SECURITY AND COMMUNICATION NETWORKS
Security Comm. Networks (2013)
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/sec.819

SPECIAL ISSUE PAPER

Integrating security mechanisms into embedded
systems by domain-specific modelling

Maria Vasilevskaya'*, Linda Ariani Gunawan?, Simin Nadjm-Tehrani' and Peter Herrmann?

1 Department of Computer and Information Science, Linkdping University, Linkdping, Sweden
2 Department of Telematics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

ABSTRACT

Embedded devices are crucial enablers of the Internet of Things and become increasingly common in our daily life. They
store, manipulate and transmit sensitive information and, therefore, must be protected against security threats. Due to the
security and also resource constraint concerns, designing secure networked embedded systems is a difficult task. Model-
based development (MBD) is promoted to address complexity and ease the design of software intensive systems. We
leverage MBD and domain-specific modelling to characterise common issues related to security and embedded systems
that are specific to a given application domain. Security-specific knowledge relevant for a certain application domain is
represented in the form of an adapted information security ontology. Further, the elements of the ontology are associated
with security building blocks modelled with the MBD method SPACE. The selection of relevant security building blocks
is based on (i) assets automatically elicited from the functional models, (ii) domain security knowledge captured by the
security expert and (iii) the platform adopted by the embedded system engineer. A tool is developed to support the steps
supporting this methodology and help to bridge between the security and embedded systems domains. We illustrate our

approach with a case study from the smart metering domain. Copyright © 2013 John Wiley & Sons, Ltd.

KEYWORDS

model-based engineering; security engineering; security ontology; domain-specific modelling; embedded systems; smart metering

*Correspondence

Maria Vasilevskaya, Department of Computer and Information Science, Linkdping University, Linkdping, Sweden.

E-mail: maria.vasilevskaya@liu.se

1. INTRODUCTION

The development of secure embedded systems software is
a difficult task, but the difficulties can be significantly alle-
viated by applying model-based engineering. In particular,
the use of models enables an integration of functional and
security aspects already in the early development stages,
which is necessary to capture security flaws as soon as
possible [1].

Another possibility to make model-based engineering
more attractive for the development of security-enhanced
embedded systems is to support a better reuse of func-
tionality created for prior systems, which reduces the
engineering effort significantly [2]. We consider domain-
specific modelling (DSM) [3] as one way to achieve such
reuse.

With this technique, a certain application domain (e.g.
smart metering) is analysed for functionalities and con-
cepts that reappear in various realisations. This results in
creation of sub-models specifying these recurring func-

Copyright © 2013 John Wiley & Sons, Ltd.

tions, which can be (re-)used when a particular system in
the application domain is developed [3].

Although the exploitation of the DSM principles tra-
ditionally results in creating domain-specific languages
(DSLs), we connect these methods to ontologies. In par-
ticular, we define a dedicated security language for captur-
ing security knowledge in different application domains.
This language describes both possible security breaches
that are common for a certain application domain and
existing practical solutions for these breaches. Further,
this knowledge is stored and is available for reuse. The
SecFutur project [4] has concluded that such an approach is
especially valuable for systems built of embedded devices
because an embedded systems engineer is typically not
an expert in security, although security solutions need to
be selected and tailored for a given application domain or
platform.

Because networked embedded devices can often be
characterised by their intensive communication and their
collaborative nature, we leverage the engineering tech-

Domain-specific modelling for security engineering

nique SPACE [5] and its tool set Arctis [6], which make the
composition of interactive software from modelled com-
ponents possible. For instance, the tool set currently offers
52 different sub-models to facilitate the development of
apps for Android devices, from basic system access via
user interface management, location handling, communi-
cation, audio, sensor management to barcode scanning [7].
So, a system model of an Android app can be effectively
created by selecting suitable sub-models and combining
them. This paper extends the reach of this compositional
approach by integrating it into domain-specific security
modelling and applying it to security concerns in net-
worked embedded systems.

The main contribution of this paper is to exploit the
concept of DSM to support the protection of systems by
defining processes for security and embedded system engi-
neers to describe and reuse security knowledge specific for
a considered domain and to incorporate security mecha-
nisms in the context of formal design modelling. The paper
details these elements as follows:

® Definition of two processes. One enables a secu-
rity engineer to capture domain-specific security
knowledge, whereas the other facilitates an embed-
ded system engineer to reuse the captured knowl-
edge by an embedded system engineer at the design
stage.

® Identification of a subset of the information security
ontology presented by Herzog et al. [8] with focus on
security-enhanced embedded systems development.
The subset is further refined with the notion of secu-
rity building blocks (SBBs) that represent available
implementations of security mechanisms.

® Definition of the concept of domain-specific security
models (DSSMs). A DSSM is a unified modeling lan-
guage (UML) object diagram that supports the use of
the above-mentioned ontology by security engineers
to capture security knowledge, and by developers
to utilise the knowledge when incorporating security
mechanisms into an embedded system design.

® Enhancement of the method for asset elicitation pre-
sented by Vasilevskaya e al. [9]. In particular, we
extend this method with additional steps to utilise the
information about a system execution platform.

® Development of a MagicDraw [10] plug-in to sup-
port the previously described processes. This plug-

Creation of functional

M. Vasilevskaya et al.

in integrates MagicDraw functionality to capture
the domain-specific security knowledge, the HermiT
ontology reasoner [11] to explore various suitable
SBBs, the Arctis [6] tool set to integrate the SBBs into
a system model and Acceleo [12] to support trans-
formation of UML-based DSSMs into the ontology
format.

While we are reusing existing security and software
engineering solutions, we believe that combining them in
this manner is novel. By narrowing down the scope of the
existing concepts to those relevant for secure embedded
systems, we bridge the gap between the two expert com-
munities, that is, embedded systems and security experts,
so that integration of security aspects in embedded systems
development is supported. In particular, our work is consis-
tent with practical guidelines that are provided by software
engineering life cycle standards such as ISO 12207 [13].
We make the design phase of the process more systematic
when security and platform related choices are considered.
Initial validation of the proposed approach has been done
by industrial partners of the SecFutur project [4]. In this
paper, we demonstrate our approach on a smart meter-
ing infrastructure that is currently under development in
industry.

The overview of the approach is presented in Figure 1.
Embedded system engineers create both functional and
execution platform models of a system. The functional
system model will thereafter be extended with security
features using the domain-specific security knowledge
gathered as the DSSMs and SBBs, whereas the execu-
tion platform system model is utilised to analyse known
security breaches guiding the selection of SBBs. To create
the DSSMs, the related security knowledge of particular
application domains have to be captured. We propose that
security engineers are best equipped to perform this. Thus,
a DSSM acts as a suitable vehicle for the communication
between the two expert groups.

The rest of this paper is organised as follows. In
Section 2, we describe our case study and provide the nec-
essary background. The elements of the system from this
case study will be used to exemplify the new concepts,
method and tools in later sections. Section 3 defines the
process of capturing and storing the domain-specific secu-
rity knowledge, whereas Section 4 explains the use of the
knowledge to integrate protection mechanisms into embed-

—\
(Section 2.2) and System
execution platform models

system models

Capturing of the

ib f
domain-specific Library o

DSSMs

Y

Development of
security-enhanced
embedded system
model (Section 4)

Security-
enhanced

system
model

Y

security knowledge

(Section 3) and SBBs

Figure 1. An overview of the domain-specific secure system development.

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

M. Vasilevskaya et al.

Domain-specific modelling for security engineering

< B

B Jj..r L8 i

O!smc

! General Purpase Network

T
L1

ks I R J

Oparalor Adminsiralon

Server Sarver

General Pupose
Terminal

T T

o v

Operator
Sorver

Figure 2. Trusted sensor network system overview.

ded system designs. Thereafter, we provide a summary of
some related work followed by conclusions.

2. CASE STUDY
AND BACKGROUND

This section begins by presenting the case study that
we use throughout this paper. Thereafter, we introduce
the engineering method SPACE [5], a security ontology
adopted in our approach, and the modelling and analysis of
real-time embedded systems (MARTE) profile [14] used to
model an execution system platform.

2.1. Smart metering application

Figure 2 depicts an infrastructure called trusted sen-
sor network from the smart metering domain. This case
study is provided by the company MixedMode for the
SecFutur project [4]. Trusted sensor network is built of a
set of metering devices, database servers, client applica-
tions and a communication infrastructure. The main goal
of this system is to measure energy consumption at house-
holds and to associate measurements with the clients’ data
for billing purposes.

The actual measurement is carried out by trusted sen-
sor modules (TSMs) consisting of a computing platform
and physical sensors. The acquired measurement data are
transferred via a local bus from each TSM to a trusted
sensor module collector (TSMC). All measurements col-
lected by TSMCs are eventually sent to an operator server
through a general purpose network. The overall specifica-
tion of this case study consists of 11 main scenarios. In our
earlier work [9], we have used a scenario involving TSM
and TSMC communication as a running example. In this
paper, we continue developing this case study and focus on
the measurement data transfer from TSMCs to an operator

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

server. Note that the TSMC is also an embedded device,
similar to TSM but with more functionality. That is, TSMC
and TSM are functional modules that are implemented on
the same physical platform. Because the collected data
are highly sensitive, there are obvious confidentiality and
integrity concerns to be considered.

