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ABSTRACT
A recent surge in the usage of instant messaging (IM) appli-
cations on mobile devices has brought the energy efficiency
of these applications into focus of attention. Although IM
applications are changing the message communication land-
scape, this work illustrates that the current versions of IM
applications differ vastly in energy consumption when using
the third generation (3G) cellular communication. This pa-
per shows the interdependency between energy consumption
and IM data patterns in this context.

We analyse the user interaction pattern using a IM dataset,
consisting of 1043370 messages collected from 51 mobile
users. Based on the usage characteristics, we propose a mes-
sage bundling technique that aggregates consecutive mes-
sages over time, reducing the energy consumption with a
trade-off against latency. The results show that message
bundling can save up to 43% in energy consumption while
still maintaining the conversation function. Finally, the en-
ergy cost of a common functionality used in IM applications
that informs that the user is currently typing a response,
so called typing notification, is evaluated showing an energy
increase ranging from 40-104%.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Wireless
communication; C.4 [Performance of Systems]: Mea-
surement techniques

General Terms
Design, Measurement

Keywords
instant messaging; transmission energy; UMTS; mobile de-
vices; typing notification
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1. INTRODUCTION
Instant messaging (IM) applications have emerged as the

substitute for Short Message Service (SMS) and have gained
wide popularity. These applications offer the possibility of
sending text messages (1-to-1 or to a group) as well as other
multimedia messages (e.g., images, audio or video). Appli-
cations such as WhatsApp or QQ have already 400 and 800
million online users respectively [3, 4], and recently, IM has
overtaken the traditional SMS text messages [1]. Given the
widespread use of IM, even home appliance manufacturers
envision its usage for controlling their equipment [2].

While this might seem a blessing to the user, IM text mes-
sages are an example of a type of traffic with low bandwidth
requirement, which leads to high energy consumption. The
exchange of a couple of text messages can consume as much
as sending an image due to the radio resource allocation of
cellular networks. From the cellular network operator per-
spective, the signalling overhead created by IM is very high
given their intermittent and small data transmissions.

IM applications provide more functionalities than regu-
lar SMS, such as online presence awareness, typing notifica-
tion or status updates. Application developers may unfortu-
nately integrate these features without studying the poten-
tial impact on energy consumption. A recent study analysed
more than 9 million comments from the Google Play Store
and showed that more than 18% of all commented appli-
cations have negative comments regarding energy consump-
tion [28].

The result is that different applications delivering similar
function consume completely different amounts of transmis-
sion energy. We selected 6 of the most popular IM appli-
cations from the Play Store on 15th January 2013 as an
illustrative example, and sent the same 2 minutes conversa-
tion between two smartphones connected via 3G using the
different applications. The energy consumption for each ap-
plication was computed using EnergyBox [26], our tool that
is described briefly in section 6.2.

Fig. 1 (top and bottom-right) shows a great diversity
regarding the amount of energy spent and data sent by
the different applications when performing the short con-
versation. The most consuming application (Messenger)
consumes 153% more energy than the least consuming one
(GTalk) to transmit the same conversation. Fig. 1 (bottom-
left) shows a significant diversity in the packet size for the
3 selected applications, which impacts the transmission pat-
tern, and thus the radio resource allocation and energy con-
sumption. For example, WhatsApp employs smaller packets
than GTalk, but performs transmissions more often leading
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Figure 1: Average transmission energy, amount of
data sent and empirical CDF of packet size for dif-
ferent Instant Messaging applications exchanging a
short conversation.

to higher energy consumption. Kik, Messenger and Skype
transmit more data than the others, making the 3G interface
consume more. Using the least energy-efficient application
could substantially shorten the battery lifetime of a device,
by a factor of 2.5, and reduce the quality of experience (QoE)
for the user.

The transmission pattern of IM is mainly determined by
user interactions, where interactive traffic is generated by
a sequence of exchanged messages. Thus, the complexity of
designing energy-efficient transmissions increases given the a
priori unpredictability of the users. However, studying cur-
rent usage patterns can reveal inefficient ways of performing
transmissions since neither the users nor the applications are
aware of the energy footprint characteristics.

The contributions of our work, which aims to significantly
reduce the energy consumption of IM for mobile devices, are
threefold:

• We collect, analyse and provide an IM text message
dataset1 of 1043370 messages from 51 mobile users
that describes users’ diverse usage patterns.

• We demonstrate the high energy cost of a network-
ing functionality, typing notification, that most IM ap-
plications implement amounting to additional energy
consumption between 40-104%.

• Informed by the usage patterns found in our dataset, a
message bundling algorithm is proposed showing that
aggregating consecutive messages from the same user
saves up to 43% energy.

The paper is organised as follows: section 2 explains the
background and describes the related works. Section 3 anal-
yses the IM dataset of real user messages. Section 4 de-
scribes the proposed message bundling technique, followed
by the algorithm applied to the typing notification feature
in section 5. The evaluation methodology is presented in
section 6, and section 7 and 8 present the results. Finally,
the conclusions and future work are presented in section 9.

