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Abstract—Energy consumption is becoming the Achilles’ heel
of the mobile user quality of experience partly due to undisci-
plined use of the cellular (3G) transmissions by applications.
The operator infrastructure is typically configured for peak
performance, whereas during periods of underutilisation the
handsets pay the price by staying in high energy states even if
each application only uses a fraction of the maximum available
bandwidth.

In this paper we promote a bi-radio scenario where instead
of independently using own cellular connections, several users
share a single cellular link offered by one member of a coalition
(a rotating aggregator). We present Watts2Share, an architecture
for energy-aware traffic consolidation whereby group members’
data flows transmitted through a second radio (e.g., WiFi)
are aggregated by the aggregator and retransmitted through
the cellular link. Through careful and repeatable studies we
demonstrate that this scheme saves up to 68% of the total
transmission energy in handsets compared to a pure 3G scenario.
The studies are based on a wide range of real traffic traces and
real cellular operator settings, and further illustrate that this
scheme reduces the overall energy by reducing the signalling
overhead, as well as extending the lifetime of all handsets.

Index Terms—traffic consolidation; bandwidth sharing; 3G;
WiFi; SoftAP;

I. INTRODUCTION

With the advent of computationally powerful handsets
we are finally entering the era of mobile services anytime
anywhere. True mobility will increasingly be supported by
widespread deployments of the cellular and vehicular infras-
tructures, as opposed to the fixed infrastructure provided by
the WiFi access points.

The growing wave of mobile data communication has two
extreme consequences: (1) unforeseen data volumes make
the mobile operators eager to squeeze every bit of possible
capacity out of their infrastructure, (2) a mass diversity of
applications and platforms create an ecosystem that is hard to
optimise from every conceivable perspective.

A user that has access to data/services anytime anywhere
will focus on interactions with the application, expecting to
communicate whenever needed without caring about battery
lifetime. However, the consequence of the cellular operator’s
capacity optimisation, caring for maximum loads, becomes a
high tax on the handsets’ transmission energy during under-
utilisation. More specifically, the user is left in an undesirable
situation: the handset’s hardware vendor will optimise the use
of their energy much tighter than earlier, but their battery
is wasted by the undisciplined use of data transmissions in
the cellular network, using apps that were not specifically

optimised for a given radio interface, or operator setting [1],
[2].

In this paper we consider the energy saving potential for
users during periods in which the high energy (cellular)
network is underutilised, and consider a hybrid solution that
uses access to a low energy radio interface for local commu-
nication. While hybrid solutions have earlier been proposed
for increasing the quality of service or extending the reach of
a cellular network during overloads [3]–[5], we believe that a
hybrid scheme to minimise the energy footprint for multiple
users during underloads is a novel approach.

A typical 3rd generation cellular (3G) bandwidth is not
fixed. Neither is the claim of a user on that bandwidth over
time. However, large data traffic studies show that applications
used by a single user do not always fully utilise the allocated
channel bandwidth [6]. We consider the case where a user
group can use a common scheme for traffic consolidation,
and show that during periods of underutilisation they all save
energy compared to each user connecting to a 3G network
independently. The common scheme is realised by an archi-
tecture for Watts2Share: nodes form coalitions, an aggregator
collects the other nodes’ sporadic traffic using a low energy
radio interface, and then the aggregator relays the coalition
traffic via the high energy interface. The gains in energy build
on maximally using the data transmission states while being
connected to a 3G network.

The contributions of this paper are as follows. (1) We
propose a hybrid architecture for a traffic consolidation scheme
called Watts2Share, (2) exploit a tool needed to efficiently
measure and quantify the footprint for a data traffic trace in
this scheme (the EnergyBox), and (3) running experimental
studies on a range of applications on normal user smartphones,
illustrate that the cooperative scheme pays off.

The paper starts by clarifying the underlying reasons for the
3G communication energy overhead even during underloads
in section II, then introduces the WiFi communication energy.
After the background, the Watts2Share scheme is presented in
section III and evaluated in section IV. Section V is devoted to
review of related works, and section VI concludes the paper.

II. BACKGROUND

This section provides the background on the mobile handset
energy consumption due to packet transmission. We review
the typical energy consumption when transmitting on a 3G
cellular interface, and then go on to describe the handset states



when transmitting with WiFi. The measurement methodology
adopted is similar to earlier works (3G [7] and WiFi [8]).