2.2. Model-based engineering with SPACE

To develop secure networked embedded systems, we
employ the model-based engineering method SPACE [5]
together with its tool support Arctis [6]. Applications
are composed of building blocks that can specify local
behaviour as well as the interaction between several dis-
tributed entities. This specification style enables a rapid
application development because, on average, more than
70% of a system specification comes from reusable build-
ing blocks provided in domain-specific libraries [2]. In
turn, this strategy helps to reduce the expertise required
in developing cross domain applications. Moreover, the
formal semantics of the specification (see Kraemer and
Herrmann [15]) makes it possible to model check relevant
system properties (e.g. that the building blocks are cor-
rectly integrated into activities) [6]. This is a property of
the tool set that we propose to leverage.

«system» Metering Data Transfer

operator_server t

tsmc t
N

c: Collector
data:
HashMap

dataln: dataOut:
HashMap HashMap

ack:
boolean
I

Figure 3. Functional system model of the measurement
transfer scenario.

Domain-specific modelling for security engineering

Similar to functional building blocks, security mecha-
nisms can be expressed as self-contained building blocks,
for example, by modelling the SBBs mentioned in the
introduction. Additionally, SPACE has been already used
for encapsulating security functionality in a form of build-
ing blocks [16] with validation of their correct integration
[17]. Finally, the recent work of Gunawan and Herrmann
[18] enables compositional verification of security proper-
ties for SPACE models.

Figure 3 depicts the measurement transfer scenario
modelled in SPACE. It is a UML activity consisting of
two partitions, namely, tsmc and operator_server, mod-
elling the respective entities in our case study. The activity
is composed of three building blocks that are connected
with some ‘glue logic’ through pins on their frames. The
building block c: Collector models periodic collection of
measurement data from TSMs handled by the same TSMC.
Block db: Db Handler encapsulates the behaviour to store
the data in a database of the operator, whereas block
t: Transfer Handler manages the communication between
the two components that, as will be described later, buffer
data, send it and resend it in the case of a negative acknowl-
edgement. Block ¢ and db are local blocks because they
specify local behaviour in an entity. In contrast, block ¢
is a collaborative block as it also describes interaction
between two entities. The three blocks (¢, db and t), further,
refer to activity diagrams that define their detailed internal
behaviour as exemplified for block ¢ in Figure 4.

The Petri net-like semantics of the activities models
behaviour as control and object flows of tokens between
the nodes of an activity via its edges. When the system
starts, a token flows from each of the initial nodes (e)
following the edges of the activity. In the application in
Figure 3, all three inner blocks are started in the initial
step. Then, periodically, the collector block emits a token
containing an object of type HashMap through its pin
data. This object maps TSM identifiers to measurement
values at a particular time. As depicted by the outgoing
edge from pin data of block ¢, the object is forwarded to
block ¢ and further to block r: Reactive Buffer via its pin
add (Figure 4). This buffering block, which is taken from
one of the Arctis libraries, is used to buffer measurement
data that may arrive when other data is being sent but not

M. Vasilevskaya et al.

yet acknowledged. If data are received when the buffer is
empty, it is emitted immediately; otherwise, it is buffered.
The pin next is used to obtain subsequent data. Following
the outgoing edge of pin out of block r, a copy of mea-
surement data is stored temporarily in variable femp by the
operation set temp. Thereafter, the token flows through a
merge node (¢), and data are sent to the other entity as
illustrated by the edge crossing a partition border. In the
receiver partition, the data are forwarded out of the block
which, according to Figure 3, is stored in a database by
block db.

Block db: Db Handler in Figure 3 will emit a token via
pin ack containing either a positive or a negative acknowl-
edgement. A positive acknowledgement corresponds to
successful transfer of the measurement data, whereas a
negative acknowledgement is issued in case the received
measurements have not passed the validation test executed
by the db block. Thus, the token emitted via pin ack flows
further inside block ¢ and, as depicted in Figure 4, reaches
a decision node (¢). A positive acknowledgement leads
the token flows through the outgoing edge labelled with
true. Thereafter, operation delete that removes the data
stored in variable temp is called and subsequent data, if
any, is retrieved from buffer r. A negative acknowledge-
ment moves the token through the edge labelled with false.
In this case, the previously sent data are retrieved from
variable temp and sent again.

Note that as a result of applying the SPACE method
(i.e. building a system as composition of reusable build-
ing blocks), the models used in two different scenarios can
share a lot of commonalities. In particular, we have reused
some elements from our earlier study [9] that focuses on
the TSM-TSMC communication when extending the work
with TSMC-server communication.

2.3. Ontology engineering

Any ontology represents knowledge in a particular domain
(such as security) as a set of concepts and the relations
among those concepts.

A number of ontologies for information security have
been proposed, for example, Herzog et al. [8] and Fenz
and Ekelhart [19]. We adopt the ontology presented by
Herzog et al., because it builds upon classic concepts of

Transfer Handler

sender

r: Reactive Buffer
start B—

dataln: =
HashMap =

temp: HashMap

st [

| oo

ack:
(e)—{iue -0 Boiean

receiver

dataOut:
HashMap

Figure 4. Detailed behaviour of the Transfer Handler block.

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

M. Vasilevskaya et al.

risk analysis and allows us to focus on the desired proper-
ties of a system rather than on threat modelling that tends
to vary depending on the deployment environment of a sys-
tem. Threat models are indeed included in this ontology,
but in our work, we emphasise on security-related assets
that essentially can be identified within a functional sys-
tem model. We consider the notion of threat only when the
execution platform for a system is elaborated. The section
continues with a brief description of this ontology.

The core of Herzog et al.’s ontology [8] consists of six
classes. Four of them are concepts related to risk analy-
sis, that is, asset, vulnerability, threat and countermeasure.
The remaining two classes are security goal and defence
strategy. Relations between these concepts are defined as
follows: an asset can have several vulnerabilities, a threat
threatens assets with respect to some security goals and
a countermeasure protects assets with respect to security
goals by means of defence strategies.

In the ontology, diverse classifications of countermea-
sures, assets, threats and vulnerabilities relevant for infor-
mation security are introduced. The security goal and
defence strategy classes are described by a set of instances.
Six instances are defined for the defence strategy class,
namely, correction, deflection, detection, deterrence, pre-
vention and recovery. Fifteen instances are defined for the
security goal class, for example, confidentiality, integrity,
authorisation and anonymity.

2.4. MIARTE profile

Modeling and analysis of real-time embedded systems is
an extension of the UML language, which is encapsu-
lated in a UML profile. It contains a rich set of concepts
to describe platform-dependent resources of embedded
systems. We use it in our work to create models of an
execution system platform.

This profile consists of several related packages. The
general resource modeling package contains general con-
cepts required for modelling of an execution platform,
for example, computing, storage and communication
resources. These general terms are further refined in two
other packages, namely hardware resource modelling and
software resource modeling. Besides, MARTE contains
packages for analysis of time and performance as well as
allocation of application functions onto resources. Each
concept, for example, type of a platform resource, is repre-
sented as a stereotype [20] that can be used to annotate dif-
ferent types of UML diagrams (e.g. class and deployment)
creating models of a system platform.

Experience of applying this profile to industrial cases
has been reported by different researchers and practi-
tioners, including a recent account presented by Igbal
et al. [21]. Moreover, as the need for analysis of resource-
constrained system models becomes more apparent, new
techniques are emerging to enable performance analysis
based on MARTE models, including simulation [22] and
analytical approaches [23].

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Domain-specific modelling for security engineering

3. DOMAIN-SPECIFIC
SECURITY KNOWLEDGE

Capturing and storing of the domain-specific security
knowledge is an essential step to enable its further reuse.
For this task, we employ an ontology and UML [20], in
particular, class and object diagrams. In the following, we
explain how these two technologies are employed in our
approach. Then, we explain the process of DSSM creation,
that is, capturing of domain-specific security knowledge,
followed by a security engineer.

3.1. Ontology development

The ontology developed by Herzog et al. [8] is a gen-
eral information security ontology. We use an ontology
to define the formal semantics of a language that assists
solving specific tasks within our process (namely, captur-
ing and use of domain-specific security knowledge). Some
concepts used in our process are refinements of those intro-
duced by Herzog et al. The main point of departure arises
to introduce new concepts, which are security property,
SBB, and domain, as depicted in Figure 5. Nevertheless,
the use of the Herzog et al. ontology has served its pur-
poses outlined by the authors [8], namely as a learning
material about the structure of information security and
as a framework for developing new detailed security tax-
onomies. We proceed to describe our adapted ontology
when used to support the processes of capturing and using
domain-specific security knowledge.

