
 Abstract – Wireless indoor localization 

systems and especially signal strength 

fingerprinting  techniques have been the subject of 

significant research efforts in the last decades. 

However, most of the proposed solutions require a 

costly site-survey to build the radio map which can 

be used to  match radio signatures with specific 

locations. We investigate a novel indoor localization 

system that addresses the data collection problem 

by progressively and semi-autonomously creating a 

radio-map with limited interaction cost. Moreover, 

we investigate how spatiotemporal and hardware 

properties-based variations can affect the RSSI 

values collected and significantly influence the 

resulting localization. We show the impact of these 

fluctuations on our system and discuss possible 

mitigations. 
 

I. INTRODUCTION 
 

 The market for location-based services has 

increased dramatically in the last few years and is 

projected to grow further in the coming years. Today, 

mobile devices are often able to determine their 

position with an accuracy of just a couple of meters 

under favorable conditions. However, in large 

buildings the location capabilities drop significantly 

due to unavailability of satellite signals (i.e., GPS). 

This gap is well known and many attempts have been 

made towards achieving indoor localization with 

acceptable accuracy, including major players such as 

Google, Bing and also Nokia. Despite these efforts, the 

indoor localization problem remains largely unsolved.  

 There are three basic methods that can be used 

for localization (in isolation or in combination). Multi-

lateration or multi-angulation (often are both referred 

to as triangulation) uses estimated distance or angle to 

fixed reference points to calculate the position, scene 

analysis uses knowledge about particular 

characteristics (such as RSSI values, or image data) for 

a particular location to match with current sensor 

values, and finally inertial navigation, which relies on 

motion sensors to derive the current location.  For 

indoor localization, scene-analysis have been deemed a 

promising approach since most public and commercial 

buildings today have a number of Wi-Fi access points 

which can be used to create a sort of signal strength 

fingerprint for a given location.   

 There are many successful implementations of 

this method [1, 2, 3, 4, 5] providing a positioning 

accuracy of as good as 1.5m. However, scene analysis 

and fingerprinting by definition relies on having 

collected a sufficient amount of information 

beforehand in order to match the current sensor 

readings with a previously recorded location. Without 

this information, a fingerprinting-based approach will 

not be able to provide any location information to the 

user. Unfortunately, collecting this information is both 

time-consuming and error prone.  

 In this paper we take a closer look at the basic 

conditions for indoor localization through 

fingerprinting. In particular we focus on the collection 

and sharing of fingerprints among multiple devices. 

We present a novel approach for non-intrusive user 

input to match fingerprints with physical locations. 

Moreover, we discuss a previously neglected issue 

related to the sharing of fingerprints among multiple 

devices. Many works assume that the fingerprint made 

by one device can be used by another device. Despite 

the presence of results showing that this is not the case 

[6], this continues to be used as an implicit 

assumption. In this paper we strengthen previous 

results and show that RSSI variations can occur also 

between identical models of popular high-end 

smartphones. We show that our system still achieves 

acceptable results despite this difference, but we 

believe that it is a problem which needs further study 

by the research community. 

 The contributions of this paper are two-fold. 

First, we present a novel fingerprinting-based indoor 

localization system which provides a reasonable trade-

off between the amount of user interaction and quality 

of service. Second, we show that the quality of 

information of RSSI signals is less than what is 

implicitly assumed by many similar approaches.  

The rest of this paper is organized as follows. Section 

II describes related works. Then in Section III, we 

present the system we designed. Section IV studies the 

impact of the RSSI variations. Finally, Section V 

concludes this paper.  

  

II. RELATED WORK 

 

 Researchers have proposed different 

approaches to determine device location in various 

indoor environments. Cell-phone manufacturers have 

proposed to increase GPS performance by installing 

GPS-repeater modules inside buildings to provide 

more accuracy to GPS devices. These modules are still 

too expensive and do not consider complicated signal’s  

propagation inside buildings. Then either large empty 
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room or huge number of repeaters is required to 

provide high accuracy[2]. 

 WLAN-based fingerprinting is another 

interesting technique proposed in solving the indoor 

localization problem. It proposes to use the received 

signal strength and properties from different access 

points to create a unique combination of data. 

Therefore, a constraining preliminary phase is required 

to collect fingerprints in the specified area. Such a 

system doesn’t manage environment changes like 

moving and unpredictable obstacles which may 

significantly deteriorate the relevance of the data set.   

 Several predictive algorithms and probabilistic 

models have been implemented to achieve the 

matching between measured data and recorded 

fingerprints. A wide range of wireless technologies has 

also been exploited like Wi-Fi[8] network, GSM[9] or 

Bluetooth [10], but also environmental characteristics 

such as: color, light and sound [2].  