A. Energy consumption of 3G

The energy consumption of the user equipment (UE) in 3G
is mostly influenced by the Radio Resource Control (RRC)
and the Radio Link Control (RLC) protocols. These protocols
control the radio resource allocation by the Radio Network
Controller (RNC) at the network operator side. According to
RRC the UE can be in different states which vary in power
consumption and performance in terms of response time and
data rate: Dedicated Channel (DCH), Forward Access Channel
(FACH), and Paging Channel (PCH), in decreasing order.
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Fig. 1: Power profile of 3G and RLC buffer thresholds.

Fig. 1 shows an example plot for power consumption levels
of the states in a handset when connected to TeliaSonera
operator network when sending a burst of UDP packets. When
the UE is in PCH, it can be paged with the lowest energy drain,
but no data can be sent since the UE has no channel allocated.
Before sending the UDP packets, signalling is performed to
establish a dedicated channel connection and move from PCH
to DCH (1-2s in Fig. 1).

The state transitions to higher performance states are trig-
gered observing the RLC data buffers as an estimate of traffic
volume. The UE reports to the RNC the observed traffic
volume and if the buffer occupancy is more than a fixed
threshold, the transition is triggered. The table in Fig. 1 shows
the measured values for the uplink and downlink RLC data
buffer thresholds [7].

Inactivity timers are used to trigger transitions to lower
performance states. When the UE is in the DCH state for
a duration of T1 with small or no data transmission, the RNC
releases the dedicated channel and switches the UE to FACH
(7s in Fig. 1). Another timer (T2) controls the transitions
from FACH back to PCH. Inactivity timers cause an energy
overhead known as energy tail due to the UE remaining in
a high energy state while not transmitting anything [9]. This
makes the energy consumption dependent on the transmission
data pattern, where a single packet can trigger a move to DCH
and consume both energy tails.

Fast dormancy is a mechanism that allows the UE to signal
the RNC the desire to switch to a low power state before the
inactivity timeout. Some networks implement a low activity

mechanism in DCH to release the transport channel and move
to FACH when there is low traffic [10], and some do not.

B. Energy consumption of WiFi

In contrast to the 3G case, the WiFi station (the client
device) is in control of the different WiFi states. The station is
in the Constantly Awake Mode (CAM) when it has the power-
saving features disabled experiencing the best performance.

The IEEE 802.11 standard defines a Power Save Mode
(PSM), which allows the stations to switch to low power mode
during predefined periods of time while not transferring any
data. The access point (AP) buffers frames for the sleeping
clients and uses the Traffic Indication Map (TIM) bitmap to
indicate the presence of downlink frames at every beacon
interval (typically 100 ms) to the clients. The client wakes up
periodically (using multiples of the beacon interval) and sends
a Power Save Poll (PS-Poll) message to the AP to proceed with
the reception of each buffered frame. Fig. 2 (left) shows the
PSM implementation in two smartphones and their wake up
interval.
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Fig. 2: WiFi energy consumption in different handsets.

Recent smartphone models implement a mechanism named
Adaptive PSM to overcome the overhead and latency draw-
back for using the PS-Poll mechanism [11]. The client
switches between the CAM and PSM modes based on heuris-
tics (e.g., traffic inactivity period or screen on/off). Fig. 2
(center and right) shows that after a predefined inactivity
timeout (δ) without packet transmission, the station switches
back from CAM to PSM. This δ timeout creates an energy
tail in a similar way as in 3G.

Related studies [12], [13] show that previous generation
devices implement longer δ timeouts (e.g., 1.5 seconds for
HTC Magic). Moreover, some drivers also implement two
packets per second thresholds (Up and Down) that trigger
the PSM-CAM and CAM-PSM transitions respectively [14].

To sum up, adaptive PSM induces a large impact on energy
consumption of a WiFi station depending on the data pattern.

III. WATTS2SHARE

A Watts2Share scenario is composed of several nodes with
the goal of reducing their cellular energy consumption making
use of heterogeneous networks. The actors are nodes equipped
with two radio interfaces, namely cellular and short-range, that
create 1-hop (star) coalitions using the short-range interface.