In our ontology, we reuse three basic concepts intro-
duced by Herzog et al. [8], namely asset, security goal and
defence strategy. Assets are the ‘objects of value’, in a sys-
tem and which need to be protected. In our context, they

satisfies
., Domain
&
9
Abstract __uses_ Defence

strategy% Security

SBB
| \Secu”ty% property
O(‘

3
=
2 goal)
% 5 Data in
S 2 transit
Concrete (reates is-a Data
SBB Asset stationary
Co,
&:’- 6‘9& ,hp//és
Functional Platform Standard
model model

Figure 5. The ontology fragment used in our approach,
adapted from [8] and [9].

Domain-specific modelling for security engineering

can be data stationary residing on a physical component
or data in transit being transmitted between different com-
ponents. Other types of assets, for example, algorithms or
intellectual properties, may also be considered and intro-
duced. The protection of an asset leads to the fulfilment
of a particular security goal such as protecting its con-
fidentiality, integrity or availability. The countermeasures
introduced later in the text follow a certain defence strat-
egy, for example, preventing attacks or recovering after an
attack. For the security goal as well as the defence strat-
egy, we reuse all the terms (i.e. individuals) defined in the
ontology of Herzog et al.

In addition to these elements, our ontology introduces
new concepts, which are shown as grey rounded corner
boxes in Figure 5. Two of them are abstract and concrete
security building blocks replacing the notion of a coun-
termeasure used by Herzog et al. [8]. These refinements
enable us to distinguish between more general countermea-
sures represented by the abstract SBBs and their imple-
mentations specified as concrete SBBs. For example, an
abstract SBB might refer to a cryptographic hash function
as a general method to provide integrity, whereas the dif-
ferent realisations of the hash function (e.g. SHA-1, MD2
or MD5) implemented as a piece of code or hardware are
each described by a concrete SBB. With respect to the
resource limits of embedded systems, it is important to note
that the implementations may have different resource foot-
prints. Each concrete SBB has some functional model and
platform model. The latter may be considered as descrip-
tion of platform components that are required by a concrete
SBB for execution. Further, a concrete SBB can comply
to some standard, for example, if it has passed some cer-
tification. Another concept introduced by our ontology is
the notion of security property aggregating asset, security
goal and defence strategy. Finally, we enrich the ontology
with the concept of a domain that represents an application
domain, for example, the smart metering domain.

The relations in our ontology are defined as follows.
Like the countermeasures in the Herzog et al. ontology,
an abstract SBB protects an asset, provides some security
goals and uses some defence strategies. We have modified
the protects relation for security goal and defence strategy
used by Herzog et al. [8], because we find that the provides
and uses relations reflect more precisely their semantics

M. Vasilevskaya et al.

within our process. In addition to these three relations, an
abstract SBB belongs to some application domain. A con-
crete SBB implements an abstract SBB but, in turn, may
create certain assets itself, for example, encryption keys,
that have to be protected as well. Therefore, both the assets
in the core system and the assets created to realise the
concrete SBBs require security goals. For example, the
keys in some implementation of a public key cryptography
mechanism have to be protected to fulfil the confidential-
ity and integrity goals. Functional and platform models are
related to the concrete SBB concept with the has relation.
The last relation of the concrete SBB concepts is complies
that relates it to the standard concept. This covers com-
mon requirements in engineering of networked embedded
systems. In the metering domain, for example, a system
will have to fulfil legal calibration requirements follow-
ing a standard. Finally, a security property relates assets,
security goals and defence strategies, which in the fol-
lowing sections will be referred to by triplets [asset,
security goal, defence strategyl].

3.2. UML representation of the ontology

To help system engineers use our ontology and to sup-
port security experts in capturing domain-specific security
knowledge, we represent the ontology as a UML model,
that is, as a class diagram (Figure 6). Because a DSSM is
effectively an instantiation of the ontology, we specify it in
the form of an instance of this class diagram. The security
knowledge captured by each DSSM is used to extend our
ontology presented previously with a corresponding set of
axioms on relations and individuals. This enables us to use
the ontology reasoning services to obtain security-relevant
information. In other words, the class diagram in Figure 6
serves as a language dedicated to capture knowledge by
security engineers, that is, to create DSSMs, whereas the
ontology in Figure 5 is a formalism for this language [3].
The class diagram in Figure 6 consists of five classes
and three relations, which are direct mappings of the ele-
ments of our ontology. The preserved classes are Asset,
AbstractSBB, ConcreteSBB, DataStationary and Dataln-
Transit. The preserved relations are implements (between
ConcreteSBB and AbstractSBB), protects (between Asset
and AbstractSBB) and creates (between ConcreteSBB and

ConcreteSBB implements

AbstractSBB
mFunctional: String 1.% 1 | usesStrategy:

SecurityGoalKind
Confidentiality

mPlatform: String DefenceStrategyKind Integrity
stdCompliance: String providesGoal: Authenticity
SecurityGoalKind Availability
1.
1.*
Datalp - creates DefenceStrategyKind
Transit requiredGoal: protects Prevention
0..x | SecurityGoalKind Detection
externalDSSM: String Recovery
D_ata || Asset Correction
Stationary 0.*

Figure 6. The unified modelling language presentation of our ontology, adapted from [9] adding the platform and standard
compliance elements.

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

M. Vasilevskaya et al.

Asset). The is-a relation from DataStationary and Dataln-
Transit to Asset in the ontology is modelled in the form of
generalisations.

Other elements of the ontology are specified in a dif-
ferent way. Instances of the security goal and defence
strategy classes are represented as the enumerations Secu-
rityGoalKind respective DefenceStrategyKind. The uses
relation between the abstract SBB and defence strategy
classes in our ontology are represented by the property
usesStrategy in the class AbstractSBB. Likewise, the pro-
videsGoal property in AbstractSBB replaces the provides
relation between the abstract SBB and security goal classes
of our ontology. Similarly, the functional model, platform
model and standard concepts related to the concrete SBB
concept are represented as the mFunctional, mPlatform
and stdCompliance properties of the ConcreteSBB class,

Domain-specific modelling for security engineering

respectively. Finally, the requiredGoal property in the
association class creates represents the relation requires
between the created asset and the security goal classes of
the ontology.

In contrast, the security property and domain con-
cepts of the ontology are not directly represented in the
UML model. This is because the triple asset, security goal
and defence strategy already capture the notion of secu-
rity property. Therefore, such a security property can be
directly extracted from a DSSM. Analogously, the domain
concept from our ontology is represented by the name of a
DSSM (i.e. the object diagram).

Besides, the UML class diagram in Figure 6 has one
additional property, which does not exist in the ontology,
namely externalDSSM in the creates association class. The
externalDSSM property refers to other DSSMs. The use of

:implements

{

Secure storage:AbstractSBB

SecFutur secure storage:

:protects

Integrity

usesStrategy = Prevention
providesGoal = Confidentiality,

ConcreteSBB
mFunctional =
"SF_Secure_Storage"

:implements

!

.protects

Li Tamper evident seal:
AbstractSBB

SecFutur TPM seal:
ConcreteSBB

StoredMeasurement;
DataStationary

Integrity

usesStrategy = Prevention
providesGoal = Confidentiality,

mFunctional =
"SF_TPM_Seal"

:implements

AES:ConcreteSBB

mFunctional =

protects

Cipher: AbstractSBB

"AES_Encryption",
"AES Decryption"

protects

usesStrategy = Prevention
providesGoal = Confidentiality

DES:ConcreteSBB

mFunctional =

"DES_Encryption",
"DES Decryption"
CollectorToServerMsr: implements
DatalnTransit Ampleme ‘
:implements
MDS5 with RSA:
ConcreteSBB

.protect — -

Protects | Digital signature: mFunctional = "MD5_Sign",
AbstractSBB "MD5_Verify"
usesStrategy = Detection
providesGoal = Integrity, SHA-1 with RSA:
Authentication ConcreteSBB

mFunctional = "SHA-1_Sign",
"SHA-1_Verify"
:implements \

:protects | Anomaly detection: - -

Abstracz/SBB LiU anomaly detection:

ConcreteSBB

SensorToMeter!VIsr. usesStrategy = Detection mFunctional =
DatalnTransit providesGoal = Integrity "LiU_Anomaly Detection"

1 :implements

Figure 7. A fragment of the metering domain-specific security model.

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Domain-specific modelling for security engineering

this property is needed if a created asset requires a building
block, which belongs to another (known) domain.

A given DSSM is essentially an instance of the UML
class diagram depicted in Figure 6. As an example, we
depict in Figure 7 the UML diagram for a small frag-
ment of the metering DSSM used for our measurement
transfer scenario from Section 2. This DSSM contains
three assets: StoredMeasurement that represents energy
measurements stored on a device, CollectorToServerMsr
that represents energy measurements sent from a collector
device to an operator server and SensorToMeterMsr that
represents energy measurements sent from a sensor to a
metering device. These assets may be protected by five
abstract SBBs: Secure storage and Tamper evident seal that
provide confidentiality and integrity for the StoredMea-
surement asset, Cipher that provides confidentiality for
the StoredMeasurement and CollectorToServerMsr assets,
Digital signature that provides integrity and authentication
for the CollectorToServerMsr asset and Anomaly detection
that provides integrity for the SensorToMeterMsr asset.
Seven concrete SBBs implement these abstract SBBs.
Each abstract SBB in Figure 7 is supported by one or
two implementations. In general, one abstract SBB can
be implemented by several concrete SBBs. For exam-
ple, the DES and AES concrete SBBs implement the
Cipher abstract SBB. These concrete SBBs have a pair
of functional models, which are Arctis blocks for encryp-
tion (AES_Encryption and DES_Encryption, respectively)
and decryption (AES_Decryption and DES_Decryption,
respectively).

