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ABSTRACT
The massive explosion of mobile applications with the en-
suing data exchange over the cellular infrastructure is not
only a blessing to the mobile user but also has a price in
terms of regular discharging of the device battery. A big
contributor to this energy consumption is the power hungry
wireless network interface. We leverage a measurement kit
to perform accurate physical energy consumption measure-
ments in a third generation (3G) telecommunication mo-
dem thus isolating the energy footprint of data transfers as
opposed to other mobile phone-based measurement studies.
Using the measurement kit we show how the statically con-
figured network parameters, i.e., channel switch timers, and
buffer thresholds, in addition to the transfer data pattern
and the radio coverage, impact the communication energy
footprint. We then demonstrate that being aware of static
network parameters creates room for energy savings. This
is done by devising a set of algorithms that (a) infer the net-
work parameters efficiently, and (b) use the parameters in a
new packet scheduler in the device. The combined regime is
shown to transfer background uplink data, from real world
traces of Facebook and Skype, with significant energy saving
compared to the state-of-the-art.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: Wireless
communication; C.4 [Performance of Systems]: Mea-
surement techniques

General Terms
Algorithms, Design, Measurement

Keywords
energy consumption; UMTS; mobile devices; scheduling

1. INTRODUCTION
Mobile computing is on the verge of entering a new era in

which the vision of “information anytime anywhere” is be-
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coming a reality. Unfortunately, battery technology has not
kept up with this evolution making the new power hungry
capabilities also a hinder for further development. Ubiqui-
tous connectivity and current mobile data plans have led
to a significant increase in the use of the radio hardware
interfaces, with the outcome that the battery of a modern
smartphone hardly lasts more than one day.

While the technology development may provide more
energy-efficient hardware and batteries in the longer run,
we believe there is still a need for carefully analyzing the
energy footprint of application software, and to use software
to monitor and reduce the energy consumption. However,
in the device-user-network power equation the user appli-
cation impacts and potentials are often neglected. While a
lot of effort is directed towards lowering energy consumption
in the infrastructure nodes, and competition drives a reduc-
tion on base energy in handheld devices, the user application
contributions to the power equation are less studied. Most
applications are completely oblivious to how their data af-
fects or is affected by lower layer interactions.

Our work starts by illustrating that the third generation
(3G) wireless communication power footprint at the user end
is not only affected by the amount of data transferred, but
also affected by receive signal strength and the static net-
work parameters configured at the network end. The Radio
Resource Control (RRC) protocol drastically influences the
energy per bit in a transmission, whereby a few small text
messages may consume as much as a videoconference at the
user end. By performing measurements on transmission en-
ergy at the device end we show that “hidden” parameters
of the network like inactivity timers for switching between
channels, or data buffer thresholds can be used to schedule
the transmission of packets in an energy-efficient manner.
But before doing that we propose methods for inferring these
parameters. The contributions of our work are as follows:

• The impact of radio layer statically configured parame-
ters on the energy consumption is physically measured
in a broadband module. The study includes the inac-
tivity timers and the data buffer thresholds used by
the operator for state transition decisions as well as
the radio coverage.

• Algorithms to estimate the inactivity timers and buffer
thresholds which are at least 65% more efficient in
terms of energy consumption and twice faster com-
pared to the state-of-the-art.

• An algorithm that schedules background data trans-
missions based on the aforementioned network param-



eters saving up to 35% of energy for common applica-
tions like Facebook and Skype.

The rest of our work is organised as follows: section 2
describes the basic background about the third generation
Universal Mobile Telecommunication System (UMTS) and
introduces the related work. Section 3 presents our mea-
surement physical setup and describes the performed energy
consumption measurements. Section 4 describes the algo-
rithms to estimate inactivity timers and buffer thresholds
and presents our cross-layer scheduling algorithm. Section
5 presents the evaluation and results of our approach and
section 6 concludes the paper.

2. BACKGROUND AND RELATED WORKS
This section introduces the necessary background for fol-

lowing the results of our paper and presents the main works
related to our study.

2.1 3G background
The Radio Network Controller (RNC) is a key element in

the UMTS Terrestrial Radio Access Network (UTRAN). It
is responsible for the radio resource management and also
manages the Node Bs (also known as base transceiver sta-
tion), to which the user equipment (UE) connects via radio
physical channel. The energy consumption of the UE in 3G
is mostly influenced by the RRC and the Radio Link Control
(RLC) protocols, which are defined in the UMTS Wideband
Code Division Multiple Access protocol stack.

