each core.

Each application is implemented in a partition separate from
the other applications, and each partition is scheduled to
execute on different cores. Thus, we have one partition running
on each of the four cores.

A current single-core partition schedule would normally con-
sist of more than one partition and partition window, typically
6-10 partitions, in a major frame. In our case, we would
schedule all four partitions within a major frame. In this
paper, the partition schedule for each core consists of one
single partition window, since we only have one partition
on each core. The partitions will execute in 60 Hz, which
is a commonly used frequency in avionics. The partition
window duration, and also the major frame time, will thus
be 16.67 ms. Even though there is only one partition window
in each schedule, the partition scheduling is still activated
after the partition window duration when starting a new major
frame.

C. RTOS Extensions

The RTOS is a proprietary software, originally designed for
use on an e500 PowerPC core, and has been ported by us to
the e6500 PowerPC core used in the T4240 SoC.

The monitoring is implemented using the Performance Mon-
itor Counters (PMCs) that exist in the e6500 core. The cores
provide the ability to count L2 instruction misses per core
and L2 data misses per core. Six performance counters are set
up, two for counting data and instruction misses in supervisor
mode, two for counting data and instruction misses in user
mode, and the last two for counting data and instruction misses
in supervisor mode only when the Performance Monitor Mark
(PMM) flag is set in the Machine Status Register. The RTOS is

3http://www.freescale.com/webapp/sps/site/prod summary.jsp?code=
T4240QDS

also extended to set the PMM flag under the partition switch
interval while scheduling. By setting the PMM flag during
partition scheduling and setting the last two counters to only
count when PMM is set, we can separate the memory accesses
performed in supervisor mode during a partition window and
the memory accesses performed during partition scheduling,
which are also performed in supervisor mode.

On each core, the PMCs will count each instruction and
data miss to the L2-cache in each partition window. During
partition scheduling the RTOS will store the values to a buffer
and the counters are set to zero. The buffers are available to
the partitions in user mode.

D. Applications

The applications have been selected as they exhibit character-
istics representative for avionic applications. From Figure 1
we can also see that the applications exhibit quite different
memory access characteristics. The applications are contained
within one ARINC 653 partition each.

Nav This partition consists of two periodic processes.
One, running in 60 Hz, implements a navigation
algorithm for an unmanned aerial vehicle (UAV). The
other process, running in 1 Hz, simulates a Global
Positioning System (GPS) device (by keeping a static
array of coordinates). Every second a new GPS
coordinate is made available from the GPS process
to the navigation process, which in turn processes
the position and takes the appropriate action in
navigating to the destination.
The GPS path has 76 coordinates, going from point A
to point B and back again. There are four waypoints
along the path, two going from A to B and two going
from B to A. It can be seen as a surveillance mission
for a UAV, going back and forth between the two end
points.

Mult This partition consists of one periodic process. It
performs a multiplication of two 1000x1000 matri-
ces. One complete matrix multiplication is performed
each period.

Cubic This partition consist of one periodic process. It is
based on the basic math test from the Automotive
and Industrial Control category of MiBench [20].
It performs simple mathematical calculations such
as cubic function solving, integer square root and
angle conversions from degrees to radians, which are
all calculations needed for calculating for instance
airspeed or other avionics related values. The input
data for these calculations is a fixed set of constants.
It takes several partition windows to complete the
entire set of calculations.

Image This partition consists of one periodic process. It is
based on the Susan test from the Automotive and
Industrial Control category of MiBench [20]. It is an
image recognition package including edge and corner

detection, smoothing and adjustments for threshold,
brightness, and spatial control. The input data is a
black and white image of a rectangle.
For each period the process alternates between the
available image recognition operations, and it takes
several periods to complete all of them.

V. MEASUREMENT RESULTS

In this section we evaluate the memory accesses resulting from
the described applications and also from the RTOS.

Figure 1 shows that the average number of memory accesses
from the four selected applications each running in its own
partition differ by orders of magnitude. Also the standard
deviation, shown as error bars, varies greatly between the
partitions. Mult, for instance, has a very low standard de-
viation, meaning it is deterministic in its memory accesses
from one partition window to another. Cubic on the other hand
has a more diverse memory access pattern between partition
windows. This indicates that the impact of the RTOS memory
accesses will depend on the memory access characteristics of
the partitions.