1http://www.ida.liu.se/˜rtslab/energy-efficient-networking

2. BACKGROUND AND RELATED WORKS
We begin by providing an overview on the communication

energy footprint for the third generation Universal Mobile
Telecommunications System (UMTS) at the user equipment
(UE) side. The main related works are presented in section
2.2.

2.1 Energy footprint of 3G
The energy consumption of the UE when connected to

a 3G UMTS network is mostly influenced by the radio re-
source management performed at the network operator side
by the Radio Network Controller (RNC). The RNC employs
the Radio Resource Control (RRC) and Radio Link Control
(RLC) of the UMTS Wideband Code Division Multiple Ac-
cess protocols to perform the radio resource management of
the UE [11].

According to the RRC, the UE implements a state ma-
chine where the different states have different power con-
sumption and performance in terms of maximum data rate
and latency. The UE states are CELL DCH or Dedicated
Channel (DCH), CELL FACH or Forward Access Channel
(FACH), and URA PCH or Paging Channel (PCH), sorted
from highest to lowest power drain and performance in terms
of data rate and response time. Since the states URA PCH
and CELL PCH result in similar energy consumption, we
consider them as PCH for simplicity.

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

Time (seconds)

Po
w

er
 (W

at
ts

)

0 5 10 15 20 25 30 35 40
0

200

400

600

800

Time (seconds)

D
at

a 
(b

yt
es

)

PCH!

FACH!

DCH!T2! T2 restart!T2!

T1!

T2 restart!

Figure 2: Example power profile for 3G using a mo-
bile broadband module (Ericsson F3307) and Skype
as instant messaging application.

Fig. 2 shows the observed power consumption levels of
the different states at one location for the state machine
implemented by the operator TeliaSonera in Sweden. The
bottom graph shows the packets when they were captured
at the network interface of the UE. In PCH, the UE can-
not transmit any data, but it can be paged with the lowest
energy drain. When the UE starts generating or receiving
traffic, some signalling is required to establish the connec-
tion and move the UE from PCH to DCH before sending
any data.

The RNC employs the RLC protocol to evaluate the al-
location of resources and control state transitions to higher
performance states. The UE reports the observed traffic
volume to the RNC, which re-allocates the UE state if the
RLC buffer data occupancy of the UE exceeds some fixed
RLC thresholds. These thresholds control the PCH-DCH
and PCH-FACH state transitions. When the PCH-DCH
threshold is exceeded, the UE is moved to DCH (3 s in Fig.
2). In DCH, the UE is allocated a dedicated physical chan-



nel (uplink and downlink) providing the highest data rates.
The first packet is a downlink transmission, and thus the
signalling occurs before the data is received at the UE.

The RRC state machine uses inactivity timers to down
switch the UE to lower performance states. The UE is moved
to FACH after T1 when there is small or no data transmission
(8 s in Fig. 2). In FACH, the UE is assigned a default
common or shared transport channel where only low-speed
transmission can be performed. Finally, the transition from
FACH to PCH is controlled by the inactivity timer T2.

Inactivity timers create energy overheads known as en-
ergy tails since the UE remains in a high energy consum-
ing state while not transmitting anything [6, 25]. Fig. 2
shows that the data pattern (inter-packet interval and packet
size) clearly influences the energy consumption driven by the
RRC state machine, where even small transfers of data can
trigger state transitions to DCH (e.g., in the case of a small
chat message) or the restart of the inactivity timers.

To sum up, this illustrates that the RRC state machine
and the above mechanisms impact the energy consumption
of the UE through the data pattern in a complex way.

2.2 Related works
We categorise the related works into two different groups:

IM and energy consumption of cellular data transfers at the
user end.

IM: Even though IM has a great popularity and a large
number of users, little work has been done to understand its
energy consumption at the user end. Most IM related works
focus either on users’ social interactions [10], security [22]
or analysing the IM traffic generated in desktop-oriented
machines [13,15,30].

While presence updates have been studied in desktop-
oriented machines [27,30] and in the mobile context [7,8,17],
the cost of the typing notification feature or the impact of
consecutive messages has not attracted attention so far.

Cellular communication energy: Several works ad-
dress the general problem of high energy consumption of
cellular communication at the user end. The readers inter-
ested in other aspects than transmission energy are referred
to the survey by Vallina-Rodriguez et al. [24].

EnergyBox [26] is developed to study the energy consump-
tion of 3G and WiFi transmission energy. ARO is a similar
tool that at the time of its publication [21] was not avail-
able to other researchers. Pathak et al. [18] propose Eprof,
a system-call-based energy profiling tool for smartphones,
and show that transfers of advertisements in free applica-
tions have a great energy cost.

Periodic transfers and background traffic of mobile appli-
cations are known to incur great energy consumption. Some
proposals [5,9] employ the Fast Dormancy (FD) mechanism
introduced in the 3GPP Release 8 as a radio resource con-
trol technique to move the UE to PCH before the expi-
ration of the inactivity timers. Traffic shaping techniques
[6, 12, 14, 16, 20] are common. These shift transmissions
over time (e.g., batching background traffic) to minimise
the transmission cost. For example, our previous work [25]
schedules background data transfers considering the inactiv-
ity timers and the RLC data buffers in combination.