According to RRC the UE can be in the states depicted
in Fig. 1. The states are placed along the y and x axis
according to their power consumption and performance in
terms of response time and maximum data rate respectively.
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Figure 1: 3G connection states

RRC States: in the Dedicated state, a dedicated phys-
ical channel (CELL DCH) is allocated for the terminal in
both uplink and downlink providing higher data rates. The
terminal has access to dedicated uplink or downlink trans-
port channels, shared transport channels and a combination
of them. In the Forward Access Channel (CELL FACH) the
terminal is assigned a default common or shared transport
channel in the uplink and monitors the downlink continu-
ously. The UE can transmit small data packets at lower
data rates. While in CELL DCH and CELL FACH the UE
remains connected to the RNC.

The UE is in the Idle state when there is no network ac-
tivity. It is not connected but it still can check if there is

any downlink packet available. Denoted as Standby in Fig.
1, the 3G standard also describes two optional states where
the UE maintains a connection to the RNC and the energy
consumption is similar to Idle state: the Paging Channel
(CELL PCH) and UTRAN Registration Area Paging Chan-
nel (URA PCH). These two states allow the UE to switch
faster to higher states. Note that some operators do not
implement the optional states. In our work, the UE was
connected to an operator that implements the URA PCH
state. For the rest of the document we will refer to the
different states as DCH, FACH, PCH and Idle.

State transitions: state transitions on the UE occur
based on traffic volume and inactivity timers controlled by
the RNC. Statically set inactivity timers control the state
transitions DCH-FACH, FACH-PCH and PCH-Idle, T1, T2
and T3 in Fig. 1 respectively. E.g., when the UE is in the
DCH state for T1 without any or small data transmission,
the RNC releases the dedicated channel and switches the
UE to FACH by means of the RRC protocol.

The RRC uses information from the RLC protocol [14] in
order to report the observed traffic volume to the network.
For example, in FACH, the UE reports to the RNC the
observed traffic volume based on data buffer status. This
helps the RNC to re-evaluate the allocation of resources.
The RLC data buffer is used to trigger state transitions,
which can be downlink or uplink. When the content of the
data buffer exceeds a certain threshold, the corresponding
signaling is performed before switching the state. These
buffers are cleared out when the data is transmitted. In
section 4.3 we will refer to Tclear denoting the duration after
which the buffers are cleared after transmitting the data,
which depends on the data rate of the allocated channel.

Network coverage: the UE is exposed to different net-
work coverages and therefore to different received signal
strengths (RSS) [20]. The UE uses link adaptation adjusting
data rate to compensate for the different channel conditions
that the user equipment is exposed to. The radio power am-
plifier of the UE also increases its gain to compensate for
the drop in RSS and reduce communication errors. When
the radio link quality is low, the UE consumes more energy
due to higher power consumption and lower data rate.

2.2 Related works
In recent years there has been a growing interest in study-

ing energy consumption in mobile devices and green net-
working. The main body of work related to our study can
be categorised into two areas: energy consumption studies
of wireless networking and energy-saving techniques. Some
proposals consider only infrastructure-centric approaches [5,
10,11], whereas our focus is on reducing the energy consump-
tion on the UE side.

Energy consumption studies: experimental setups for
energy consumption studies on mobile devices either use
built-in software in mobile devices like Nokia Energy Profiler
(NEP) [3, 12, 15, 22] or external power meters [9, 18–20, 23].
The main advantage of our measurement setup is that we
are able to isolate the energy consumption of data transfers
by performing measurements in a 2G/3G/GPS module.

An influential measurement study using NEP by Balasub-
ramanian et al. [3] reports the categorisation of three differ-
ent energy components in cellular networks: ramp, transfer
and tail. The tail component is the most significant and
is caused by the inactivity timer statically set by the net-



work operators. Our previous work [2] refines this study by
performing physical measurements using a cellular modem
isolating the energy of data transfers. This helps to isolate
the impact of system software and unsolicited network con-
nections.

A detailed study of the tail energy overhead in 2G/3G cel-
lular networks is performed by Qian et al. [18] on user data
traces retrieved from a network operator in 2009. The work
is extended [17] pointing out how different applications inef-
ficiently utilise the radio resources due to their data pattern.
Both works provide an excellent ground for understanding
the impact of the operator-configured timers and RLC data
buffer thresholds on the theoretical user battery discharge.