102

103

104

105

106

Nav Mult Cubic Image

Average number of memory accesses / partition window

User mode

Fig. 1. Memory access characteristics for included applications

Figure 2 and Figure 3 show the memory accesses per partition
window during the experiment for Nav and Cubic respectively.
These two are illustrated here as they represent two distinct
characteristics. For Nav, the supervisor mode accesses are of
the same magnitude as the user mode accesses, while for
Cubic the user mode accesses are orders of magnitude larger.
The underlying reason for the large standard deviation for
Cubic in Figure 1 shows up in Figure 3 through the order
of magnitude difference in the number of accesses between
partition windows. The compact band of access numbers in the
range just below 104 accesses represents a kind of dominant
behavior in some partition windows, and the thinner bands
just below 105 accesses represent another type of behavior
exhibited in fewer number of partition windows.

102

103

104

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
em

or
y

ac
ce

ss
es

Time (s)

Nav - Memory accesses / partition window

User mode
Supervisor mode

Reschedule

Fig. 2. Nav

102

103

104

105

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
em

or
y

ac
ce

ss
es

Time (s)

Cubic - Memory accesses / partition window

User mode
Supervisor mode

Reschedule

Fig. 3. Cubic

Mult and Image show an access pattern similar to Cubic, but
the user mode memory accesses are magnitudes larger than
the supervisor mode accesses, and are not shown here.

Both supervisor mode and partition scheduling (Reschedule
in the figures) accesses are fairly similar for all partitions, as
shown in Figure 4. This figure displays the total number of
memory accesses monitored in all partition windows during
the experiment period. The magnitude of the supervisor mode
memory accesses depends on the behavior of the application
running in that partition (e.g., the usage of system calls and
is thereby different for different applications). The partition
scheduling accesses, on the other hand, are independent of
application behavior, and these memory accesses are a constant
overhead regardless of whether the partitions on the core
execute or not. However, the fact that stable numbers are
exhibited displays a degree of determinism in this function

Partition Supervisor Mode User Mode Reschedule
Nav 48.3% 30.92% 20.78%
Mult 0.07% 99.87% 0.06%
Cubic 5.60% 91.96% 2.44%
Image 0.77% 98.60% 0.32%

TABLE I
DISTRIBUTION OF TOTAL NUMBER OF MEMORY ACCESSES

of the RTOS.

For Nav, the supervisor mode actually contributes more mem-
ory accesses than the application itself. There are more than
twice as many memory accesses compared to only using
application behavior. This clearly illustrates that had a budget
been set on the memory accesses solely dependent on the
application behavior, the budget would have been far to tight,
and the application operation disrupted at run-time far too
often.

107

108

109

1010

1011

Nav Mult Cubic Image

Total number of memory accesses

User mode
Supervisor mode

Reschedule

Fig. 4. Total number of memory accesses

Table I summarizes the observations above. For the memory
intensive Mult and Image, the supervisor mode accesses ac-
count for less than 1 percent. For Nav, on the other hand,
being more computationally intensive and consisting of two
processes (resulting in more supervisor mode accesses due to
process scheduling overhead), the supervisor mode accesses
account for almost 50 percent of the total number of memory
accesses. Note that even though the percentage is low for three
out of the four applications, the extra memory accesses in
supervisor and reschedule modes could still have an actual
impact on the worst-case response time of the applications on
other cores. Looking at individual partition windows, Table II
shows that the memory accesses from the RTOS can be
quite significant. Even for Image where the supervisor mode
accesses account for less than 1 percent of the total number of
accesses, we can see that for an individual partition window
supervisor mode accesses can account for 66 percent.

Using the box plot in Figure 5 to visualize the diversity of the
number of memory accesses over different partition windows,

Partition Supervisor mode accesses
Min Max

Nav 3.2% 72.0%
Mult 0.1% 7.2%
Cubic 0.3% 8.3%
Image 0.3% 66.0%

TABLE II
PROPORTION OF SUPERVISOR MODE ACCESSES / PARTITION WINDOW

we see the difference in the nature of the four applications in
another light.

A relatively narrow box in this context, as illustrated by Nav
and Mult access patterns, demonstrates a more deterministic
behavior. Here Mult is the most deterministic with fewer
outliers. Nav is typically deterministic, but there are partition
windows in which outliers exhibit an order of magnitude
higher number of accesses, thus clearly questionable if the
narrow band would be a better estimate for a budget, or the
pessimistic count based on outliers. A further accentuated
version of this behavior is shown by Cubic, where a larger
number of outliers are shown. This is an example of a
process where using the maximum number of accesses in some
partition windows, if used for setting the budget, would be too
pessimistic. However, barring those outliers, the process shows
a relatively deterministic memory access pattern (a narrow
band). Finally, image processing is depicted in a wide box with
an average that is far less than the other potential number of
accesses exhibited. This would be an example of a process
for which making an educated guess to a relevant budget
for memory accesses would be quite difficult. Reconsidering
the structure of the code and potentially dividing it into
more deterministic subfunctions would be a recommended
approach.