While the above works attempt at reducing energy foot-
print for a generic class or a subset of application flows, this
work explores tailor-made solutions for IM using application
indicators and the user interaction knowledge obtained from

our dataset. We also show, by analysing the cost of added
functionalities (typing notification), that developers can re-
think the inclusion of the function or providing the option
to disable them.

3. COLLECTED IM DATASET
Analysing the way users write text messages using IM ap-

plications can reveal current inefficiencies in terms of energy
consumption. We are interested in the user input, which
is translated to network traffic by the applications. Thus,
we study a dataset of user text messages collected at the
application layer in this section.

The messages were collected from one of the most widely
used IM applications (WhatsApp) during a period between
23rd of January 2011 and 8th of January 2014. Note that
the logs from different users have different starting time.
We agreed on collecting the usage data with the users after
they were created (from past logs), thus the data reflects the
normal behaviour of the users. The users employ WhatsApp
as their primary IM application.

A parser was developed to obtain the messages from the
logs of WhatsApp in each user device. Every text message
is represented by its timestamp (UNIX time), the message
length in characters, the direction (in/out), the user num-
ber, the chat type (single chat or group chat) and the chat
number. A chat is a sequence of messages exchanged with
a user (1-to-1 single chat) or a group of users (group chat)
over the duration of collection. By conversation we will de-
note a subsequence of all the messages belonging to one of
these chats. The user name and the actual content of the
message are obfuscated for privacy reasons. The focus of
this work is on text conversations, and therefore we do not
consider multimedia messages, which are left for extensions
of this work.

The dataset currently contains 1043370 messages collected
from 51 users. The age of the users is different: 34 users
between 25-30 years, 12 users between 30-35 years, and 5
users above 45 years. Regarding the country, most users
are from Spain (33) and Sweden (13), whereas the rest are
from Belgium (2), Germany (1), USA (1) and Mexico (1).
The messages appear in 1815 conversations with other users
(2089 users in total).

While selection of representative subset of all messaging
patterns in the world would require a careful analysis, we
believe that the current dataset provides an interesting sub-
set since (1) it has a diverse user base, and (2) it shows a
great diversity in terms of number of messages sent per day
as well as used chat types (single or group chat).

The timestamp and message size are the most interesting
values from the transmission pattern perspective. We start
by analysing the message distribution according to their ori-
gin (in/out) and conversation type.

3.1 Message origin
Single chats are the most common type of conversation

(83% against 17% for group chats). The larger fraction of
messages is originated from single chats (59% of all the mes-
sages), whereas the rest (41%) is from group chats. Table 1
shows the number of messages per chat type and direction.
The input messages dominate in the dataset (65%).

We observe that there is a great diversity in the above
numbers across the different users of the dataset. Fig. 3



Table 1: Message origin per direction and chat type.

In Out Total
Single chat 29% 30% 59%
Group chat 36% 5% 41%

Total 65% 35%

shows the message classification per user (the users are sorted
by the number of single chat messages).
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Figure 3: Message classification per user.

Most of the users are shown to have all the message classes,
but in different proportion. For example, user 10 has a much
larger proportion of group chat input messages compared to
user 40 (50% against 5%), meaning that half of the messages
received by user 10 are from group chats. However, user 40
has a larger proportion of single chat in and out messages,
meaning that the user mostly uses single chats. Some users
do not even use group chats (e.g., user 37 or 44).

Regarding the number of chats per user, the average and
variance are 35±23 chats. For an arbitrary user, the greatest
proportion of messages is typically concentrated in a few
chats: On average, 50% of the messages of a user belong
to only 2 of her chats (and these are typically single chats).
Fig. 4 (left) shows a number of selected users (one curve
per each user) according to the message distribution over
the chats sorted by message volume in order to illustrate
the diversity across the users. The average number of users
in group chats is 7. However, larger groups are also present
(up to 26 users) but less common. Only 11% of the groups
are larger than 12 users.
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Figure 4: Message distribution of selected users
over chat (left) and overall message size distribution
(right).

To summarise, the great diversity among users makes the
usage depend much on the type of chat they employ. Differ-
entiating these cases is interesting to employ different tech-
niques to save energy. For example, some users might receive
many messages from group chats while not using their de-
vice, leading to high energy consumption. A downlink mes-
sage batching policy could reduce the energy consumption
for this type of users.

3.2 Message size
Regarding message size, we observe that short messages

are predominant. The average message size is 26 characters.
Fig. 4 (right) shows that messages shorter than 40 char-
acters comprise 83% of all the messages. Small messages
lead to small packets, making it very inefficient to send each
message in a separate packet. For example, if the transmis-
sion of these small messages is performed over TCP/IP (i.e.,
the most common case), the overhead created by the packet
headers (40 bytes) is the same size as the payload (i.e., the
message).

In order to understand which message sizes produce more
traffic we multiply the message size by the number of mes-
sages. Fig. 5 shows the distribution of the total traffic over
the message size and the proportion of the different origins
(single/group chat and in/out). The small packets generate
most of the traffic.
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Figure 5: Distribution of the total data sent.