While reducing energy, we aspire to not reduce the users’
quality of experience. Given n 3G users where each user
i requests a part of the available maximum 3G bandwidth
at time t (Bi(t) and Bmax(t) respectively), we assume that
the cumulative bandwidth claim stays under a fraction φ of
maximum bandwidth during the regular Watts2Share operation
time, where φ is a configurable parameter of the system:

n∑
i=1

Bi(t) < Bmax(t) · φ (1)

Traffic consolidation in Watts2Share is designed as follows:
the nodes can take two different roles, aggregator and regular
coalition node. Among the nodes in the coalition, the aggrega-
tor acts as traffic relay, i.e., it forwards the traffic received from
the other nodes via the short-range interface, using the cellular
interface. Only one node can act as aggregator at a time. Fig.
3 exemplifies the general setup composed of 3 Watts2Share
nodes using 3G and WiFi. Node 1 has the aggregator role
and node 2 and 3 are regular coalition nodes. The aggregator
role is shared among the nodes over time by performing role
rotation.
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Fig. 3: Watts2Share architecture.

Fig. 3 shows that Watts2Share’s design resides between the
applications and the wireless interface, acting as a middleware
component. Watts2Share is composed of 2 main components:
scheduler and manager.

The scheduler is in charge of scheduling the traffic traces
of the different nodes. In a regular coalition node, it simply
schedules the application data using the short-range interface.
In the aggregator, the scheduler performs two different tasks:
(1) it takes care of the coalition nodes’ traffic via the short-
range interface, and (2) sends and receives the coalition nodes’
and its own cellular data traffic. Since the aggregator acts as
the main 3G sender and receiver and coordinates the short-
range communication, the other coalition nodes are able to
use power saving mechanisms when sending or receiving data
reducing their energy consumption.

The manager takes care of the coalition creation and the
aforementioned role rotation. The main purpose of the role

rotation is to balance the energy consumption of the aggregator
among all the coalition nodes. The manager thus performs the
aggregator election (in a distributed manner) before switching
roles.

When evaluating this architecture in section IV, we employ
an instance of this architecture based on 3G-WiFi as a proof
of concept. However, the approach is more general and can
be applied to other (high/low energy) radio contexts. Our
prototype simulates a simple scheduler by aggregating the
traffic received from the short-range interface. This merges
the traffic traces from all the nodes and bridges the short-range
and cellular interface to perform traffic forwarding. Regarding
role rotation, it implements a simple role rotation scheme
where the aggregator role rotates every TR in a round-robin
fashion to balance the energy consumption among the current
coalition nodes. The modular approach in the architecture
allows plugging in more sophisticated decision algorithms
based on energy levels or utility functions.

A. Energy consumption of Watts2Share

In this section we define metrics for the energy consump-
tion of the two scenarios: (1) all nodes connected via their
cellular interface in a standard scenario (ES), and (2) in the
Watts2Share scenario (EW ).

Consider a set of nodes N = {n1, ..., nk} for both scenarios.
The cumulative energy consumption of the standard scenario
is the sum of the cellular energy consumption of each node,

ES =

k∑
i=1

Ec
i (2)

where Ec
i is the energy consumed by ni using the cellular

interface.
For Watts2Share, the nodes can adopt two roles, coalition

node and aggregator. We define EA to be the energy consumed
by the aggregator and Ew

i the energy consumed by coalition
node i using the WiFi interface. EN is the sum of the energy
of all the coalition nodes. Therefore, the energy consumption
of the Watts2Share system is

EW = EA + EN = EA +
∑

[i∈{1,k},i6=A]

Ew
i (3)

The energy consumption of the aggregator is the sum of
the cellular and WiFi consumption EA = Ec

A + Ew
A , which

depends on its own traffic and the traffic generated by the
other nodes. The aggregator consumes energy for sending
(own and coalition) uplink data in an aggregated manner,
as well receiving corresponding downlink packets. Moreover,
it has the extra cost of using the short-range interface for
receiving/relaying data from/to the coalition nodes. We define
the WiFi cost of acting as the aggregator as having the short-
range interface always on in a high state, implying a worst
case assumption. However, recent works [15] have shown that
a software access point can sleep up to 60% of the time, which
would reduce this cost for the aggregator.



IV. EVALUATION

This section describes the experimental settings and the
quantitative evaluation of the basic Watts2Share architecture.