3.3. The process to create DSSMs and SBBs

In this section, we explain the proposed process for DSSM
creation. The starting point of creation of DSSMs is to
decide on a domain. The DSM theory inherently leaves the
notion of a domain as a flexible notion. Hence, it is up to
security engineers to decide what kind of domain a DSSM
will describe.

In this paper, we consider application domains (e.g.
metering devices, set-top boxes, banking access termi-
nals, etc.), which can be characterised by a different set
of assets and a specialised set of security solutions (i.e.
concrete SBBs). Such domains can be in some relations,
for example, domains can overlap or one domain can be
a part of another domain. Note that the closer a selected
domain is tailored to a type of a system, the more spe-
cialised and detailed solutions it contains (i.e. the set of
assets and concrete SBBs). For example, both communica-
tion and metering DSSMs may be applied for our scenario
described in Section 2.1, but obviously the communication
DSSM will contain such general assets as ‘message’ and
‘acknowledgement’, whereas metering DSSM operates
with ‘measurement’ as an asset. We continue describing
the proposed process for DSSM creation.

The process of DSSM creation is depicted in Figure 8.
It starts with two activities: Creation of functional models
for concrete SBBs and Creation of a DSSM. The order of

M. Vasilevskaya et al.

these activities is undefined, because it does not play a sig-
nificant role in our process. Thus, if Arctis models of the
considered concrete SBBs exist (e.g. they are available in
the Arctis library of building blocks [2]), the corresponding
activity can be omitted. The Creation of a DSSM activity
includes definition of assets, abstract SBBs with their goals
and strategies, and concrete SBBs omitting definition of
a functional model (i.e. the mFunctional slot of the Con-
creteSBB class depicted in Figure 6). Thus, the outcome
of this activity is the definition of the DSSM with place
holders for concrete SBBs. Note that these two activities
can be extended with the third activity of creation of plat-
form models for concrete SBBs to populate the platform
model concept of the ontology in Figure 5. However, this
goes beyond the contributions of this paper and is subject
of work elsewhere [24].

The next activity is Registration of concrete SBBs that
allows binding the created functional models of concrete
SBBs (i.e. Arctis models) with the corresponding elements
of the DSSM, that is, with the mFunctional slot. Once all
concrete SBB instances of the created DSSM have been
bound with the functional (Arctis) models, the DSSM can
be registered.

The main outcome of the Registration of the DSSM
activity is an ontology (described in Section 3.1) enriched
with knowledge captured by the DSSM. To differentiate
between the ontology depicted in Figure 5 and an evolv-
ing ontology, which is constantly extended with knowledge
captured by DSSMs, we refer to the latter as the enriched
ontology. The task of updating the enriched ontology with
the knowledge captured by a newly created DSSM is
implemented as transformation of elements of a DSSM and
their relations into corresponding set of axioms on classes,
relations and individuals. Afterwards, these axioms are
added into the enriched ontology. For example, all objects
of the metering DSSM in Figure 7 are added as individuals
of the corresponding concepts of the ontology in Figure 5.
Thus, we support the constant update of the original ontol-
ogy in Figure 5 with knowledge tailored to a particular
domain and captured by security experts.

Here, an important question of maintaining consistency
of the enriched ontology arises. In particular, an obvious
problem with such updating is pollution of the ontology
with concrete SBBs that have different names but refer
to the same implementationT. The unique name assump-
tion of an ontology says that entities with different names
refer to different elements of the real world. The OWL
language has two constructs to express this assumption,
namely, owl:sameAs or owl:differentFrom, that asserts that
two or more given entities refer to the same or to dif-
ferent elements of the real world, respectively. We use
the latter construct each time, when a new concrete SBB
is added into the enriched ontology. However, it may be
the case that security engineers will populate the enriched

t The trivial case, i.e. two entities with the same names, is not
possible.

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

M. Vasilevskaya et al.

Domain-specific modelling for security engineering

Creation of .
; Arctis models
functional models ¢ te SBB
for concrete SBBs or concrete s

Registration of The DSSM with Registration of
concrete SBBs [| concrete SBBs the DSSM

Creation of a The DSSM with
place holders

DSSM for concrete SBBs

N

Enriched
ontology

Figure 8. Creation of domain-specific security models (DSSMs) and security building blocks (SBBs).

ontology with concrete SBBs that actually refer to the
same implementation (i.e. to the same Arctis model in our
case). This situation can be resolved by the owl:sameAs
construct that states that two or more individuals refer to
the same element of the real world. However, some addi-
tional tool support may be needed to ensure that two (or
more) concrete SBBs under different names refer to actu-
ally the same implementation. Techniques from the area
of model comparison or model diff can be employed to
calculate the difference between two models that, in our
case, represent functional and platform models of con-
sidered concrete SBBs. For example, Selonen [25] and
Bendix and Emanuelsson [26] have written a survey about
existing model comparison methods for UML models.
Besides, a set of tools exist to implement model compar-
ison, for example, EMF Compare [27] and SiDiff [28].
The exploitation of these techniques goes beyond the scope
of the current paper. However, we consider it as a fur-
ther enhancement of our tool support. In the rest of this
section, we outline a developed tool to support the process
of DSSM creation depicted in Figure 8.

As it was mentioned earlier, DSSMs are created in the
MagicDraw tool [10], whereas functional models of con-
crete SBBs are created in the Arctis tool [6]. To bind
these two tools and to support the process of DSSM
creation, we have developed a MagicDraw plug-in. In
particular, this plug-in assists the creation of DSSMs by
supporting the following activities of the process depicted
in Figure 8:

® Creation of a DSSM: the plug-in prepares an envi-
ronment for a security engineer, that is, it creates
a MagicDraw project and loads the class diagram
depicted in Figure 6.

® Registration of concrete SBBs: the plug-in provides
an interface (shown in Figure 9) for binding concrete
SBB elements of the DSSM with the corresponding
Arctis models.

® Registration of a DSSM: the plug-in executes trans-
formation of the DSSM to a set of axioms and adds
them into the enriched ontology. Additionally, the
plug-in can be used to upload the created DSSM to a
library (local or public) for its further use.

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Registration of concrete SBR
Select a concrete SAE from the Metering DSSM:

Lill anomaly detection i
Select an Arctis model

Browse fUsers o/ ArctisModels [LIU_Anomaly_Detection.um|
Alias: LiU_Anomaly_Detection

Add the functional model

Registered Arctis models

DES: aretis - |DES_Decryption= fUsers oo Arctishodels [DES_Decryprion.uml, DES_Encry
AES: arctis = [AES_Encryption. urmls /Users [ooc/ArctisModels JAES_Encryption.uml, /Users
SecFutur TPM seak arctis - (SF_TPM_Seal= fUsers fxo/ArctisModels /5F_TPM_Seal.umil)

SecFutur secure storage: arcis - |SF_Secure_Storages= fUsers foofArctisModels (SF_Secur
MD5 with RSA: arctis = (MD5_Verifys fUsers fxoos ArctisModels [MDS _Verify.uml, MD5_Sic
SHA-1 with RSA: arctis - (SHA-1_Sign= /Users oo ArctisModels /SHA- 1_Sign.uml, SHA-

Ok Cancel

Figure 9. Registration of concrete security building blocks
(SBBs) (the user interface).

4. DOMAIN-SPECIFIC
SECURITY PROCESS

In this section, we describe the proposed process of inte-
grating security aspects into formal functional models
of a networked embedded system, using domain-specific
security knowledge captured by DSSMs. Refining the
part Development of security-enhanced embedded system
model in the overview in Figure 1, a schematic description
of the proposed approach is depicted in Figure 10.

The process starts from the functional and platform
models of an embedded system created with Arctis
(Section 2.2) and MagicDraw, respectively. In particular, to
create platform models, we use a class diagram annotated
with the corresponding MARTE stereotypes as described
in Section 2.4. Thereafter, a suitable DSSM is selected,
and its elements are associated with the components of the
Arctis system model (Section 4.1). Note that if a required
DSSM is not found, this step should be preceded by cre-
ation of a DSSM (Section 3). That is, it could be postponed
until the suitable DSSM is created.

The step Association with DSSMs is followed by the
step Enhanced asset elicitation (Section 4.2), which results

Domain-specific modelling for security engineering

M. Vasilevskaya et al.

Functional and System
platform Association modg| coupled Enhanced
system with DSSMs with DSSMs .afsse_t
models elicitation

Security
properties
to be satisfied
[l |
Security- | Selection & Set of Search for
enhanced | integration of j concrete concrete
system model | SBBs models SBBs SBBs

Figure 10. Domain-specific security process for developing security-enhanced embedded systems.

in a list of security properties to be satisfied. Afterwards,
concrete SBBs that satisfy the identified security proper-
ties are inferred from the enriched ontology. Thereafter, the
related set of Arctis models are fetched, for example, from
the Arctis libraries.