Various works show the benefit of compression for trans-
mitting less network data and thus reducing the energy cost
[19, 29]. We analysed the compression performance of the
default compression strategy in Android2 on the actual mes-
sages from the collected WhatsApp logs. Since most of the
messages are short messages with few recurring patterns, we
found that only 2.3% of the messages of our dataset would
benefit from compression.

3.3 Temporal properties
Fig. 6 (top-left) shows the distribution of messages ap-

pearing in the collected dataset. As expected, the users
tend to exchange more messages during the afternoon and
the evening. Looking at the aggregates, the number of mes-
sages gradually grows during the day and peaks at 20:30 in
the evening.

Fig. 6 (bottom) suggests that there is no clear weekly
pattern in contrast to the cellular traffic observed in other
works [23], where the daily peaks observed on the weekdays

2http://www.gzip.org/algorithm.txt



are higher than during weekends. Every day of the week
shows a similar trend.
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Figure 6: Normalised number of messages over
hours in a day (top-left), empirical CDF of inter-
message interval (top-right) and normalised number
of messages during different days of a week (bot-
tom).

Fig. 7 shows the average and standard deviation of the
number of messages sent per day and user. There is a great
diversity across the dataset, from very active users (more
than 200 messages) to users that exchange few messages.
The large standard deviation describes the variation for the
same user between days, which makes it difficult to predict
the IM traffic only based on the transmitted messages in the
past.
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Figure 7: Average and standard deviation of mes-
sages per day per user.

The empirical CDF of inter-message interval (IMI) of the
dataset is shown in Fig. 6 (top-right). We observe that
messages with short IMI are predominant, where 73% of the
messages have an IMI shorter than 1 minute. The long tail
describes the distinct idle periods of the users.

We have observed that users generally write more than
one message in a row before receiving any answer. This type
of message is hereafter referred to as consecutive message.
48% of the messages in the dataset show this characteris-
tic. From the energy perspective, consecutive messages are
wasteful since they restart the inactivity timers of the cellu-
lar interfaces leading to higher energy consumption. If the
elapsed time is greater than the inactivity timer, the UE con-
sumes another energy tail. The short IMI of most messages,
their small size and the significant presence of consecutive

messages suggest that these could be coalesced to extend the
idle time. In this paper we explore this option and present
an algorithm that aggregates them in section 4.

Finally, two types of conversations (i.e., a chunk of the
whole chat) can be identified over time. Based on the num-
ber of messages sent and their closeness in time, we can
distinguish two different types of conversations over time:
sparse and dense conversation periods. Sparse conversation
periods have their messages more separated in time (i.e.,
higher IMI), while the dense ones represent intensive peri-
ods of interaction with shorter IMIs. This knowledge is used
later on to select the evaluation traces.

To sum up, the dataset provides valuable insights for study-
ing the message exchange characteristics of different users
and efficiency of transmissions.

4. BUNDLING OF MESSAGES
Bundling aggregates consecutive messages by sending them

together, ideally in the same packet. The potential benefits
are the following:

• Less protocol overhead: Since the small messages pre-
dominate the IM text traffic, sending the messages in
the same packet payload instead of sending them in
separate packets would reduce the amount of protocol
overhead.

• Extended idle state time: Reducing the number of
transmissions by aggregating messages in the same bun-
dle allows the UE to extend its idle state time, and
therefore the energy consumption.

• Opportunity for better compression: We conjecture
that aggregating messages would improve the compres-
sion results. However, the impact of compression is not
studied in this paper.

Even though the benefits of message bundling are convinc-
ing, the main drawback is that the technique delays messages
in order to send them together. Nevertheless, it is unclear
whether introducing delay for consecutive messages is detri-
mental for the QoE when the other user is not active in the
conversation.

Algorithm 1 Message Bundling

Require: QM (initially ∅), BundleTime
1: Upon: send button pressed
2: m ← text area content
3: QM ← m
4: BundleTimer ← BundleTime
5: Upon: text input area changed
6: BundleTimer ← BundleTime
7: Upon: BundleTimer = 0
8: if QM 6= ∅ then
9: Transmit QM

10: QM ← ∅
11: BundleTimer ← BundleTime
12: end if

In order to investigate the potential energy savings of mes-
sage bundling and the impact on QoE in terms of message
delay, we propose an event-based algorithm, which uses in-
formation from the graphical user interface. Algorithm 1
describes the operation of message bundling. The intuition
behind the algorithm is that when the user presses the send



button the message is not directly sent over the network.
Instead, a BundleTimer is started (or restarted if it is al-
ready running). The content of the text input area (i.e., the
message m) is queued in the message queue QM .

Whenever the text input area is changed, it means that
the user is typing the next message. Therefore, the Bundle-
Timer is restarted every time the user changes the text, so
that the new message can be bundled too. This prevents
the QM contents to be transmitted while the user is typing,
thus recognises consecutive messages.

However, if the user never stops typing, the messages will
never be sent. We argue that if the user keeps typing, the
messages can be considered as the same one and QoE will
not suffer from sending them together, no matter the length
of the message. Therefore, we consider this case to be a
pathological case.

The BundleTimer is a statically configured countdown
timer, with the BundleTime as an input parameter. When-
ever it expires, the messages in QM are transmitted over the
network, QM is emptied and the BundleTimer is restarted.