A. Experimental settings and methodology

In order to define evaluation scenarios that are within the
scope of the paper we need (1) to have an idea what the
maximum bandwidth in the cellular network that we are
using is, and (2) randomly select real data traffic in different
nodes so that the assumption under section III (Equation 1) is
valid. That is, the real data traffic traces should collectively
use less than a proportion (φ) of the maximum available
bandwidth. To determine the maximum 3G bandwidth at
this particular location for an operator, we performed several
downloads/uploads at different times of the day during a week.
The maximum registered data rate was 6.23 Mbps and 1.32
Mbps for downlink and uplink respectively. The downlink
bounds the maximum bandwidth of the system since most
cellular data is downlink [16].

For our experiments, we set the threshold for the maximum
available bandwidth to be a fraction φ = 0.85 of the maximum
registered. We measure and compute the maximum bandwidth
during intervals of 50 ms, which provides higher granularity
than measuring the maximum bandwidth over 1 second. The
resulting limit is 264 kbits per 50 ms slot (or 5.3 Mbps).

We collect real packet level data traces of three different
users using Android smartphones connected to a 3G network
over the period of two weeks. The traces were collected
running tcpdump in the Android devices. Each user performed
her regular usage of the smartphone in terms of used ap-
plications (the users installed the applications that they use)
and interaction with the smartphone. The traces contain both
traffic created by the system applications and the user installed
applications. The data traces contain traffic from commonly
used applications like WhatsApp, Skype, Facebook, Angry
Birds or Spotify that capture different real traffic patterns (the
different users employ different applications). For example, a 5
minute fragment of a trace can contain the user interacting with
Facebook for 1 minute, sending two instant messages using
WhatsApp 2 minutes after, plus the rest of applications and
system services running in background that also transfer data
[7]. Then, we randomly select fragments of the traces that fall
in the scope of this Watts2Share evaluation, i.e., collectively
use up to 85% of the maximum bandwidth at any time.

The transmission energy consumption is calculated using
EnergyBox. Given the 3G network parameters specified at
operator level, EnergyBox derives the 3G states of the UE
employing trace-based iterative packet-driven simulation. The
total energy consumption is calculated by associating the UE
specific power levels with the emulated intervals in each
state, and integrating them over time. For WiFi, it simulates
the the adaptive power save mode mechanism defined at the
driver level of a WiFi device. EnergyBox has been evaluated
against physical energy consumption measurements showing
an average accuracy of 98% [17]. For the settings of the
EnergyBox we used the 3G parameters of a real operator and

the adaptive PSM parameters for the Galaxy SII driver. We
used the power values previously observed in our measurement
study in section II.

More specifically, for 3G we set T1=5.1 s and T2=12 s and
the RLC buffer thresholds for FACH-DCH = 515 bytes. The
state machine directly moves to DCH for any data transmis-
sion. We disabled the low activity mechanism described in
section II and we did not use Fast dormancy. The power levels
used were 612, 416, and 17 mW for DCH, FACH, and PCH
respectively.

For WiFi we set Up = 1, Down = 1 and δ = 220 ms.
The power level for the states were: 12, 240, and 400 mW
for PSM, CAM, and HighCAM respectively. The aggregator
power level due to interacting with the WiFi coalition nodes
was set to 346 mW based on our physical power measurements
of the WiFi interface of a software access point (SoftAP).
We run the SoftAP functionality in different devices (Sony
Xperia Arc and Galaxy Nexus) and perform the measurements
as described in section II. The measured average power values
were 346 and 238 mW for the Xperia Arc and Galaxy Nexus
respectively. Then, we selected the highest average power
value corresponding to the worst case (Xperia Arc) for our
tests.

For the following results, we calculate the energy con-
sumption of the standard scenario (ES) and the Watts2Share
scenario (EW ) as specified in section III-A.

B. Watts2Share with two nodes

We start the evaluation by illustrating the most basic
Watts2Share scenario composed of 2 nodes against the sce-
nario where both nodes use their 3G interface (standard
scenario). One node uses Google Translate whereas the other
one checks the weather. The purpose of this study is to
get a qualitative sense for the three different components of
Watts2Share compared to the standard scenario.

The upper part of Fig. 4 shows the aggregate energy
consumption of both nodes using their 3G and the individual
consumptions. Node 2 stays in DCH state for most of the time,
moving to FACH two times: 17 s and 31 s. Node 1 has similar
behaviour, spending more time in DCH than node 2.