VI. DISCUSSION

If we look closely at Figure 2, we can see that, for Nav, there
is one sample in the very beginning (just below 104) where
the user mode accesses are a magnitude larger than anywhere
else. This has to do with the initialization of the partition
before entering normal mode. This can also be seen from
the outliers in Figure 5, where we can see a similar behavior
for Cubic (although we cannot see if the outliers belong to
the initialization phase). If we were to use this maximum
for doing inter-core interference analysis, the result would be
very pessimistic. The outliers should be further analyzed for
relevance, and if only occurring during initialization or fatal
error handling the outliers can safely be ignored.

The large differences in number of accesses between partition
windows exhibited by Cubic and Image may result from the
fact that the calculations take several partition windows to
complete and the memory access balancing could perhaps be
improved to yield a more narrow band of memory accesses.
Without paying attention to memory access characteristics
during application design, it may be difficult to avoid overly
pessimistic budgets and this can affect the possibility to

102

103

104

105

106

Nav Mult Cubic Image

Distribution of user mode memory accesses / partition window

Fig. 5. Distribution of user mode memory accesses / partition window
(outliers have been grouped together into one if there are many with the
same value)

efficiently integrate legacy applications on a multi-core plat-
form.

We have a simplified system for our experiments and because
of this there are additional sources of supervisor mode memory
accesses that have not been accounted for. The fact that there
is only one partition on each core probably results in less space
partitioning overhead as the memory management unit of the
core is less utilized and this will lead to fewer misses. As stated
previously, the partition scheduling of an ARINC 653 system
will incur a number of memory accesses due to the static
cyclic schedule. Since partition scheduling occurs after each
partition window, the overhead will increase as new partition
windows are added to the schedule. In our case with only one
partition there is also only one partition window, which will
result in less partition-scheduling overhead than would occur
in a real avionic system. None of these simplifications make
the implications less valid. On the contrary, there would be
additional memory accesses to support our hypothesis.

The results are also applicable to a symmetric multiprocessing
(SMP) ARINC 653 system, but the partition scheduling would
not cause interference in the same way as in AMP systems.
The partition scheduling would always occur at the same time
on all cores and the interference would be internally in the
RTOS, but the delay until the next partition starts executing
would probably be longer than if running on a single-core
system.

VII. CONCLUSION

In this paper, we investigate the problem of RTOS induced
memory accesses interfering with the execution of other cores
in a multi-core AMP system, and present our experimental
results. We use four applications and an ARINC 653 RTOS,
all representative for avionic systems.

The results show that the impact of RTOS memory accesses
are dependent on application behavior, ranging from quite
significant for the computationally intensive Nav where the
RTOS contributed more memory accesses than the application
itself (48 percent vs. 30 percent of the total number of
memory accesses), to marginal for the very memory intensive
Mult where the RTOS contributed less than 0.1 percent.
Even though the percentage is low for three out of the four
applications, there may be a substantial amount of memory
accesses from the RTOS adding extra interference on other
cores and impacting the worst-case response time of the
applications. The partition scheduling in an ARINC 653 RTOS
also introduces memory accesses not accounted for due to the
static cyclic nature of the schedule.

Our measurements on the four diverging types of applications
reveal some challenges related to determining memory access
budgets.

• Nav poses no challenges if the initialization outlier can
be ignored.

• Mult is deterministic in its memory access behavior and
poses no challenges.

• Cubic has too many outliers that nevertheless represent a
smaller fraction of number of accesses, resulting in large
pessimism.

• Image is an example where it is difficult to avoid pes-
simism.

While this is a limited study based on only one RTOS,
our approach and methodology is equally applicable to other
RTOSes. Our results clearly show that RTOS memory accesses
need to be incorporated into the previously proposed worst-
case timing analyses to correctly perform the inter-core inter-
ference analysis.

ACKNOWLEDGEMENT

This work was supported by the Swedish Armed Forces, the
Swedish Defence Materiel Administration and the Swedish
Governmental Agency for Innovation Systems under grant
number NFFP6-2013-01203.

REFERENCES

[1] R. Inam, N. Mahmud, M. Behnam, T. Nolte, and M. Sjödin, “The multi-
resource server for predictable execution on multi-core platforms,” in
Proceedings of the 20th IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), April 2014.