The proposed BundleTime parameter provides flexibility:
a short BundleTime decreases the sending delay for single
messages. A longer BundleTime would allow text over sev-
eral consecutive messages to be aggregated. Since the “text
input area changed” event requires the screen to be switched
on, we do not consider more general indicators such as screen
for simplicity.

5. TYPING NOTIFICATION
The typing notification is a common feature implemented

by most IM applications. The mechanism notifies the (re-
ceiving) user when the other (sending) user in the conversa-
tion is typing, creating a notion of presence and interactivity.
Users can use this information to decide whether they should
remain in the conversation.

In order to study the cost of this mechanism, we develop
an algorithm, which emulates its operation in a simple IM
application. The notify updates should be triggered when
the user types a character in the text input area on the
graphical user interface. However, it is up to the imple-
mentation to decide the frequency of these events resulting
in a network packet being sent to the receiving user as a
notification. The typing notification feature increases the
amount of packets transmitted, and potentially the energy
consumption.

Algorithm 2 employs a countdown timer named Notify-
Timer to restrict the rate of notify messages. The Noti-
fyTimer is statically configured with a NotifyTime value
in seconds. When the user is typing, a text input area
changed event is triggered. If the NotifyTimer is not run-
ning (i.e., NotifyTimer = 0), the algorithm will send a no-
tification packet to the network and start the NotifyTimer.
The next time the user types, the NotifyTimer will avoid
a new packet being sent to the network. Thus, if the user
is continuously typing the algorithm performs only a single
notification transmission every NotifyTime.

When the other user receives the typing notification, the
receiving end of the application will show the receiving user
the notification in the screen. For example, we observe that
WhatsApp uses approximately a 3 seconds timer for the
NotifyTime.

Algorithm 2 Typing notification

Require: NotifyTimer (initially NotifyTime)
1: Upon: text input area changed
2: if NotifyTimer = 0 then
3: Transmit notification
4: NotifyTimer ← NotifyTime
5: end if

6. EVALUATION METHODOLOGY
This section describes the methodology and the evaluation

environment used to quantify energy consumption of the
typing notification and message bundling.

The general methodology is as follows: a predefined set
of real conversations is automatically replayed between a
pair of clients using a prototype IM application running on
commodity devices. The conversations are transformed to
network transmissions (i.e., packet traces) by our prototype
application. The transmission is performed using the real
3G network described in section 2, and the resulting packet
traces are captured. The energy is calculated using Energy-
Box from the captured real packet traces.

First, the energy consumption of each conversation is cal-
culated as a baseline (without typing notification nor mes-
sage bundling). Second, the conversations are replayed with
only message bundling enabled (Algorithm 1), and the en-
ergy savings are calculated and compared against the base-
line. Third, the conversations are replayed with only the
typing notification enabled (Algorithm 2), and the extra en-
ergy cost is calculated by comparing the resulting energy
against the baseline.

First, we briefly describe the evaluation environment as
well as the evaluation conversations and EnergyBox.

6.1 Evaluation environment
The client application provides the chat functionality be-

tween two Android devices and implements the logic of Algo-
rithms 1 and 2. The implementation of the message bundling
and the typing notification feature are based on instances of
the Async Task class provided by Android, where the Async
Task represents the timers that can be cancelled, reset and
started again.

We selected the Message Queueing Telemetry Transport
(MQTT) protocol as the transport protocol for the follow-
ing reasons: it is a lightweight application protocol, some
IM applications officially use it (e.g., Facebook Messenger),
and the Mosquitto open source project provides easy to set
up public servers that accelerate the development phase.
MQTT is a publish/subscribe protocol, where the subscribers
are instantaneously notified whenever a publisher generates
a new event.

Fig. 8 shows the general architecture of the application
and the test environment. The IM clients are able to com-
municate using MQTT through the server that hosts the
MQTT broker. Each user subscribes to her nickname. The
conversation partners send a message by publishing the mes-
sage to the nickname (in publish/subscribe terms, the topic)
of the recipient. The MQTT broker keeps track of the topic
subscriptions.

Since the IM applications tested in section 1 are black
boxes, we cannot compare the results obtained from our pro-
totype application against them in a fair way. However, for
the interested reader, the basic energy cost of the prototype
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Figure 8: Architecture of the IM prototype imple-
mentation and the test environment.

application for the same conversation as shown in section 1
is lower than the rest (18 Joules).

6.2 Test traces and parameter settings
This section describes the parameter settings and the con-

versations used to study the energy characteristics of the
typing notification and the message bundling.

Test conversations: Four different test conversations
are selected for the tests based on the different patterns ob-
served in section 3. Two conversations (Dense and Sparse)
were randomly selected from the dataset, representing inten-
sive conversations (short IMIs) and slow-paced ones (longer
IMIs). Random is a synthetic conversation generated by ran-
domly selecting messages from the dataset not considering
the resulting conversation’s dense/sparse characteristics. By
randomly selecting the messages we aim at obtaining mes-
sages of different sizes. The selection follows the following
rules: Message pairs in the resulting conversation have an
IMI of shorter than 30 s since larger IMIs are uninterest-
ing from the energy perspective (greater than the typical
inactivity timers). Moreover, if a selected message appears
in a sequence of consecutive messages, then the other mes-
sages belonging to that sequence are also selected to keep
the realistic consecutive message relations from the dataset.
Finally, Short is the same conversation used in the intro-
duction to compare the different IM applications. It char-
acterises a trace containing short messages, a single con-
secutive message, and IMIs between the Sparse and Dense
conversations. The four categories have different number of
consecutive messages, which is interesting to test the mes-
sage bundling.