Due to the existence of different concrete SBBs, often
various ways to secure the functional system model are
possible, which may differ with regard to a range of crite-
ria. For example, an engineer needs to ensure that a system
under consideration will still perform the required func-
tionality when security mechanisms are incorporated [17].
Additionally, when dealing with embedded systems, one
needs to investigate how the added security mechanisms
affect the consumption of crucial resources. Compliance
of considered concrete SBBs to some standard can also
affect a decision taken by a system engineer. Extensive set
of other possible criteria to be considered is proposed by
Georg et al. [29]. Thus, to find the best solution, one needs
to carry out analysis of desired criteria and compare differ-
ent alternatives. Subsequently, a set of Arctis blocks that
satisfy those criteria are integrated into the functional sys-
tem model as it is reflected by the Selection&integration
of SBBs step. The dashed line for this step in Figure 10
clarifies that the detailed development of this step is not a
contribution of this paper and subject of ongoing work.

The previous process is compliant with the industrial
development needs that rest on traceability of requirements
within the developed system. Specifically, this is carried
out by the link created between the concrete SBBs and
security properties through the abstract SBBs and assets.

4.1. Association with security
domain knowledge

The goal of the step Association with DSSMs in the pro-
posed process is twofold: (i) a DSSM that is relevant
for a system under development is identified and selected
and (ii) bounds of a system (its functional model), where
the knowledge (captured by a selected DSSM) should be
applied, are established. Figure 11 depicts an interface
of the developed plug-in to support this step. We exem-

Association tool

Select an Arctis model

Browse Users [xxx/Repository/ Metering_DSSl..

Select a DSSM
DSSM: Metering ¢

StartAnchor: | c:Collector

FinishAnchor: | db:Db Handler

EL

Associate

Figure 11. Association of the selected domain-specific security
model (DSSM) with the system elements (the user interface).

plify the Association with DSSMs step with our use case
presented in Section 2.

Because the case study is a smart metering applica-
tion, an embedded system engineer selects the metering
DSSM from the library of DSSMs (i.e. step (1)). Hence,
the association is based on the matching of the system
and security domains. Thereafter, those parts of the system
containing data to be protected are identified (i.e. step (2)).
For brevity, we discuss only the protection of the metering
data that, in the functional system model, flows from block
c: Collector in the trusted sensor module collector (TSMC)
to db: Db Handler in the operator server (Figure 3). Thus,
these two blocks are the starting respective end points of
the object flow to be protected. Therefore, the identifiers of
these two blocks are assigned to the fields StartAnchor and
FinishAnchor, respectively, of our tool.

4.2. Enhanced asset elicitation

In this section, we further develop the asset elicitation
technique initially presented by Vasilevskaya et al. [9].
Figure 12 outlines six steps in this enhanced asset elicita-
tion technique.

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

M. Vasilevskaya et al. Domain-specific modelling for security engineering

Asset elicitation Assets and ASS(\),;'taht'olr;t(;gfésets Platformt
step 1 roperties
P Prop step 2 assets
Security Ideqtification qf Threats and Threa': analydsis of
properties se;:urll)ty prtc?pft_erges violated |~ theuse X
to be satisfied 0 be satistie security goals components
step 4 step 3

Figure 12. Outline of the enhanced asset elicitation technique.

This technique allows to identify assets existing in a
system and captured by the associated DSSM using both
functional and platform system models. In Section 4.2.1,
we demonstrate a set of rules applied to a functional model
introduced in our earlier work [9], here presented in a
more concise form. Then, we explain an enhancement
of this asset elicitation technique utilising the platform
description information in Section 4.2.2.

4.2.1. Rules for asset elicitation on the functional
model.

The starting point (step 1 in Figure 12) of the enhanced
technique in Figure 12 is elicitation of assets from a
functional model of a system employing the method pre-
sented by Vasilevskaya et al. [9]. Recall that this method
allows identifying assets within a functional model and
their classification according to the ontology. Here, the
considered classes are ‘data stationary’ and ‘data in tran-
sit’. This task is achieved by applying the rules R1 and R2
presented in Figure 13 to Arctis models. We have imple-
mented this functionality in a tool called Asset analyser
[9]. Afterwards, an engineer complements this classifi-
cation according to an associated DSSM. However, it is
worth noting that the latter task can potentially be auto-
mated given a system modelling language closely tailored
to a domain (i.e. a DSL). Note that we use the label “Not
an asset” to mark those proposed (by applying the rules)
assets that can not be matched to any of assets from the
associated DSSM. Hence, they should not be considered
for the further analysis. We now proceed to explain our
rules (Figure 13) and their application logic (Figure 14).

According to the SPACE semantics [15], an activity is a
directed graph with a set of activity nodes V and their con-
necting edges E. Figure 13 presents the two identification
rules R1 and R2. This is a refined presentation of the seven
rules proposed earlier [9]. These rules use the following
functions:

® Two functions mapping an activity node and edge
to their particular types, that is, kindy : V — Ky and
kindg : E — Kg, where Ky = {operation, merge,
join, fork, decision, local, collaboration, other}
and Kg = {object, control}.

® The set ON of all object nodes of a given activity, that
is, the data stored in the system and transported within
the data flow tokens.

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

e € E, kindg(e) = object,
({kindy (source(e))} U {kindy (target(e))})
N {operation, local, collaboration} # 0,
part(source(e)) N part(target(e)) # O
R1: Zasseti,assets € A:

asset1 = (outo (source(e), e), source(e), e),

class(asset1) = stationary,
assets = (ino (e, target(e)), target(e), e),

class(assets) = stationary

e € E,kindg(e) = object,
kindy (source(e)) € {operation, merge,
decision, fork, join, local, collaboration},
R2: part(source(e)) N part(target(e)) = 0
Jasset € A :

asset = (outo (source(e), e), source(e), e),

class(asset) = transit
Figure 13. Rules for asset identification.

function traverseBlocks
Vee E:
R1, R2
Va € inner(A) :
traverseBlocks (a)

(Activity A)

Figure 14. A function to traverse a functional system model.

® Two functions returning an object flowing to (resp.
from) a given node through an edge, that is, ing : E X
V — ON and outg : Vx E — ON.

® A function mapping a given asset to a class from
our ontology, that is, class A — K,, where
Ky = {transit, stationary} and A is the set of assets
constructed from elements of the set ON.

® A function mapping a node to a set of partitions,
which it belongs to, that is, part : V. — 2P , where P
is a set of all partitions of a given activity diagram.

® Two functions that return the source and target nodes
of a given edge, that is, source : E — V and target :
E — V respectively.

e A function inner : A — 24 that assigns to an activ-
ity the set of its inner activities, that is, the activities
referring to the local and collaborative blocks that

Domain-specific modelling for security engineering

Table I. Results of asset elicitation [9].

Asset DSSM classification

StoredMeasurement
(Data Stationary)

data, dataln, dataOut, store, out,
add, two temp (to and from the
set operation), temp (from the get
operation),

ack (from the db block), ack (to the
t blocks)

Not an asset (Data Sta-
tionary)

CollectorToServerMsr
(Data in Transit)

temp (from the merge node)

Not an asset (Data in
Transit)

ack (that goes from the decision
node to the operations get), ack
(that goes from the decision node
to the operation delete)

it contains. For instance, the transfer handler block
contains the reactive buffer as its only inner block
(Figure 4).

o Atuple A £ ON x V x E that uniquely identifies an
asset.

The rule R1 guarantees that if there is an object edge
whose source and target nodes are of the kinds operation,
local or collaboration and both the source and the target
nodes belong to the same partition, then there are two data
stationary assets. These assets correspond to an object out-
going from the source node and an object incoming into the
target node. The rule R2 is applied to an object edge that
crosses the border of two partitions, which corresponds to
the data in transit concept.

The application of the rules R1 and R2 to a
functional system model is outlined by the function
traverseBlocks depicted in Figure 14. Recall that
each activity A is represented by a pair of nodes and edges
(V, E). First, the function traverseBlocks traverses all
edges E of this activity and applies the rules R1 and R2
to find the assets to be protected. In particular, application
of this logic to the model in Figure 3 identifies six sta-
tionary assets using rule R1. For example, rule R1 applied
to the edge from block c to ¢ returns the data and dataln
stationary assets.

Thereafter, the function is recursively applied for the
activities of the inner blocks detailing the behaviour. For
the metering data transfer, these are blocks c, ¢ and db. For
example, in the activity of the transfer handler block in
Figure 4, the algorithm finds one stationary asset add due
to an object edge that goes from pin dataln to pin add of
block r. Further, use of rule R2 results in identification of
three data in transit assets: the femp asset that flows from
the merge node to pin dataOut, and two ack assets that flow
from the decision node to the get and delete operations.

Table I summarises the results of applying this tech-
nique to our scenario described in Section 2. For those
assets that have duplicate names (i.e. ack and femp), we
have added their location information in brackets.