[2] RTCA, Inc, “RTCA/DO-297, integrated modular avionics (IMA) devel-
opment, guidance and certification considerations,” 2005.

[3] Aeronautical Radio Inc (ARINC), “ARINC 653: Avionics application
software standard interface part 1 - required services,” 2010.

[4] RTCA, Inc, “RTCA/DO-178C, software considerations in airborne sys-
tems and equipment certification,” 2012.

[5] A. Löfwenmark and S. Nadjm-Tehrani, “Challenges in future avionic
systems on multi-core platforms,” in Software Reliability Engineering
Workshops (ISSREW), 2014 IEEE International Symposium on, Nov
2014.

[6] C. Ykman-Couvreur, P. Avasare, G. Mariani, G. Palermo, C. Silvano,
and V. Zaccaria, “Linking run-time resource management of embedded
multi-core platforms with automated design-time exploration,” Comput-
ers Digital Techniques, IET, vol. 5, no. 2, March 2011.

[7] A. K. Singh, M. Shafique, A. Kumar, and J. Henkel, “Mapping on
multi/many-core systems: Survey of current and emerging trends,” in
Proceedings of the 50th Annual Design Automation Conference, ser.
DAC ’13. New York, NY, USA: ACM, 2013.

[8] U. M. Mirza, F. Gruian, and K. Kuchcinski, “Mapping streaming
applications on multiprocessors with time-division-multiplexed network-
on-chip,” Computers & Electrical Engineering, vol. 40, no. 8, 2014.

[9] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell, M. Caccamo, and
R. Kegley, “A predictable execution model for cots-based embedded
systems,” in Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2011 17th IEEE, April 2011.

[10] A. Schranzhofer, J.-J. Chen, and L. Thiele, “Timing analysis for TDMA
arbitration in resource sharing systems,” in Proceedings of the 16th IEEE
Real-Time and Embedded Technology and Applications Symposium
(RTAS), April 2010.

[11] J. Whitham, N. C. Audsley, and R. I. Davis, “Explicit reservation
of cache memory in a predictable, preemptive multitasking real-time
system,” ACM Trans. Embed. Comput. Syst., vol. 13, no. 4s, Apr. 2014.

[12] T. Kelter, T. Harde, P. Marwedel, and H. Falk, “Evaluation of resource
arbitration methods for multi-core real-time systems,” in 13th Interna-
tional Workshop on Worst-Case Execution Time Analysis, 2013.

[13] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele, “Scheduling
of mixed-criticality applications on resource-sharing multicore systems,”
in Proceedings of the International Conference on Embedded Software
(EMSOFT), Sept 2013.

[14] M. Mollison, J. Erickson, J. Anderson, S. Baruah, and J. Score-
dos, “Mixed-criticality real-time scheduling for multicore systems,” in
Proceedings of the 10th International Conference on Computer and
Information Technology (CIT), June 2010.

[15] A. Biondi, G. Buttazzo, and M. Bertogna, “Supporting component-based
development in partitioned multiprocessor real-time systems,” in Real-
Time Systems (ECRTS), 2015 27th Euromicro Conference on, July 2015.

[16] R. Fuchsen, “How to address certification for multi-core based IMA
platforms: Current status and potential solutions,” in Proceedings of
the 29th IEEE/AIAA Digital Avionics Systems Conference (DASC), Oct
2010.

[17] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory access
control in multiprocessor for real-time systems with mixed criticality,”
in Proceedings of the 24th Euromicro Conference on Real-Time Systems
(ECRTS), July 2012.

[18] H. Yun, S. Gondi, and S. Biswas, “Protecting memory-performance crit-
ical sections in soft real-time applications,” CoRR, vol. abs/1502.02287,
2015. [Online]. Available: http://arxiv.org/abs/1502.02287

[19] J. Nowotsch, M. Paulitsch, D. Buhler, H. Theiling, S. Wegener,
and M. Schmidt, “Multi-core interference-sensitive WCET analysis
leveraging runtime resource capacity enforcement,” in Proceedings of
the 26th Euromicro Conference on Real-Time Systems (ECRTS), July
2014. [Online]. Available: http://dx.doi.org/10.1109/ECRTS.2014.20

[20] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, T. Mudge, and
R. Brown, “Mibench: A free, commercially representative embedded
benchmark suite,” in Workload Characterization, 2001. WWC-4. 2001
IEEE International Workshop on, Dec 2001.