The test conversations used are shown in Fig. 9. The
duration of the selected conversations is below 250 s. We
believe these are representative conversations for IM. Since
our dataset did not delimit conversations (the users were
always logged in and no distinction of different conversations
were made within the chats), we base our reasoning about
duration on earlier work [30], where 9900 of approximately
10000 conversations were shorter than 250 s. Note that in
Fig. 9 the conversations do not start from 0 since the time
to write the message is also considered, and the difference
in their length is not important since the results are studied
per conversation.

Writing speed parameters: In order to simulate the
user typing and automate the tests, the prototype applica-
tion is instrumented to automatically write characters at a
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Figure 9: Test conversations.

parametrised writing speed. For each message of a given
conversation, the characters of the message are written us-
ing a constant typing speed. The automation logic starts
writing in the input text field so that the message is sent in
its correct timestamp. The time to start writing the mes-
sage is calculated using the message length and the average
writing speed.

For simplicity, the typing speed is set to a constant of
287 ms delay per character. This number was experimen-
tally obtained by averaging the measured time to write 160
characters (i.e., a SMS) for 6 different people.

Computing the transmission energy: While replay-
ing the sequence of messages of the test conversations, the
packet traces are captured in the device of the user 1 using
tcpdump for every test, later used for computing the energy
consumption. Only the traffic of the IM application is al-
lowed using a firewall to block the rest of the traffic.

Next, the transmission energy consumption for each test
is calculated from the gathered traces using the EnergyBox.
EnergyBox has been evaluated against physical energy con-
sumption measurements showing an accuracy of 98% [26].
Given the 3G network parameters specified at operator level,
EnergyBox derives the 3G states of the UE employing trace-
based iterative packet-driven simulation. The RRC state
machine is captured by a finite state machine that simu-
lates state transitions using the inactivity timers or exceed-
ing the RLC buffer thresholds. The state machine is forced
to go through transitions by an iterative packet-driven sim-
ulation mechanism, which uses the inter-packet interval, the
size and the direction (uplink/downlink) of the data traffic
trace. The energy consumption of a given packet trace for
the given network parameters is calculated by associating
the UE-specific power levels with the emulated intervals in
each state, and integrating them over time.

The parameters of EnergyBox are set as follows: We set
the 3G network settings that correspond to the operator
TeliaSonera (the operator used for the tests) measured in
our local (experiment) area. The inactivity timers T1 and
T2 are set to 4.1 s and 5.6 s respectively. The RLC buffer
thresholds correspond to: Bu

1 = 1000 and Bu
2 = 294 bytes



for uplink, and Bd
1 = 515 and Bd

2 = 515 bytes for downlink.
The time to perform the different state transitions are set
to 1.7 s, 0.65 s and 0.435 s for PCH-DCH, FACH-DCH and
PCH-FACH respectively. The UE power values for the dif-
ferent RRC states are based on earlier measurements: DCH
= 612 mW, FACH = 416 mW. We set PCH = 0 W in order
to quantify only the energy spent for data transmission.

The evaluation methodology and environment are em-
ployed to analyse the potential energy savings of the message
bundling and the cost of the typing notification in the next
sections.

7. DOES MESSAGE BUNDLING PAY OFF?
Next, we quantify the energy savings that message bundling

can provide at the cost of an introduced delay due to aggre-
gating messages.

7.1 Energy savings and bundling results
Each test conversation is tested with the following Bundle-

Times: 1, 3, 5 and 7 s. The results are normalised to the
base energy consumption with the message bundling dis-
abled (32.63, 26.68, 32.81 and 17.81 Joules for Dense, Sparse,
Random and Short respectively). The results are based on
3 repetitions of each unique test. Additional repetitions are
run when large standard deviation is observed.
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Figure 10: Normalised average energy and standard
deviation for message bundling.

Energy savings: Fig. 10 shows the energy savings for
the different test conversations. The message bundling pro-
vides energy savings when the algorithm successfully per-
forms at least one bundle. The energy savings vary between
the conversations, and thus we describe them separately in
this section.

The energy savings due to bundling range from 27% to
43% for the Dense test conversation. Since it contains many
consecutive messages and these are often close in time (i.e.,
the user starts writing soon after a previous message is sent),
even a short BundleTime of 1 s can achieve 27% savings.

The results for Sparse are different. The message bundling
achieves 16% energy savings with a BundleTime of 1 s. How-
ever, increasing the timer value does not increase the energy

savings. The IMI of the consecutive messages is long for the
Sparse conversation, thus the short BundleTime values do
not allow performing most of the possible bundles.

Regarding the Random conversation, the energy savings
range from 24% to 42% for the different BundleTimes. The
shortest timer provides again significant energy savings.