The lower part of Fig. 4 shows the aggregate energy con-
sumption of two Watt2Share nodes. Node 1 is the aggregator
and its energy consumption is composed of the short-range
interface (aggregator role) plus forwarding both nodes’ traffic
via 3G. Node 2 is a coalition node that uses adaptive PSM in
WiFi. The aggregator role results in node 2 moving to CAM
only during packet transmissions. While not shown here, the
choice of the aggregator in this scenario is not significant to
our point (a similar chart would be shown in a reverse setting
for the Watts2Share part).

The energy consumption of the standard scenario is 42.05
Joules, whereas Watts2Share consumes 32.29 J. Despite the
high energy consumption of the aggregator, Watts2Share saves
23% of the energy for the same traffic. The aggregator
consumes 44% more than what it would consume in the
standard scenario. The standard scenario is expensive in terms
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Fig. 4: Energy consumption of two 3G nodes compared to the
same nodes using Watts2Share.

of energy due to the high energy consumption of 3G even
for small amounts of traffic, where the energy tails become
an important overhead. Instead, Watts2Share employs traffic
consolidation by aggregating the traffic of both nodes into a
single 3G stream, getting closer to the maximum traffic load
where 3G becomes more energy-efficient. It is worth noting
the coalition node spends 93% of the time in PSM, whereas in
the standard scenario it does not even downswitch to the PCH
state. These reasons balance the high cost of the aggregator
leading to overall energy savings.

C. Increasing number of nodes

In this section we show that Watts2Share’s traffic consolida-
tion technique benefits from increasing the number of coalition
nodes as long as the assumptions on the scope (below max 3G
bandwidth) holds. We study the energy savings of Watts2Share
when increasing the number of nodes.

We use the previously described real packet traces in
fragments of 5 minutes (chunks) to emulate traffic originated at
several nodes (up to 8) and obtain the energy savings. Then, we
repeat every experiment 10 times using different data chunks,
and present the mean and the variance. The results in Fig. 5
are normalised to the average energy consumption for the 2
node case of the standard scenario.
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Fig. 5: Energy savings in relation to number of nodes.

Fig. 5 shows that in the standard scenario, the energy
consumption steadily increases with more nodes. Each node
contributes with a high energy consumption due to switching
to DCH and FACH even though the data traffic is low. The high
variance describes the high energy consumption difference for
different traffic chunks that may include different applications
with different data requirements.

Fig. 5 shows that the energy consumption of Watts2Share
barely increases when adding more coalition nodes and the av-
erage energy savings are significantly increased from 12% for
the 2 nodes Watts2Share, to 59% for the 8 nodes Watts2Share.
Note that the main contributor to the energy consumption of
Watts2Share, the aggregator, is already part of the two nodes
Watts2Share, thereby achieving an almost linear saving after
this number of nodes (and up to the maximum 3G load). The
variance is lower than in the standard scenario since the WiFi
consumption difference for different traces is smaller than for
3G.

The aggregator spends almost 100% of the time in DCH
even with small number of nodes where the bandwidth load
is far under the maximum bandwidth. Therefore, the more
nodes we add, the closer we get to fully utilising the available
bandwidth for the same energy consumption, thus achieving
higher energy proportionality. However, the number of nodes
is bounded by their aggregated bandwidth claim and the
current available bandwidth at the aggregator node. Moreover,
the greater the energy consumption difference between 3G and
WiFi for a coalition node, the higher the aggregate energy
savings become.

D. 3G signalling

In this section we illustrate that as well as saving energy for
the handsets, Watts2Share has benefits for the cellular operator.
Apart from reducing the 3G interferences due to reducing
the number of connected nodes, we show that Watts2Share
reduces the amount of signalling messages introduced by the
RRC state transitions. In the normal scenario, every node
performs the corresponding signalling with the RNC for
allocating the physical channels for every state transition. For
example, a single FACH-DCH state transition is associated
with 10 message signalling transmissions [18]. When the
traffic load is not high, state transitions are frequent, creating
great signalling overhead.

Our approach to show the reduced signalling is as follows:
for the experiments performed in section IV-C we count the
number of state transitions recorded by the 3G EnergyBox.
We report the average number of state transitions over the 10
experiments as well as the variance. The results of Fig. 6 are
normalised by dividing the number of state transitions by the
case of 2 nodes in the standard 3G scenario.