Perrucci et al. [13] focus their study on the energy con-
sumption difference of 2G and 3G according to common
usage of the networks, such as SMS, voice calls and data
traffic. Wang et al. [24] present the energy consumption of
data transfers over WLAN and cellular networks. Energy
per bit and energy per second, i.e. average power drawn in
a second, are the metrics used for comparison. Puustinen
et al. [15] measure the impact of unwanted Internet traffic
on the energy consumption. An application-centric energy
study of mobile Youtube is performed by Xiao et al. [25]
showing that the download of videos in WLAN is more en-
ergy efficient than in 3G. Schulman et al. [20] explore the
impact of the network coverage on the energy consumption.

The above mentioned works consider a combined energy
consumption in the mobile device (CPU, memory access and
transmission dependent energy use). The main advantage
of our study is the fine-grained measurements isolating data
transfer energy and extension of previous studies identifying
the detailed effects of the poor radio links in the energy
consumption.

Energy-saving techniques: the work closest to ours is
TailEnder by Balasubramanian et al. [3]. The concept of
Delay Tolerant Applications (DTA) is introduced via the
intuition that to reduce energy consumption some applica-
tions can defer their transmissions based on users demands.
TailEnder uses an online scheduling algorithm with user
specified deadlines leading to traffic aggregation and bursty
transmissions while reducing the number of state transitions
and energy. We use the results of this work as our base
line. Several similar approaches are found in the literature
inspired by TailEnder: Könönen et al. [6] propose the align-
ment of timers of different applications in order to perform
synchronised bursty transmissions. The proposal of Calder
et al. [4] schedules data transmissions of applications with
different transmission intervals in multiples of the shortest
interval. TailTheft [8] schedules bursty data transfers of
DTA in a similar way to TailEnder and uses the Fast Dor-
mancy (FD) of the 3GPP Release 8 standard, which allows
the UE to signal the RNC in order to release the connection
and go to Idle or Standby earlier.

Using FD, Puustinen et al. [15] reduce the energy con-
sumption of unwanted Internet traffic. Qian et al. [16] as-
sume that applications know their inter-packet time and can
signal the RNC to release the connection by means of FD.
Bartendr [20] exploits the fact that transmitting is less costly
when the received signal is strong by transmitting data in
periods of good signal strength in cellular networks.

In comparison, our work is the first in considering the RLC
data buffer thresholds to schedule small data transmissions
of DTA in FACH in order to minimise the use of the more

energy consuming DCH state. Approaches using FD are
complementary to our work which would allow us to release
the RNC connection when needed.

The concept of traffic backfilling [7] is proposed to oppor-
tunistically transmit data during unused gaps between inter-
active traffic. Our previous work [2] introduces the concept
of burst buffering for live streaming that buffers a segment of
the data and then sends it in burst. The intuition is that the
energy cost is more or less the same no matter the constant
data rate. Armstrong et. al [1] present an energy-efficient
Web browsing content update combining the reduction of
transferred data by using caches and Web page updates via
bursty data transmissions from a proxy. Cool-Tether [21]
is a WiFi hotspot focused on serving web pages using the
cellular connection of various smartphones.

In summary, our work is the first in considering both the
tail energy overheads and the RLC data buffers in combi-
nation with scheduling data transfers. We infer the tails
at least 2 times faster using 65% less energy than previous
works [18] and use the knowledge of the radio layer in or-
der to schedule DTA data transmissions more efficiently in
terms of energy.

3. ENERGY MEASUREMENT STUDY
In this section we begin by an experimental study of the

main factors affecting the energy consumption of 3G for the
UE. All the energy measurements were performed using the
physical setup that we describe below, allowing the isolation
of energy consumption of data transfers.

3.1 Physical setup
All the measurements were performed on a power-efficient

mobile broadband module (Ericsson F3307) which provides
2G, 3G and GPS connectivity. It is designed to provide
mobile broadband to consumer electronic devices such as
tablets and laptops. The module provides uplink and down-
link speeds up to 5.76 and 7.2 Mbps respectively implement-
ing the High Speed Packet Access (HSPA) standard.