There is only one consecutive message in the Short conver-
sation. No bundle is created since its inter-message interval
is longer than the BundleTimes, and the message length is
short (i.e., the typing time is short).

Bundling results: Tables 2 and 3 show the achieved
number of bundles and the messages per bundle for the dif-
ferent BundleTimes using the Dense and Sparse conversa-
tions. Possible bundles refers to the number of distinct bun-
dles where each bundle is a sequence of consecutive messages
with the maximum length appearing in the conversation.

Table 2: Number of bundles and bundles per mes-
sage for the Dense conversation.

BundleTime (s) Bundles Messages per bundle
1 3 3, 3, 2
3 3 4, 3, 2
5 4 5, 3, 3, 2
7 4 5, 3, 3, 2

Possible bundles 4 5, 4, 3, 2

For Dense, the BundleTime of 1 s creates 3 bundles out
of the 4 possible bundles (i.e., 4 groups of consecutive mes-
sages). Only one more message is aggregated for the 3 s
BundleTime. All the possible bundles are performed when
the BundleTime is increased to 5 s achieving the maximum
energy savings. Similar results are obtained for 5 and 7 s,
i.e., no additional messages are bundled even increasing the
BundleTime.

Table 3: Number of bundles and bundles per mes-
sage for the Sparse conversation.

BundleTime (s) Bundles Messages per bundle
1 1 3
3 2 2, 3
5 2 2, 3
7 2 2, 3

Possible bundles 3 2, 3, 3

For Sparse, the BundleTime of 1 s leads to a single bundle
out of the 3 possible bundles. The other BundleTimes only
create an additional bundle of 2 messages.

Protocol overhead: The message bundling also pro-
vides less TCP/IP header overhead. The number of packets
sent in the Random conversation was reduced from 40 to 16
when using a BundleTime of 7 s. Thus, the messages are
sent in the same packet reducing the TCP/IP overhead.

To sum up, our results show that even a short Bundle-
Time can lead to significant energy savings. The next sec-
tion studies the potential drawback of bundling.

7.2 Message delay
Even though the bundle technique is desirable from the

energy perspective, one needs to also consider its negative
impact on per-message delay. The bundle technique delays



each message by a minimum of the BundleTime value. The
delay of the held messages increases when the user contin-
ues typing a consecutive message since the BundleTimer is
restarted every time the user types a character.

The per-message delay is computed for the Dense and
Sparse test conversations for different BundleTimes. The
application is instrumented in order to obtain the delay be-
tween the moment of pressing the sending button and the
time that the message is actually sent to the network. The
minimum delay for each BundleTime is the BundleTime it-
self, representing the case that a message was not bundled.
The bundled messages are typically delayed more than the
minimum, depending on the IMI, the BundleTime and the
number of characters in the next message.
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Figure 11: Box plot of the delay experienced by the
different messages for Sparse and Dense conversa-
tions.

Fig. 11 shows the delay introduced by bundling in the
Dense and Sparse conversations. The median delay for the
Dense conversation with the BundleTimes 1 and 3 s is the
BundleTime since most messages are just delayed by the
minimum delay. These are the last messages added to a
bundle or the messages that were not bundled. As expected,
the bundled messages experience greater delay.

Fig. 11 shows that the maximum delay for the Bundle-
Times 1 and 3 s is 20 and 30 seconds in the Dense scenario.
The maximum delay for 3 s BundleTime increases because
it bundles an additional message. The more messages in the
bundle, the higher is the maximum delay of the first bun-
dled message. However, increasing the BundleTime leads to
a great increase of the per-message delay, especially the mes-
sages that are bundled. In Dense, even though the Bundle-
Times 5 and 7 s form exactly the same bundles, the messages
experience an extra delay with no extra energy saving.

The results for the Sparse conversation show that the me-
dian delay is the minimum experienced delay. The long IMI
of the Sparse conversation make the bundle technique to cre-
ate a single bundle of 3 messages for the 1 s BundleTime (the
outliers of 6 and 11 s in Fig. 11), and an additional bundle
of 2 messages for the rest. Thus, the per-message delay is
shorter due to the smaller number of bundles than for the
Dense conversation.

Comparing the energy savings and the introduced per-
message delay, we observe that a short BundleTime of 1 s
leads to significant energy savings while not causing huge
delays. This indicates that simply keeping track of the
user typing is enough for a simple bundle policy. Longer
BundleTime values can increase the energy savings for dense
conversations at the cost of higher delay. However, Sparse

conversations with sporadic messages should not use long
timers.

Finally, the message delay does not always have a nega-
tive impact on the QoE. When the user is not engaged in an
active conversation, the reception of the non-delayed mes-
sages or a bundle of delayed messages can be argued to be
the same. However, from the energy perspective, the latter
drastically reduces the energy consumption.

8. COST OF TYPING NOTIFICATION
Aggressive notification policies can lead to wasting en-

ergy. This section studies the additional energy cost incurred
by the typing notification functionality for the different test
conversations. The results are based on 3 repetitions of each
unique test. An additional 2 repetitions are run if large stan-
dard deviation is observed in the results.

For each conversation, we compute the energy consump-
tion with the typing notification functionality disabled as a
baseline. We select 3, 5 and 10 s as NotifyTime values for
the different tests. These values are representative of the
parameters used in real typing notification mechanisms.