M. Vasilevskaya et al.

4.2.2. Refinement of elicited assets utilising the
platform model.

Once the classification of assets is given a set of cor-
responding security properties (in the form [asset,
security goal, defence strategyl) can be
retrieved from the enriched ontology. This technique
employs the HermiT reasoner as mentioned earlier. For
example, for those assets that are classified as Collector-
ToServerMsr (CtS) the following set of security properties
is retrieved:

[CtS, Confidentiality, Prevention]
[CtS, Integrity, Detection]
[CtS, Authentication, Detection]

The next three steps (steps 2—4 in Figure 12) allow iden-
tifying which security properties must be considered as
those security properties to be satisfied given a platform
model. A platform model of a TSMC device for our sce-
nario is depicted in Figure 15. We use a class diagram
annotated with stereotypes of the hardware resource mod-
elling package of the MARTE profile (Section 2.4). The
modelling is carried out in the MagicDraw tool [10].

The main component of the TSMC platform is the
OMPA3530 board [30]. This board includes computing
elements (C64x+ DSP and ARM Cortex-AS8), storage ele-
ments (NAND Flash and LPDDR), communication inter-
faces (12C, SDIO, and 10/100Mbps NIC), a daughter card
and the 3.5” VGA/QVGA touch screen LCD display. The
daughter card is used to connect the ADE7758 sensor
[31] via serial peripheral interface and the serial peripheral
interface bus. Finally, 10/100 Mbps NIC is used to con-
nect a TSMC to a communication channel (LAN). Later,
we proceed to explain and to exemplify steps 2—4 (in
Figure 12) that utilise the platform description information
for asset elicitation.

Step 2 requires association of the elicited assets with
available platform resources, for example, communica-
tion, computing and storage components. In general, any
platform components that are involved in operations with
assets should be mentioned during this association. In
particular, we provide the following basic guidelines:

(1) Associate each data stationary asset with a comput-
ing unit that operates on it (i.e. components annotated
with the HwProcessor stereotype and its subclasses)
and a memory unit that stores it (i.e. components
annotated with the HwMemory stereotype and its
subclasses).

(2) Associate each data in transit asset with a communi-
cation channel that is used to transmit this asset (i.e.
components annotated with the HwMedia stereo-
type and its subclasses) and to two interfaces on
the sender and receiver ends (i.e. the HwEndPoint
stereotype).

(3) Associate each data stationary asset with some
resource (i.e. components annotated with the HwRe-
source or HwDevice stereotypes) that contains com-
puting and memory units, which operate with the
asset and store it respectively.

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

M. Vasilevskaya et al.

<<HwResource>>
<<HwEndPoint>>

ADE7758

Domain-specific modelling for security engineering

<<HwMedia>>
LAN

<<HwBuUs>>
SPI bus

<<HwEndPoint>>

<<HwEndPoint>>
12C SDIO

<<HwEndPoint>>
10/100Mbps NIC

<<HwEndPoint>>
SPI

<<HwDevice>> »
Daughter card

l

<<HwResource>>
OMAP3530

<<HWRAM>>
LPDDR
{memorySize=256 MB}

<<HwMemory>>
NAND FLash
{memorySize=256 MB}

<<HwComputingResource>>
64x+

<<HwProcessor>>

ARM Cortex-A8
{caches=L1P, L1D, L2x512,
nbFPUs=1,
op_Frequencies=720MHz,
ownedISAs=)azelle RCT,
Thumb-2, NEON SIMD,
predictor=PB35%}

<<HwDevice>>
3.7" VGA/QVGA touch
screen LCD display

Figure 15. Platform model for a trusted sensor module collector device.

Table Il. Association of the assets with the platform components.

Asset Classification Association
data ADE7758
StoredMeasurement

dataln, dataOut, [NAND Flash,

out, add StoredMeasurement ARM Cortex-A8]

two temp (to and from [LPDDR, ARM

the set operation), StoredMeasurement Cortex-A8]

temp (from the get

operation)

temp (from the CollectorToServerMsr [OMAP3530:

merger node) 10/100Mbsp
NIC,LAN,
DBHost:
10/100Mbsp
NIC]

(4) Associate each data in transit asset with some
resource (i.e. components annotated with the HwRe-
source or HwDevice stereotypes) that contains
sender and receiver interfaces and a communica-
tion channel, which are involved in transmission of
the asset.

Table II demonstrates association of assets with the
components of the TSMC platform depicted in Figure 15.
The data asset is associated with the ADE7758 component
(the third rule of our guideline). All other data stationary
assets (rows 2 and 3 in Table II) are associated with the
NAND Flash or LPDDR components (i.e. memory units)

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

and ARM Cortex-A8 component (i.e. computing unit) as
it is instructed by the first guideline. Finally, following
the second guideline, the data in transit assets (row 4 in
Table II) are associated with 10/100 Mbps NIC compo-
nents of a TSMC device and of the operator server host
(not shown in Figure 15) and onto LAN, which is used as
a communication channel.

Step 3 of the enhanced asset elicitation technique in
Figure 12 involves an analysis of known threats given
the components of the associated platform. This task may
imply collaboration between security and system engi-
neers, but the use of threat repositories can facilitate this
task. For example, an engineer can query an ontology

Domain-specific modelling for security engineering

such as the one presented by Herzog et al., [8] potentially
extended with other expert knowledge. In our case, we use
knowledge acquired within the SecFutur project employ-
ing the CORAS method [32], combined with results of
threat analysis for embedded system platforms published
by Ravi et al. [33]. Table III shows the identified threats
and potentially violated security goals.

The last step of our enhanced asset elicitation technique
(step 4 in Figure 12) identifies a set of security properties to
be satisfied. The identification algorithm is implemented as
follows. The security goal of each earlier retrieved security
property (step 1 in Figure 12) is compared with the secu-
rity goal violated by the threat (Table III), which targets a
platform component associated with an asset of the consid-
ered security property (Table II). Now, if the security goal
of the security property is equal to the security goal poten-
tially violated by the threat, then this security property is
added to the set of security properties to be satisfied. In our
scenario, we have extracted the following set of security
properties to be satisfied:

® SPi: [StoredMeasurement, Integrity,
Prevention]

o SPy: [CollectorToServerMsr, Confi-
dentiality, Prevention]

SP; is formulated because of the knowledge about the
existence of an injection threat that potentially violates
integrity of the NAND Flash component (Table III) used
in association of the StoredMeasuement asset (Table II).
Similarly, SP, is identified because of the presence of an
eavesdropping threat that violates confidentiality of the
LAN component (Table III), which is used in association
of the CollectorToServerMsr asset (Table II).

4.3. Search for concrete SBBs

The set of identified security properties to be satisfied,
which are SP| and SP; for the metering scenario, is used
to find a set of concrete SBBs. This procedure has already
been described earlier [9]. In this section, we refine this
procedure with a cycle detecting algorithm. Furthermore,
we exemplify the results of a concrete SBB integration into
the functional system model.

Concrete SBBs for a particular domain, which are
described within a DSSM, are retrieved from the enriched
ontology executing the following query:

ConcreteSBB
and satisfies only [SecurityProperty]

and belongsTo only [Domain]

This query is formulated with the Manchester syntax
[34], where and and only are the syntax keywords denot-
ing sets intersection and universal quantifier, respectively.
The rest of words in the query are names of correspond-

M. Vasilevskaya et al.

Table lll. Unacceptable threats and violated security goals.
Platform Violated security
component Threat goal
NAND Flash Injection Integrity
LAN Eavesdropping Confidentiality

ing concepts and relations (Figure 6). Values in the square
brackets denote parameters of the query.

Execution of the previous query for SP; and SP>
retrieves two concrete SBBs for the StoredMeasurement
asset (namely SecFutur secure storage and SecFutur
TPM seali) and two concrete SBBs for the Collector-
ToServerMsr asset (namely AES and DES). Hence, due to
existence of several alternatives to secure the considered
scenario, an engineer needs to carry out additional analysis
to select one concrete SBB for each security property to be
satisfied. For example, this analysis may include investiga-
tion of the resource overhead introduced by concrete SBBs
(exploiting the platform models of concrete SBBs), their
effect on the original functionality of a system (exploiting
the functional models of concrete SBBs), cost of concrete
SBBs’ integration and so on. These needs are captured by
our process in Figure 10 as the Selection&integration of
concrete SBBs step. The work on formalisation of some
of these criteria is currently ongoing and not in the scope
of this paper. For illustration purposes, let us assume that
a system engineer decides to use the AES concrete SBB
to satisfy SP;. As a result, the system engineer is directed
towards a pair of Arctis blocks, namely AES Encryption
and AES Decryption.

As mentioned in Section 3.1, integrating a concrete
SBB may create new assets as expressed by the creates
and requires relations in our ontology. Hence, a further
search of concrete SBBs (i.e. a recursive application of
the above-mentioned query) is needed to fulfil the secu-
rity goals required for these new assets. For this query, the
security property is composed of the created asset and its
required security goal, namely the attribute requiredGoal
in Figure 6. The search is carried out within the domain
specified by the externalDSSM attribute in Figure 6. As a
result, search of concrete SBBs will continue until all secu-
rity goals of all created assets are fulfilled. Alternatively,
this search will lead to an empty set of SBBs and iden-
tify that a vulnerability remains in terms of an unprotected
asset.