 Veljo Otsason [9] proposed an indoor GSM-

based fingerprinting localization system with median 

accuracy of 5 meters in a large multi-floor building. To 

determine the actual location, the measured signals 

strengths are compared to the recorded data using the 

Weighted K-Nearest Neighbor algorithm to define the 

closest estimated position. This GSM-based system 

has shown good results and high accuracy in different 

types of multi-floor building. RADAR [8] project was 

the first attempt to Wi-Fi-based fingerprinting. 

Contrary to the other project existing at that time (year 

2000), RADAR doesn’t require any special equipment, 

it only uses already deployed wireless networks. As 

Otsason’s system, a constraining data collection phase 

is needed before utilization. Matching is done using 

the Nearest Neighbors in Signal Space algorithm. 

However, these two systems present significant 

limitations: the long training and the low adaptability 

to environmental changes (wall modification, new 

furniture or addition of a new wireless network). In 

this case, a total reconfiguration of the fingerprints 

data set is required.   

 A major innovation was presented by 

SurroundSense (2009) [2], which proposed to combine 

GSM, Wi-Fi and Bluetooth characteristics with 

environmental properties like light, color and sound 

intensities to achieve better accuracy. The resulting 

fingerprints present a higher uniqueness compare to 

other systems but it also complicates the data 

collection and matching. 

  In 2009, PILS [3], a GSM and Wi-Fi 

combined project presented an important innovation 

while proposing user-friendly system that limit user 

interaction and reduce training-phase. The collection 

phase is now partially integrated in the running-time. 

This is the first step to site-survey suppression and 

user-friendly data-collection, providing fast and easy 

set-up and configuration. However, time is still 

required before the database get enough fingerprints to 

perform really efficient localization. Even if the global 

method is similar, our implementation is slightly 

different, focus is given on  data collection and 

fingerprint generation to provide more reliable and 

stable signals information. So we defined a new and 

updated technique record more representative RSSI 

values by simplifying this data collection and reducing 

the user-interaction needed. 

 More recently, Fingerprinting method has been 

combined with Pedestrian Dead Reckoning (PDR) 

technique to provide an hybrid localization 

approaches. Pazl [7] presents this innovative 

combination, but even with sufficient number of 

samples accurate location estimation is still difficult 

because the system only use one fingerprint and has to 

proceed rapidly to combined with PDR. Moreover, this 

system can be quite expensive from an energy 

consumption perspective if solely relied on for 

continuous location tracking. 

III. SYSTEM DESCRIPTION 

 

In this section, we give an overview of our 

system, we explain our motivation, present the main 

functionalities and explain the main principle and 

algorithms designed. We propose a novel adaptive 

indoor localization system dedicated to Android 

smartphones based on Radio-Frequency infrastructures 

such as GSM, 3G and Wi-Fi networks to provide room 

recognition and localization.  
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Fig. 2. System Architecture 



A – Main principle  

 

We designed a system which should work with any 

Android smartphone without distinction of brand or 

model; for this reason we had to apply some strong 

requirements. Based on hardware properties [9] and 

analysis [4] we choose to control the number of signals 

recorded per fingerprint to a maximum of 6 GSM and 

10 Wi-Fi signals per fingerprint. According to related 

studies [5], uniqueness of fingerprint and  probability 

of successful increase significantly with size up to 6 

signals. GSM and Wi-Fi both share common properties 

like ID and RSSI values. They also present the same 

response to external factors and parameters that may 

cause significant variation to signal strength value. We 

observe that not only does the signal strength of GSM 

and Wi-Fi (Figure 1) present huge variations over time 

(a well-known fact) but also depending of the 

individual device used. Figure 1 illustrates the 

variations of three Wi-Fi signals strength (RSSI) at a 

fixed position over a period of 10min (1 sample per 

second). Unpredictable variations  may affect signal 

strength, produced by simple environmental changes 

and factors, i.e. the number of people present or 

moving around the building, the walls, floors, ceilings 

or other architectural constraints [11], or simply the 

position of the user when taking the measurement. 

Even a simple weather condition change, may cause 

significant variations [12]. Properties of the device 

used may also affect the measurements: variations 

have been noticed even between phone of same brand 

and model. To reduce the impact of the variation of 

received signal strength, we collect several RSSI data 

per fingerprint and apply a smoothing algorithm to 

limit exposition to strong and sudden variations. This 

method results in more representative data, despite the 

possible  environmental or materiel variations.  