Fig. 6 shows that, as expected, the number of state tran-
sitions of the nodes increases with more nodes connected
directly to the 3G network. The number of transitions depends
on the data pattern and can vary a lot from node to node (as
vivid in the variance). However, in Watts2Share, the number
of state transitions is fairly constant since the aggregator
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Fig. 6: State transition reduction of Watt2Share.

spends most of the time in DCH state. When the number of
nodes is more than 3, the only state transitions experienced
by the aggregator are between DCH and FACH and rarely
downswitching to PCH. This leads to an average reduction of
state transitions ranging from 46% to 89% depending on the
number of nodes.

E. System lifetime

The energy burden of the aggregator should be balanced
among the coalition nodes with a role rotation scheme. In order
to study the impact of the rotation scheme, and its variation
depending on frequency of rotation, we performed a number
of 4 node experiments with TR set to 5 minutes for the round
robin rotations. We plot the energy drain for each node as
well as the system lifetime. Let’s define system lifetime as the
interval during which all four nodes are operational. The nodes
start with different energy levels randomly set to simulate a
real-life scenario and drain their energy during the experiment
time depending on their transmissions (x and y axes in Fig. 7
respectively). The starting energy of the nodes is normalised
to the energy of node 1.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

1

1.2

Time (seconds)

N
or

m
al

is
ed

 e
ne

rg
y

 

 
Node 1  Standard  3G
Node 2  Standard  3G
Node 3  Standard  3G
Node 4  Standard  3G
Node 1  Watts2Share
Node 2  Watts2Share
Node 3  Watts2Share
Node 4  Watts2Share

Fig. 7: System lifetime of Watts2Share.

Fig. 7 shows that the system lifetime within the standard
scenario is bounded by node 2, which runs out of energy after

2816 seconds. Node 4 is the last node running out of energy
after 4086 seconds. Watts2Share extends the system lifetime
by 73%: node 1 is the first node running out of battery in
Watts2Share after 4890 seconds. The other nodes have even
longer lifetime.

Fig. 7 also depicts the impact of being an aggregator. Node 1
starts being the aggregator for 5 minutes, followed by node 2.
The aggregator consumes much more energy than the coalition
nodes which is shown by a steeper drop in energy. The fact
that the aggregator spends most of its time in the DCH state
causes the energy to drop sharply. When node 1 switches from
aggregator to coalition node, it consumes only using WiFi,
which makes the energy drain much smaller. This behaviour
is similar for all nodes.

Note that different nodes experience different energy sav-
ings. For example, node 1 is not the one with the least energy
in the Watts2Share scenario, but it runs out of energy first.
The value of TR greatly impacts the energy balancing. Next
section discusses how to set the value of TR to balance the
energy consumption among the coalition nodes.

F. Role rotation overhead

There is a trade-off when choosing the TR parameter:
shorter rotation times allow a fairer distribution of the co-
ordination overhead, but also increase the overall experienced
overhead since the rotation itself has an energy footprint (CPU
as well as messaging).

In order to quantify the switching overhead in terms of
message exchanges needed, we would need to analyse the
algorithms for rotation. As a first step, we measure the energy
consumption and time taken to switch on/off the SoftAP
functionality in a modern smartphone (Sony Xperia Arc).
Activating the SoftAP takes 2.98 seconds and consumes 0.23
Joules.

The energy overhead is defined as the collective energy
spent by all nodes for each rotation of the aggregator role. The
time overhead relates to the time that the nodes collectively
spend for the purpose of rotating the aggregator role. When a
rotation occurs, two nodes switch their role: the aggregator and
a coalition node. These two nodes experience a time overhead
in terms of disruption time, when they cannot communicate
since they are rotating their role. The other coalition nodes
perform a handover to the new aggregator.

Fig. 8 shows the impact of selecting TR on the total
activation energy and time overhead for the scenario of 4-node
Watts2Share from section IV-E. We select TR values that range
from 1 minute to 15 minutes. The time and energy overhead
values are normalised to the duration of the experiment (5300s)
and the node with the lowest initial energy (1150 Joules),
respectively.

Fig. 8 shows that for short TR the time and energy overheads
are 5 and 3.5% respectively. However, when increasing the TR
to higher values the overhead experiences a visible decrease,
settling around 1% when TR is 5 minutes, the value used
in earlier sections. The time overhead seems more significant
than the energy overhead since the handsets seem to be
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more optimised towards low energy SoftAP operation than
performance degradation from frequent switching.