Note that such an approach can lead to a cycle, because
an ontology reasoner exhaustively searches for any con-
crete SBB in a DSSM that satisfies the security property.
For example, the query can return the same concrete SBB
that has invoked it, if this concrete SBB satisfies the same
security property required by its created asset. To handle

¥ The concrete SBBs that start with the suffix ‘SecFutur’ are
currently under development within the SecFutur [4] European
project.

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

M. Vasilevskaya et al.

«system» Secure Metering Data Transfer

tsme L]
[start
c: Collector t: Transfer Handler d: AES Decryption
(S— dataOut: Cipherln:
HashMap Ciphertext Ciphertext

plainin: HashMap
HashMap [J]

e: AES Encryption
cipherOut:
Ciphertext

store:

dataln:
Ciphertext

ack:
boolean

Figure 16. Adapted model protecting the transfer of
measurement data.

such occurrences, we have developed an algorithm that
detects and resolves such cycle conditions.

This algorithm is based on constructing a directed graph
while the search for concrete SBBs goes on:

® Create a node for each found concrete SBB and asset.

® (Create a directed edge from a concrete SBB to an
asset if the concrete SBB creates the asset.

® (Create a directed edge from an asset to a concrete
SBB if the concrete SBB protects the asset.

Then, we use a cycle detection algorithm (one based
on identification of backward edges during execution the
depth-first search algorithm [35]) to detect cycles in the
constructed graph. If there are alternative paths ignoring
(by removing) the detected cycles, the search continues.
Otherwise, the engineer is notified of the remaining unpro-
tected asset.

A nice property of the previously selected Arctis blocks
(i.e. the AES pair) is that they already contain a protection
of the keys such that no new assets are created. Thus, we
can directly continue with the integration of these blocks.
Integration of the AES blocks (encryption and decryp-
tion) is easily carried out by arranging their instances
before and after the block t: Transfer Handler as shown
in Figure 16.

5. RELATED WORK

The challenge of integrating security for various types of
systems has been addressed by several approaches, for
instance, security patterns, security aspects, SecureUML,
AVATAR and UMLsec. Security patterns [36] capture
security solutions for common security challenges. Each
pattern describes a solution in a human-readable text,
which is sometimes augmented by UML diagrams to help
developers understand the pattern better. Hamid ez al. [37]
enforce the notion of security (and dependability) patterns
with formal validations. The aspect-oriented paradigm
identifies security as a crosscutting concern [38]. To deal
with this concern, security is encapsulated as aspects that
are weaved into the main specification. SecureUML [39]

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

Domain-specific modelling for security engineering

deals with design and verification of role-based access con-
trol systems. Pedroza et al. [40] propose a SysML-based
environment AVATAR to model and verify safety, authen-
ticity and confidentiality properties. UMLsec [1] is a UML
profile that is used to incorporate security-related infor-
mation such as fair exchange and secure communication
links in various UML diagrams and hence facilitates the
assignment of security requirements and their implementa-
tion. Compared with our method in which security-related
knowledge is captured by DSSMs, those approaches still
require in-depth security knowledge by the system devel-
oper. In contrast, we provide a bridge between security
domain experts and embedded domain experts.

With respect to integrating security into embedded sys-
tems, a number of model-based approaches were proposed.
Ruiz et al. [41] use a technique based on threats. Attacks
and threats are modelled to describe the capabilities of
intruders to do harm in a system. From the threat model,
security properties are identified. As opposed to Ruiz et al.
[41], our approach is based on formal modelling. Hamid
et al. [42] attempt to model trust properties as reusable
patterns for specific domains. Although that work shares
our aspirations for reusability, in this work, we consider
security concerns rather than trust relations. Similar to
our work, Eby et al. [43] adopt a DSM approach. They
propose to integrate a security analysis language (SAL)
into a domain-specific modelling language (DSML) for
embedded systems. However, they focus on security of
information flows. Saadatmand and Leveque [44] develop
a method for incorporating security aspects into the
ProCom component models. The authors consider two
security goals, namely confidentiality and authentication
and use annotations to identify those parts of a system
model where integration of security aspects is needed. In
contrast to this work, we have developed the enhanced
asset elicitation technique to identify vulnerable parts of a
system avoiding manual tagging of a system model.

Ontologies [45] are widely used to represent knowl-
edge as a set of domain concepts and their relations.
Similarly, the conceptual description of a domain through
metamodelling is performed while creating a DSL [3].
Both technologies suggest a range of benefits. For exam-
ple, one of the main benefit of the ontology technology
is its automated reasoning services, whereas DSM enjoys
wider adoption in development environments and tools.
Therefore, it is not a surprise that researchers try to find
a logical synergy to exploit advantages of both of these
technologies [46]. For example, Walter ef al. [47] in their
recent work employ ontologies to improve the practice
of DSM. The authors have developed a framework for
DSL that relies on the ontology reasoning services (e.g.
the inconsistency checker) to guide a designer and to val-
idate incomplete structural domain models. In our work,
we combine the ontology and DSM technologies to assist
development of security-enhanced system models from
different application domains. Additionally, we employ
DSM to constantly populate the used ontology with the
domain-specific security knowledge.

Domain-specific modelling for security engineering

Reuse (of code and models) has been a major area of
activity in software engineering, specially in the context of
product lines [48]. When security is considered as a fea-
ture, then our approach can be complementary to the tools
in that area by collecting knowledge about various features
documented through SBBs.

Finally, to place this work in the context of our own
earlier work [9], the description of the DSSM-ontology
based approach is new in this paper. The platform model
as an extension of the ontology, and the integrating plug-
in for MagicDraw extends the earlier asset analyser tool to
include all but one of the steps in Figure 10. An early draft
version of this work appeared as a deliverable 4.2 in the
SecFutur project [4].

6. CONCLUSION

In this paper, we have extended the reach of DSM and tool-
supported model-based engineering to the sphere of the
development of security-enhanced embedded networked
applications. Our approach builds on the basic premise
that models are viable means of communication for expert
knowledge. The work flow that we provide combines
earlier isolated islands of expertise: (i) general secu-
rity knowledge through ontologies, (ii) efficient model-
based development through reuse of domain-specific
models and (iii) systematic integration of functional and
extra-functional components with well-defined semantics
and tool support.

We support the proposed process with the developed
MagicDraw plug-in that integrates outcomes of differ-
ent tools used for different purposes, namely MagicDraw,
HermiT and Arctis. Our approach has been illustrated
using fragments of a model for a nontrivial case study,
that is, a real smart metering system currently under indus-
trial development. Ontologies have been demonstrated to
be capable of dealing with large data sets in a scalable man-
ner [49]. Moreover, we believe that the proposed work flow
is engineer-friendly. This is a hypothesis that is currently
evaluated extensively in the ongoing European project
SecFutur [4].

Further work will explore other important extra-
functional requirements that should be considered during
selection of security building blocks to be integrated,
which will be consequently incorporated in our process and
tool support. In particular, current work on utilisation of
the platform-related information of concrete SBBs (intro-
duced as the platform model concept), to support making
an informed decision on its integration into a system is in
progress. Also, refinement of the asset concept to address
different levels of importance will be a direction for future
works. Our endeavour follows the emerging trend of sys-
tematic treatment of security in embedded systems. There
is still a long way before getting this vision into every day
practice, but we believe that our work makes a small step
on this path.

M. Vasilevskaya et al.

REFERENCES

1. Jitjens J. Secure System Development with UML.
Springer-Verlag: Berlin Heidelberg, 2005.

2. Kraemer FA, Herrmann P. Automated encapsulation
of UML activities for incremental development
and verification, International Conference on Model
Driven Engineering, Languages and Systems (MoD-
ELS), LNCS, Denver, CO, USA, Springer, 2009;
571-585.

3. Kelly S, Tolvannen JP. Domain-Specific Modeling:
Enabling Full Code Generation. John Wiley & Sons,
Inc.: Hoboken, New Jersey, 2008.

4. The SecFutur project: design of secure and energy-
efficient embedded systems for future Internet applica-
tion. www.secfutur.eu, last visited May 2013.

5. Kraemer FA. Engineering reactive systems: a composi-
tional and model-driven method based on collaborative
building blocks. Ph.D. Thesis, Norwegian University
of Science and Technology, August 2008.

6. Kraemer FA, Slatten V, Herrmann P. Tool support for
the rapid composition, analysis and implementation
of reactive services. Journal of Systems and Software
2009; 82(12): 2068-2080.

FA. Engineering android applications
based on UML activities, Model Driven Engineer-
ing Languages and Systems (MODELS), LNCS,
Wellington, New Zealand, Springer Berlin /
Heidelberg, 2011; 183-197.

8. Herzog A, Shahmehri N, Duma C. An ontology of
information security. In Journal of Techniques and

7. Kraemer

Applications for Advanced Information Privacy and
Security. 1GI Global: Hershey, Pennsylvania, USA,
2007; 1-23.