The system is organized around four basics 

modules shown in Figure 2: the User interface (UI) 

module, the Localization module (fingerprint creation 

and localization algorithm), the Scanner module 

(GSM, Wi-Fi and motion captors) and finally the 

Database module. Due to hardware limitations , 

smartphones usually process and record only the six 

best GSM neighbor networks [14, 15]. Since our 

system is designed for commercial Android 

smartphones without any restrictions (except casual 

sensors like Wi-Fi, GSM and Accelerometer), we 

chose to consider a maximum of six GSM signals per 

fingerprint. On the other hand, Wi-Fi interface does 

not have such a restriction and may return up to fifty 

different networks. Previous work [9, 15] show that the 

localization efficiency is linked to the size of the 

fingerprint used, based on evaluations done on 

different localization systems and methods. The error 

rate usually strongly decrease when size increases up 

to 10 signals and then decrease slowly until size equals 

15 signals. After 16, the error rate becomes rather 

stable, implying that no more performance increase is 

provided by adding more signals. Based on this study, 

we chose to define the size of our fingerprint to 6 GSM 

signals and 10 Wi-Fi signals (i.e., a total of 16 signals). 

The temptation is high to collect as much signals as 

possible for each fingerprint but this would lead to 

higher measurements, computation and storage costs 

without significantly increase the localization 

accuracy.  

 Fingerprint is related to a relative location. 

This position is defined by Cartesian coordinates X 

and Y representing the position on a map 

corresponding to the current building area. These 

coordinates are relative coordinates; they only make 

sense on the corresponding map (Cartesian plans) and 

would be meaningless if used on another map or even 

with a deformed map. We assume that the recognition 

of the corresponding map and the possibility to 

manage (add and modify) a map in the system does not 

affect the accuracy or the precision of the system.  

For these reason, map management has been 

considered but not implemented. In order to save the 

collected data, we defined a database that contains the 

data relative to the fingerprints (signal ID + RSSI) and 

to the locations (x, y coordinates + related map). The 

system uses a local database stored in user’s 

smartphones, which contains all the data needed to be 

localized. 
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B – Three-steps algorithm 

 

 In order to propose a crowd-sourcing-based 

autonomous system, free of site-survey and requiring a 

minimized human interaction, we have designed a 

novel localization algorithm. The general process is the 

same as in other indoor localization process: when a 

localization attempt is launched, the system will record 

the fingerprint of the current network environment that 

will become the reference data. This reference 

fingerprint (R-Fingerprint) will be compared to the 

data already recorded into the database to find a 

possible matching and related location. Our 

localization algorithm is divided into three steps in 

order to achieve a more representative data collection, 

data processing and accurate localization estimation. In 

the first step, the system performs a pre-selection 

among the previously recorded fingerprints in the 

database set, focusing only on relevant data. For each 

fingerprint from the database, the system analyzes the 

number of signals in common with the reference 

fingerprint (RF)  (based on signal ID) and keeps only 

those respecting a predefined threshold. By this 

method, we ensure that every fingerprint the system 

will compare has at least a predefined proportion of 

signal IDs in common with the R-Fingerprint. To 

ensure the accuracy of our comparison, the pre-

selected fingerprints will be temporary truncated to 

keep only the common signals. So every pre-selected 

data has the same size and the same percentage of 

corresponding signals with the RF.  

 The second step is the comparison between 

resulting set of step one and reference fingerprint. The 

comparison is done based on the Euclidean Distance 

(ED) calculated between the strength value of each RF 

signals and the other fingerprint signals. The unit of 

ED is dBm per signal. If no satisfying location is 

returned, the  system proceeds to step three.  

 The Weighted k-Nearest Neighbor estimation 

method is applied in step three to evaluate the current 

location based on the x and y position of the k closest 

fingerprints based on their respective ED. A weight is 

also applied to the position of each of the k-nearest 

neighbors based on its ED. 

 The innovation of this algorithm lies first in 

the way it selects the data to process, making the result 

more accurate by comparing RSSI data of same 

common size fingerprints. We insure that the 

fingerprints compared have exactly the same number 

of signals. Novelty is also presented by the algorithm 

adaptation capacity and the flexibility of the result 

returned. Adaptation and flexibility are key points in 

indoor localization, since environmental changes are 

most likely to happen and  impact the wireless signal 

propagation and so the corresponding fingerprint. Even 

the morphology of the user or the way he carries his 

phone may have an impact. In this case and in 

comparison with existing systems, our system will 

automatically adapt itself and overpass this change by 

progressively updating its database. The flexibility of 

our algorithm makes it possible since it doesn’t return 

a perfect value but a matching state based on the ED 

calculated. These three states are the Perfect Matching  

(we assume the returned location is true), the Possible 

state (confirmation is asked) and the Estimation State 

(step three of the algorithm). With these states, the 

system is able to manage environmental changes and 

limit the impact on the resulting localization.  