Selecting a TR value depends also on the period of time that
the nodes collaborate using Watts2Share. When the nodes form
Watts2Share coalitions for longer intervals, greater TR values
can be adopted to further decrease the overhead. However,
for short periods, a shorter TR is suggested for balancing the
energy consumption over the nodes.

G. Other coalition overheads

So far we focused on showing the benefits of Watts2Share
in terms of energy savings. There are of course some costs as-
sociated with the scheme including coalition formation energy
costs and role rotation energy cost. While the role rotation cost
for an aggregator swap was presented in section IV-F, the other
element needs more extensive studies in a physical testbed.

A preliminary implementation of Watts2Share in a modern
Android device (LG Nexus 4) shows the radio energy cost
for a single coalition formation at the client and the aggrega-
tor respectively [28]. The coalition formation is divided in
three stages: SoftAP activation for the aggregator, parame-
ter exchange (e.g., network configuration), and connection.
The measurements indicate 0.6 Joules over 1.6 seconds for
SoftAP activation for the aggregator, while the client is in
idle consuming 0.02 Joules. This is followed by a parameter
exchange between the client and the aggregator which costs
0.3 Joules over 0.8 seconds at the client, and 0.26 Joules for the
aggregator1. Finally, 0.5 Joules over 2 seconds are consumed
for the connection at the client, and 0.7 Joules for each client
connection at the aggregator. The total process is 4.2 seconds
and costs 0.82 and 1.56 Joules to the client and the aggregator
respectively.

These measurements indicate a promising potential with a
significant net saving by Watts2Share in underutilised scenar-
ios.

V. RELATED WORK

Forming ad hoc configurations as opposed to using an
existing infrastructure is a massively studied topic [19], [20].
Energy consumption is known to be the Achilles’ heel of

1Since the aggregator has the SoftAP activated, this consumes almost as
much as the client.

ad hoc communication [21], [22]. The aim of Watts2Share
is to reduce the overall footprint of a group by avoiding the
continuous listening mode of the WiFi connected nodes, and
using an aggregator to reach the cellular infrastructure.

From here on, we categorise the main body of related
work into two areas: energy consumption studies and energy
saving techniques for wireless networking. Some studies and
proposals consider infrastructure-centric approaches for 3G
[23] and WiFi [13], whereas our focus is on studying the
energy consumption at the user side.

Energy saving techniques: we further divide the related
works into energy saving techniques at a single handset level
or considering a combination of handsets. Within one handset,
Balasubramanian et al. [9] introduce the concept of Delay
Tolerant Applications (DTA) via the intuition that to reduce
energy consumption some applications can defer their trans-
missions. TailEnder performs bursty transmissions attempting
to reduce the number of state transitions. Our previous work
[7] refines the above work by reducing unnecessary state
transitions and energy consumption. Several works employ
Fast Dormancy to reduce the energy consumption of cellular
traffic [24], [25]. Schulman et al. [26] explore the impact of
the network coverage on the energy consumption.

For WiFi, some works [14], [27], [29] focus on optimising
the PSM operation for different traffic loads. DozyAP [15]
focuses on reducing the energy consumption of WiFi tethering
and shows that the WiFi interface of a SoftAP can sleep
up to 88% of the time. Camps-Mur et al. [30] study and
propose power management protocols to reduce the energy
consumption of SoftAPs using WiFi Direct.

The above works are orthogonal to Watts2Share and they
can be implemented either in the aggregator to reduce 3G
energy consumption, or for the coalition nodes in the WiFi
case to achieve higher energy savings.

When considering energy saving techniques for multiple
nodes, Cool-Tether [31] is a WiFi hotspot focused on serving
Web pages using the cellular connection from smartphones.
A cloud-based server fetches and reduces the data of the Web
page requests and sends it in a single burst to a certain number
of smartphones that act as forwarders speeding up the transfer.
Their work offloads the energy burden of the WiFi AP from
mobile phones to a laptop using reverse-infrastructure mode.
Our work maximises the system lifetime by only considering
the limited energy reserve of mobile nodes with using no
cloud-server assistance. Moreover, our work is evaluated using
real traffic generated by a set of applications and real user
interactions.