9. Vasilevskaya M, Gunawan LA, Nadjm-Tehrani S,
Herrmann P. Security asset elicitation for collaborative
models, Model-Driven Security Workshop (MDSec)
in Conjunction with MoDELS, ACM Digital Library
(DL), Innsbruck, Austria, 2012; 7-13.

10. MagicDraw. www.magicdraw.com, last visited May
2013.

11. HermiT Reasoner. www.hermit-reasoner.com, last vis-
ited February 2013.

12. Acceleo. www.eclipse.org/acceleo/, last
February 2013.

13. ISO/IEC 12207:2008. Systems and software engineer-
ing — Software life cycle processes.

14. Object Management Group. UML Profile for MARTE:
modeling and analysis of real-time embedded sys-

visited

tems, version 1.1, June 2011. Document number:
formal/2011-06-02.

15. Kraemer FA, Herrmann P. Reactive semantics for
distributed UML activities. In Formal Techniques

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

www.secfutur.eu
www.magicdraw.com
www.hermit-reasoner.com
www.eclipse.org/acceleo/

M. Vasilevskaya et al.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

for Distributed Systems (FMOODS/FORTE), LNCS.
Springer-Verlag: Berlin, Heidelberg, 2010; 17-31.
Gunawan LA, Herrmann P, Kraemer FA. Towards the
integration of security aspects into system develop-
ment using collaboration-oriented models. In Interna-
tional Conference on Security Technology (SecTech),
Sl@zak D, hoon Kim T, Fang WC, Arnett KP
(eds), Communications in Computer and Information
Science. Springer: Berlin Heidelberg, 2009; 72—-85.
Gunawan LA, Kraemer FA, Herrmann P. A tool-
supported method for the design and implementation
of secure distributed applications. In Engineering
Secure Software and Systems (ESSoS), LNCS.
Springer-Verlag: Berlin, Heidelberg, 2011; 142-155.
Gunawan LA, Herrmann P. Compositional ver-
ification of application-level security properties.
Software and Systems
(essos), LNCS. Springer—Verlag: Berlin Heidelberg,
2013; 75-90.

Fenz S, Ekelhart A. Formalizing information secu-

In Engineering Secure

rity knowledge, ACM Symposium on Information,
Computer and Communications Security (ASIACCS),
ACM, 2009; 183-194.

Object Management Group. Unified modeling lan-
guage: superstructure, version 2.4.1, August 2011.
Document number: formal/2011-08-06.

Igbal MZ, Ali S, Yue T, Briand L. Experiences of
applying uml/marte on three industrial projects, Model
Driven Engineering Languages and Systems, (MoD-
ELS), Innsbruck, Austria, Springer, 2012; 642—-658.
Robert T, Perrier V. CoFluent methodology for UML.
cofluent design, white paper 2010.

Petriu DC. Model Driven Engineering for Distributed
Real-Time Systems: MARTE modelling, Model Trans-
formations and Their Usages, chap. Software Model-
based Performance Analysis. Wiley Online Library:
London: ISTE, 2010.

Vasilevskaya M, Nadjm-Tehrani S. Support for cross-
domain composition of embedded systems using
MARTE models. Submitted 2013.

Selonen P. A review of UML model comparison
approaches, Nordic Workshop on Model Driven Engi-
neering, Ronneby, Sweden, 2007.

Bendix L, Emanuelsson P. Diff and merge support for
model based development, Workshop on Comparison
and Versioning of Software Models (CVSM), Leipzig,
Germany, ACM, 2008; 31-34.

EMF Compare. www.eclipse.org/emf/compare/, last
visited April 2013.

SiDiff. http://pi.informatik.uni-siegen.de/sidiff/, last
visited May 2013.

Georg G, Anastasakis K, Bordbar B, Houmb SH,
Ray I, Toahchoodee M. Verification and Trade-Off

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Domain-specific modelling for security engineering

Analysis of Security Properties in UML System Mod-
els. IEEE Press: USA, NJ, 2010.

OMAP3530. www.ti.com, last visited Feburary 2013.

ADE7758: poly phase multifunction energy metering
ic with per phase information. www.analog.com, last
visited Feburary 2013.

Braber F, Hogganvik I, Lund MS, Stglen K, Vraalsen
F. Model-Based Security Analysis in Seven Steps — a
Guided Tour to the CORAS Method. Springer-Verlag:
Berlin and Heidelberg, 2007.

Ravi S, Raghunathan A, Chakradhar S. Tamper resis-
tance mechanisms for secure embedded systems, Inter-
national Conference on VLSI Design, Mumbai, India,
IEEE, 2004; 605-611.

Ontology Language Manchester Syntax. www.w3.org/
TR/owl2-manchester-syntax/, last visited April 2013.

Cormen TH, Stein C, Rivest RL, Leiserson CE. Intro-
duction to Algorithms, 2nd edn. The MIT Press and
McGraw-Hill Book Company: Cambridge, MA, USA,
2001.

Schumacher M, Fernandez-Buglioni E, Hybertson D,
Buschmann F, Sommerlad P. Security Patterns: Inte-
grating Security and Systems Engineering. John Wiley
& Sons: West Sussex, England, 2005.

Hamid B, Giirgens S, Jouvray C, Desnos N. Enforc-
ing S&D pattern design in RCES with modeling and
formal approaches, ACM/IEEE International Confer-
ence on Model Driven Engineering Languages and
Systems (MoDELS), Wellington, New Zealand, 2011;
319-333.

Georg G, Ray I, Anastasakis K, Bordbar B,
Toahchoodee M, Houmb SH. An aspect-oriented
methodology for designing secure applications, 2009.

Lodderstedt T, Basin D, Doser J. SecureUML: a UML-
based modeling language for model-driven security,
International Conference on the Unified Modeling
Language (UML), Dresden, Germany, 2002; 426-441.
Pedroza G, Apvrille L, Knorreck D. AVATAR: a
SysML environment for the formal verification of
safety and security properties, [EEE International
Conference on New Technologies of Distributed Sys-
tems (NOTERE), 2011.

Ruiz JF, Harjani R, Mana A, Desnitsky V,
Kotenko I, Chechulin A. A methodology for the
analysis and modeling of security threats and attacks
for systems of embedded components, Euromicro
International Conference on Parallel, Distributed and
Network-Based Processing (PDP), Pisa, Italy, IEEE
Computer Society, 2012; 261-268.

Hamid B, Desnos N, Grepet C, Jouvray C. Model-
based security and dependability patterns in RCES
— the TERESA approach, International Workshop on
Security and Dependability for Resource Constrained

www.eclipse.org/emf/compare/
http://pi.informatik.uni-siegen.de/sidiff/
www.ti.com
www.analog.com
www.w3.org/TR/owl2-manchester-syntax/
www.w3.org/TR/owl2-manchester-syntax/

Domain-specific modelling for security engineering

43.

44.

45.

Embedded Systems (S&D4RCES), Vienna, Austria,
ACM, 2010.

Eby M, Werner J, Karsai G, Ledeczi A. Integrating
security modeling into embedded system design, IEEE
International Conference and Workshops on the Engi-
neering of Computer-Based Systems (ECBS), Tucson,
Arizona, USA, 2007; 221-228.

Saadatmand M, Leveque T. Modeling security aspects
in distributed real-time component-based embedded
systems, International Conference on Information
Technology: New Generations (ITNG), Las Vegas,
Nevada, USA, 2012; 437-444.

Chandrasekaran B, Josephson JR, Benjamins VR.
What are ontologies and why do we need them? In
Intelligent Systems. IEEE: NJ, USA, 1999; 20-26.

46.

47.

48.

49.

M. Vasilevskaya et al.

Gasevic D, Djuric D, Devedzic V. Model Driven
Engineering and Ontology Development, 2nd edn.
Springer-Verlag: Berlin Heidelberg, 2009.

Walter T, Parreiras FS, Staab S. An ontology-
based framework for domain-specific modeling. Soft-
ware & Systems Modeling 2012: 408-422, DOI
10.1007/s10270-012-0249-9,.

Clements P, Northrop L. Software Product Lines:
Practices and Patterns, The SEI Series in Software
Engineering. Addison-Wesley Longman Publishing
Co., Inc.: Boston, MA, USA., 2001.

Urbani J, Maassen J, Drost N, Seinstra F, Bal H. Scal-
able RDF data compression with MapReduce. Con-
currency and Computation: Practice and Experience
2013: 24-39, DOI: 10.1002/cpe.2840,.

Security Comm. Networks (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/sec

	Integrating security mechanisms into embedded systems by domain-specific modelling
	INTRODUCTION
	CASE STUDY AND BACKGROUND
	Smart metering application
	Model-based engineering with SPACE
	Ontology engineering
	MARTE profile

	DOMAIN-SPECIFIC SECURITY KNOWLEDGE
	Ontology development
	UML representation of the ontology
	The process to create DSSMs and SBBs

	DOMAIN-SPECIFIC SECURITY PROCESS
	Association with security domain knowledge
	Enhanced asset elicitation
	Rules for asset elicitation on the functional model
	Refinement of elicited assets utilising the platform model

	Search for concrete SBBs

	RELATED WORK
	CONCLUSION