Figure 2: Measurement setup

The measurement setup depicted in Fig. 2 consists of the
mobile broadband module placed on an Ericcson’s Developer
Starter Kit. The kit provides network connectivity via USB
to a test computer that runs Ubuntu 10.10 with the firewall
activated in order to allow only the desired network connec-
tions. The measurements were performed using a National
Instruments myDAQ data acquisition device sampling the
voltage drop over a shunt resistor of 0.1 (R1 in Fig. 2) at
1 kHz. The power consumption is derived from the voltage
and in order to avoid any anti-aliasing effects a low-pass fil-
ter of approximately 16 Hz (R2 = 10 k and C = 1 uF in the



figure) was added.
All measurements were performed using a SIM card from

TeliaSonera providing full access to the available capacity
of the Sweden 3G network1. Unless specified, all the mea-
surements were performed in the same location at university
where the received signal strength did not vary significantly.

3.2 3G energy consumption
The energy footprint of 3G is mostly influenced by the

state machine described in Section 2.1.
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Figure 3: Power consumption of different 3G states

Fig. 3 shows the power consumption levels of the states
implemented by TeliaSonera when downloading data. The
3G module stays in PCH state until there is a transition
to DCH, after the dedicated channel connection has been
stablished (3s in Fig. 3). Once the UE is on DCH the data
is downloaded. The transition to FACH occurs when all
dedicated channels have been released (10s in Fig. 3). The
power consumption in the DCH state is around 1.3 Watts,
higher than the FACH state (around 0.5 Watts) and PCH
state (0.2 Watts).

It can be noticed that after downloading the data, the UE
continues in the DCH state until the inactivity timer T1 has
expired causing an energy consumption overhead. A simi-
lar overhead is caused in FACH due to T2. The overheads
caused by the inactivity timers are called tail effects [3]: T1
leads to DCH TAIL and T2 to FACH TAIL. Our previous
work [2] studied the energy overhead caused by the inactiv-
ity timers. Since the power consumption of PCH and Idle is
similar, we do not consider the effect of T3.

The uplink and downlink RLC data buffers are used to
estimate the traffic volume and trigger state transitions to
higher states. When the data in buffer exceeds the thresh-
old, the RNC re-evaluates the allocation of resources and
up-switches the state of the UE. We measured the uplink
and downlink thresholds that trigger the state transitions
shown in Table 1, by sending UDP packets of different sizes
and observing the live power trace using our measurement
setup. Note that the PCH-DCH transition is more probable
to happen when the triggering packet is closer to the upper
bound, i.e., transmitting 513 bytes uplink might not lead to
a state transition.

Our measurements were carried out over an interval of
5 months, and 3 months into the period the operator set-
tings were changed. The value of the uplink RLC data
buffer threshold that triggers PCH-DCH transition was in-

1TeliaSonera is currently the 5th largest operator in Europe
with around 157 million customers.

Table 1: State transitions and triggering packet sizes.

State Uplink Size Downlink Size
Transition (bytes) (bytes)
PCH-DCH 513 - 542 524 - 558
FACH-DCH 294 515
PCH-FACH Always triggered

cremented from the value of Table 1 to around 900 bytes
(875 - 1000 bytes).

The tail timers and RLC buffer thresholds vary per op-
erator. The variation and the data traffic pattern highly
influences energy consumption of the UE. Sporadic trans-
missions of small packets can lead to high energy consump-
tion. As an illustrative example, we sent a 600 bytes UDP
packet every 3 seconds during 1 minute which led to a similar
consumption to a Skype voice call (average of 19kB/s): 90
and 92 Joules respectively. The knowledge of tail overheads
and RLC buffer thresholds can benefit the UE which would
be able to predict or “control” state transitions in order to
reduce energy consumption.

The energy consumption of the UE also varies signifi-
cantly with the radio coverage. A clear example of this phe-
nomenon is depicted in Fig. 4, where a 4MB file download
is performed at different locations at different RSS.
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Figure 4: Power consumption at different RSS.

Our measurements show that the average transmission
power during the data transmission in DCH substantially
increases with a weak signal (up to 12%). The overall en-
ergy consumption is increased by 16%. The DCH TAIL
also consumes 4% more energy. The signaling traffic suf-
fers from the same effect, increasing its power consumption
up to 18%. Surprisingly, the power consumption of FACH
is not increased when the RSS is weaker, which makes a
call to avoid state transition to DCH instead of to FACH
as much as possible. The reason behind this power increase
is that to keep up with the communication the power am-
plifier of the terminal increases its gain to compensate for
the RSS drop. Fig. 4 also shows that the download takes
longer at weak RSS, which consumes more energy. The UE
employs link adaptation adjusting the data rate in order to
compensate for the different channel conditions. Therefore,
a terminal consumes more energy under poor radio-link con-
ditions since the transmission power is higher and the data
rate is lower.