Since the focus is on the additional cost, we normalise all
the values to the average energy consumed by the baseline
for each conversation (30.65, 26.99, 33.36 and 18.47 Joules
for the Dense, Sparse, Random and Short respectively), i.e.,
the energy cost with no typing notification.

None 3 5 10
0

0.5

1

1.5

2

2.5

NotifyTimer (seconds)

N
or

m
al

is
ed

 a
ve

ra
ge

 e
ne

rg
y

Dense

None 3 5 10
0

0.5

1

1.5

2

2.5

NotifyTimer (seconds)

N
or

m
al

is
ed

 a
ve

ra
ge

 e
ne

rg
y

Sparse

None 3 5 10
0

0.5

1

1.5

2

2.5

NotifyTimer (seconds)

N
or

m
al

is
ed

 a
ve

ra
ge

 e
ne

rg
y

Random

None 3 5 10
0

0.5

1

1.5

2

2.5

NotifyTimer (seconds)

N
or

m
al

is
ed

 a
ve

ra
ge

 e
ne

rg
y

Short

Figure 12: Normalised average energy and standard
deviation of the typing notification feature for the
different conversations.

Fig. 12 shows that in general the additional energy cost
of the typing notification feature is large, varying from 1.4
to 2 times the base energy consumption (40-104% more en-
ergy). Since the functionality sends packets whenever the
user is typing, it keeps the 3G interface in an active state
for almost the whole duration of the test. The results for
each conversation are explained next.

For the Dense conversation, the energy consumption for
the different NotifyTime values is similar. Even though
a longer NotifyTime implies sending fewer notify packets,
when the device enters a high energy RRC state, sending
more data does not incur higher energy cost. Most of the
energy consumption is due to reseting the inactivity timers



by the operator, and thus the message pattern of the con-
versation greatly influences the consumed energy. Since the
conversation is dense, the impact of the typing notification
is not as high as in the Sparse conversation.

The additional energy cost for the Sparse conversation is
higher than the Dense one. The Sparse conversation has pe-
riods of time where the device is in PCH between message
sendings. However, the typing notification messages greatly
reduce the idle time. Since the 3 and 5 s NotifyTimes are
shorter than the inactivity timer T2, the T2 timer is reset
before it has expired. When the NotifyTime is 10 s, T2 ex-
pires, which results in higher idle time. However, the energy
cost is still 64% more than the baseline. The Sparse conver-
sation is characterised by having slightly longer messages,
and thus the time to type for the user is longer and more
notify packets per message are sent.

The results for the different NotifyTimes for the Random
and Short are similar to the Sparse conversation. The Short
and Random conversations contain mostly short messages.
When NotifyTime is 10 s, less notify messages are sent since
the user spends less time typing the messages.

To sum up, the typing notification functionality results in
a high additional cost for an IM application. Even though a
longer NotifyTime avoids excessive usage of the 3G interface,
the cost is still high.

9. CONCLUSION AND FUTURE WORK
When developing energy-efficient solutions for application

data transmission, there is a trade-off between adding ap-
plication features that perform network transmissions and
energy conservation. There is a need to quantify the extra
energy cost and the perceived functionality benefit from the
user side.

The typing notification functionality employed by most
IM applications quantified in our work was shown to have
a tremendous energy cost. According to our results, this
functionality can increase the energy consumption of an IM
application by 40-104% from the basic message exchange
functionality. Quantifying the cost of a functionality can
allow the developers to rethink the need for the functionality
or provide the option to dynamically enable/disable it (e.g.,
at low battery levels).

When the traffic is directly generated by user interaction,
the network transmissions can easily result in energy waste.
In our work we collected and studied an IM dataset from
mobile users to create a better understanding of the user in-
puts that trigger network transmissions. Based on our study
with collected real usage data, we observe that IM appli-
cation users currently tend to write consecutive messages,
which increases the active time of the wireless interface.

We show that bundling can be used to reduce transmis-
sions while the user continues typing, and send them at one
go. Our results show energy savings up to 43% depending
on the message pattern of the conversation. Given the high
percentage of the consecutive messages, this is a promising
result. However, using longer timers for the bundle tech-
nique can lead to high delays for some messages. Thus, the
bundle technique can be dynamically activated for sparse
conversations, or when the receiving end of a chat is offline
or away.

Our work can be extended by moving message bundling
to the server side, which appears very interesting for group
chats that usually have denser conversations. The current

study can also be made more extensive by creating sets of
synthetic data as well as employing further real traces, and
confirming the trends observed above. Studying the user
interaction changes given the different functionalities (e.g.,
adding bundling or removing typing notification) is left for
future works.

More sophisticated bundling techniques are feasible lever-
aging knowledge of user activity (e.g., the screen is off, the
user switched the focus to another application), message
content parsing (e.g., conversational closings such as “talk
to you later”), context information (e.g., built-in sensors)
or presence information from other users. Distinguishing
between periods of sparse and dense conversations is inter-
esting to dynamically activate the bundle technique (e.g.,
moderately using the typing notification). Considering mul-
timedia messages is also a future direction.
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