 

C – Data Collection and interval scanning 

 

 We propose to suppress the site-survey phase 

and include data collection into the normal utilization 

process. The interactions required are then limited and 

no offline phase is required. Data collection is 

accomplished by two different methods. 

First, by giving the opportunity to add a new location 

in the database or correct the proposition of the 

localization process.  

 The second way to collect data is the interval 

scanning module. Based on acceleration magnitude  

measurements, the system applies a motion detection 

(Fig. 7). When the device (and by extension the user) 

stays stationary over a period of time, the system 

performs a continuous data collection. If the 

fingerprint of the current position is not already 

recorded in the database, a new fingerprint is created 

compiling the average values collected until the user 

move away. Then the system asks the user to relate the 

fingerprint with his previous location on a map. The 

basic idea behind this behavior is that it is more 

convenient for user to remember his previous location 

during a period of time he stayed stationary rather than 

providing it precisely at a certain time.   

 This system provides more fingerprints and 

locations to the database with a limited interaction. 

This also gives the system the freedom to report the 

confirmation to a future moment more convenient for 

the user (e.g., moment where he comes back to his 

desk/table). A similar system has been presented in 

PILS project [3], with less autonomy allowed to the 

system and more interactions imposed to the user. 

More details are asked to the user about the position to 

link the fingerprint to the corresponding location 

(name, location, function). Moreover, the PILS system 

doesn’t compare the data with the already recorded 

Fig. 7. Motion detection and interval scanning 



ones, creating this way doubles locations and 

fingerprints into the database. 

 

D – Evaluation and results  

 

 To evaluate the reliability of our system, we 

defined a protocol  to analyze the result of the 

localization process at 10 predefined positions, 

performing thirty attempts for each location, so a total 

of 300 measurements. This evaluation was done in an 

academic building of Linköping University (Fig. 8 - 

800m²), in normal use conditions with full-capacity 

and performance. No consideration is given to the size 

of the user, to the position the user carries the phone in 

since the variations resulting from these parameters 

must be override by the system. To analyze the results 

of this evaluation, we recorded the closest Euclidean 

Distance generated during each localization process, 

the database size and the number of user interactions 

during the evaluation (Fig. 3). From the results of this 

evaluation, we observe two temporary period before 

achieving full-capacity. During the first ten 

localization attempts, the system collects the first data 

to provide localization and progressively fills the 

database. Then system keeps collecting data to provide 

complete overview of every location. Over the 300 

values calculated during this evaluation, we achieved a 

success rate of 82% correct localization with room-

level accuracy and an Euclidean Distance of  0.47 

dBm.  

However, even after thirty attempts, 

localization failure may still happened due to access 

point signal punctual disappearance or exceptional 

meteorological conditions. By relating results values 

and figure 8 together, we can assume that our system is 

less efficient in high room-density area (locations 1, 4, 

5 and 6) and especially with small size rooms 

(locations 5 and 6). 

 We also observed an unpredicted failure, 

“false positive” localization may happen, especially 

during fifteen first localization attempts when data 

signal map is not complete enough to manage every 

situation and in high density areas previously 

described. Even if these “false positive” results have 

an short-term impact on the localization (false location 

is returned to the user), it will be automatically 

overwritten by the fingerprints collected at mid-term. 

The system will continuously record new data that will 

reduce the accuracy and ED of the “false positive” 

fingerprint. After evaluation, we define that ”False 

Positive” values only represent 4% of the final amount 

of localization attempts. 

 Finally, we investigated the number of user 

interactions required during the utilization of our 

system. This number of interaction is closely related to 

the matching case encountered (1 to 3 interactions 

maximum). For each case, we assume that the 

launching of a localization attempt (i.e. press the start 

button) is considered as one interaction, so in the best 

case, this is the only interaction required. 

During the evaluation of the system, the 

number of interactions applied by the user has been 

recorded. The user interacts an average of 1.57 time 

with the system per localization attempt. As précised, 

in the worst case, the user would have to interact a 

maximum of 3 times per attempt. During the last 10 

localization attempts corresponding to a normal 

utilization context, the average number of interaction 

required by the system to the user decreases under 1.3 

time per localization. 