Yoo et al. [32] present a cooperative approach to reduce
the energy consumption of WiFi creating Bluetooth Personal
Area Networks (PAN). Watts2Share has a similar aspiration
but exploits the knowledge of how the aggregated data trans-
mission taxes the recurring (rotating) relay node’s energy in a
3G context.

Perruci et. al [33] propose a cooperative mobile web brows-
ing approach combining Bluetooth and cellular networks to
decrease Web download time. In their architecture, two nodes



(master-slave) are interested in the same data, and therefore the
nodes download parts of the Web and share it afterwards. In
the same context, Perrucci et al. [34] also introduce a TDMA
based MAC layer scheme to improve the energy efficiency of
cooperation in wireless communication. Watts2Share differs in
that each node is interested in its own transmissions. We build
on standard protocols for transmission and adds a thin layer
below the applications.

Asadi et al. [5] present a cooperative uplink packet for-
warding mechanism employing a bi-radio (WiFi-LTE) scenario
assuming fully utilised links. In comparison, our work focuses
on a underutilised scenario and considers uplink and downlink
real user usage traces for the evaluation.

Lei et al. [35] complement our work by analysing the
business models in the case of operator controlled peer-to-peer
communication in combination with Long Term Evolution.
Their work provides cooperation using different incentives. We
believe that our suggested operator and energy-aware relays
are a good example of such incentives. Guo et al. [36] propose
a cooperative relay service within a WiFi infrastructure. The
terminals that anyway need to be connected to the AP due
to their high data rate to forward, carry also data for low
data rate nodes (and get an incentive). Our work focuses on
energy gains due to an energy-aware use of the ongoing 3G
connection.

Compared to the wireless sensor networking literature [37]–
[39], in Watts2Share there is no common goal for the whole
network (e.g., data collection), and the traffic load for the
individual nodes is different and unpredictable.

To sum up, in comparison to previous works, we evaluate
Watts2Share using real user traces of common applications
capturing the energy impact of the traffic pattern in a hybrid
3G-WiFi scenario.

Energy consumption studies: A detailed study of the tail
energy overhead in 2G/3G cellular networks is performed by
Qian et al. [40] on user data traces retrieved from a network
operator in 2009. The work is extended [1] pointing out how
different applications inefficiently utilise the radio resources
due to their data pattern. A recent study by Pathak et al.
[2] focuses on profiling energy consumption of smartphone
applications using a system-call-based power modelling for
smartphones. Rice et al. [8] measure the WiFi energy con-
sumption in a variety of smartphones and Friedman et al. [41]
present a comparative study between WiFi and Bluetooth.

VI. CONCLUSIONS AND FUTURE WORK

In the quest for energy efficiency in wireless communica-
tion, energy proportionality plays an important role. A typical
3G user does not use its available 3G bandwidth up to the
maximum all the time. Contrary to a naive expectation, even
when the maximum available bandwidth is underutilised, the
user still experiences high energy consumption and short
battery lifetimes (thereby low quality of experience).

In our work we propose Watts2Share, an architecture for
energy-efficient wireless communication that reduces the en-
ergy consumption compared with a pure 3G scenario by

performing traffic consolidation on a single link. The nodes
form coalitions employing WiFi where a member retransmits
other nodes’ traffic. We show that Watts2Share can benefit
all the end users and reduces overall energy by reducing the
amount of signalling. Watts2Share further extends the lifetime
of all coalition nodes by using a role rotation scheme.

The architecture of Watts2Share is not limited to 3G and
WiFi. We believe that our energy-aware traffic consolidation
approach is applicable to other technologies as well, such as
LTE and WiFi Direct or 3G and Bluetooth. The higher data
rates and energy consumption of LTE would allow a higher
number of coalition nodes and potentially greater energy
savings.

Our current work includes implementation of the scheme
using native code in an Android phone, and optimising the
role rotation mechanism by incorporating the EnergyBox into
the manager. The use of EnergyBox will enable energy quan-
tification towards energy-aware role rotation decisions. Future
work includes building on the gains that Watts2Share achieves
in this paper through seamless adaptation of coalitions during
periods of overload and underload. Watts2Share needs to be
extended to a nonuniform scenario where some flows cannot
be disrupted without a quality of service penalty or not all
nodes are equally eligible as an aggregator. More work is
needed to extend the scheme and the physical testbed studies
for these scenarios.
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