    

IV – IMPACT OF RSSI VARIATIONS 

 

 The signal strength measured by a given 

device may fluctuate significantly depending of 

spatiotemporal and hardware-based properties. We 

now proceed to describe the impact these variations 

have on our system and especially on the matching 

resulting from our algorithm.  

 This experiment consists of measuring 

simultaneously GSM and Wi-Fi fingerprints on 

different pairs of devices. We compare devices of 

different brands (Fig. 4.) devices of same brand but 

different models (Fig. 5.) and devices of same model 

(Fig. 6.). Four different devices have been considered, 

one Samsung galaxy Nexus, one Sony Ericsson Xperia 

and two Samsung Galaxy SII; all of them running on 

Android OS (v.4.2, API lvl. 17). For each pair of 

device, we measured the respective RSSI average per 

signal (Fig. 4-6.).  

 We observe notable differences between data 

recorded, even with devices of the same brand and 

model. Difference of as much as 12 dBm can be 

observed between data from same signal recorded by 

different devices. Contrarily to what we expected, 

devices from the same brand with chipset from the 

same vendor will not record the same value. Figure 6 

shows that variation of almost 9dBm may occurs 

between these two Samsung mobiles. Even if the size 

of our experimental set is not consequent, this further 

strengthens the work presented by Lui et al. from 

University of New South Wales, Sydney, AU [6]. 

They showed that different Wi-Fi devices (mostly 

wireless network adapters) show a considerable 

variation of RSSI readings (including one case of three 

identical network adapters). We demonstrate that the 

Fig. 8. Evaluation area and targeted  

locations , IDA building LiU. 



same problem can be seen for identical mobile phones 

of a popular model.   

 Hardware properties-based fluctuations have a 

direct impact on RSSI value measured by a device and 

by consequence on the Euclidean Distance calculated 

during localization process to evaluate fingerprints 

matching.  

 
Pair of 

devices 

Nexus vs. 

Xperia 

Nexus vs. SII SII vs. SII 

ED (dBm) 0.6833 0.7858 0.3316 

  

 

 Table 1 presents the simulated Euclidean 

Distance calculated from data collected during pair 

devices experiment. Based on evaluations, we assume 

that an ED of less than 0.5 dBm corresponds to a 

perfect matching, i.e. the location returned has a high 

probability to be correct. Between 0.5 and 1.0 dBm, 

probability is still positive but confirmation should be 

given by the user. So for two fingerprints taken 

simultaneously by two different devices in the same 

conditions, accuracy of the ED calculated may differ 

significantly and the resulting location returned by our 

system strongly diverge despite all the precautions 

taken for data collection. However, this observation is 

moderated when both devices are of same brand and 

model. 

 It seems as if some of the RSSI-differences 

between different devices are systematic, which would 

suggest that they could be measured, modelled, and 

accounted for by the localization algorithms. However, 

considering for example Figure 6, we see that the 

values recorded by device 1 is higher for some of the 

signals and lower for the others compared to the 

readings by device 2. This suggest that one would need 

a fairly sophisticated learning algorithm to capture the 

change in RSSI values caused by an individual device. 

However, Figure 4 and 5, where the differences are 

similar across all signals, suggests that significant 

improvements could likely be achieved even without a 

perfect algorithm. 

  

V – CONCLUSIONS 

 

 Indoor localization remains elusive. Despite 

the wealth of research papers claiming to have found 

the solution, something is holding back successful 

deployment. We believe that one of the main issues 

lies in the ability to collect relevant context 

information of high quality about each location. In this 

paper we present a prototype system where this type of 

data collection is integrated in the localization tool. We 

show that this prototype shows acceptable results with 

relatively simple algorithms. It would be reasonable to 

assume that pairing our approach with more 

sophisticated sensor-fusion algorithms could yield 

even better results. 

 However, our evaluations also point out an 

inherent weakness with RSSI-based fingerprinting. If 

the quality of this information source is so low that 

differences of 12 dBm between the averaged data from 

two  different devices can be observed, then it into 

question how well crowd-sourcing approaches can be 

made to work. Obviously, algorithms will need to be 

both robust and adaptive to cope with this problem. 

More research is needed to more precisely model 

variations between devices to be able to account for 

this source of inaccuracy. 

 It should be noted that all the data used in the 

work have been collected in a specific academic 

building with its particular characteristics and 

properties. Data have been measured using a limited 

number of devices, with specific environmental 

conditions. More experiments will be required to fully 

validate the effectiveness of our algorithm. Moreover, 

we believe that our observations regarding differences 

in RSSI should be extended with more experimental 

data. 
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