In summary, our measurements provide knowledge about
the main factors that impact energy consumption of 3G in



the setting of the tests that we will perform to evaluate our
algorithms in section 4. We see that there is room for an
energy saving scheme based on making the UE aware of the
energy consuming characteristics of the radio layer.

4. CROSS-LAYER BURST BUFFERING
Previous works in this area [3,4,6,8] perform data aggre-

gation and burst transmissions without awareness of radio
layer parameters such as RLC data buffer thresholds. Obvi-
ously this is not optimal in the sense that running TailEn-
der or similar approaches will aggregate small data transfers
causing state transitions to DCH when unnecessary.

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5
Power consumption of data aggregation of small packets

Time (seconds)

Po
w

er
 c

on
su

m
pt

io
n

(W
at

ts
)

0 4 8 12 16
0

200
400
600
800

Data aggregation of small packets

U
pl

in
k 

tra
ffi

c
 (b

yt
es

)

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5
Power consumption of the original traffic

Po
w

er
 c

on
su

m
pt

io
n

(W
at

ts
)

0 4 8 12 16
0

200
400
600
800

Original uplink data traffic

U
pl

in
k 

tra
ffi

c 
(b

yt
es

)

Figure 5: The effect of small packet aggregation on the
energy consumption.

Fig. 5 shows an example of this event, where small data
packets from a real data trace are aggregated and sent in
a burst causing a state transition to DCH and more energy
consumption than sending them in FACH. In the original
uplink data traffic 7 packets of 100 bytes are sent every 300
milliseconds. When these packets are aggregated to send in
burst they lead to 42% more energy consumption.

As we have shown in previous sections, the impact of net-
work parameters such as tails, RLC data buffers or quality
of radio links on the energy consumption of the UE is high.
However, these parameters are not available for the appli-
cation layers. Therefore, we have developed algorithms in
order to provide estimates of the state transition timers and
buffer thresholds to our scheduling algorithm. In this work
we do not consider fragmentation nor the use of the radio
link quality estimator like RSS to adapt our data transmis-
sions and they are left for future works.

The structure of the section is as follows: sections 4.1
and 4.2 present the algorithms for estimation of the radio
layer parameters. Our scheduling algorithm that uses these
estimates is described in section 4.3.

4.1 Tail estimation algorithms
The algorithms to infer T1 and T2 (inactivity timers from

Fig. 1) are based on the knowledge that each state has
a qualitatively different round-trip time (RTT) for a data
packet. The estimation of the inactivity timers can take
place whenever a change of the network parameters is sus-
pected. We call this a ReconfigurationEvent and the dis-
cussion of the procedure to detect it is deferred to future
sections. To calculate RTT, we send synthetic test packets
with predetermined sizes from the UE. A server echoes the
answer allowing the computation of RTT. We adopt two dif-
ferent approaches for estimating T1 and T2. In both estima-
tions the UE starts in the PCH state. Before presenting the
algorithm in detail (Algorithm 1), we provide an overview
below.

For the DCH timer T1, we trigger a state transition to
DCH by sending a large test packet followed by a sequence
of small packets. At some point, the UE will switch down
to FACH state due to the small packet sizes. At this time,
the longer RTT will be the indicator of the state transition.
Using this process we also have an indication of the RTT in
the DCH and FACH states (DCH-RTT and FACH-RTT).

For the FACH timer T2, the above regime would not work.
Sending small packets would keep the UE in FACH indefi-
nitely. Therefore, we begin by a guess for lower and upper
bound of T2. Note that the upper and lower bounds need
not be accurate values. We can start by any guess and itera-
tively converge to T2 by reducing the gap between them. We
start with a trial timer value between the bounds. We send
a test packet that triggers FACH, wait for the trial timer
and adjust the lower and upper bounds based on the UE
state. If UE is in PCH, the chosen trial timer is longer than
T2. If UE is in FACH, the trial timer is shorter than T2.
Using binary search and a sequence of send-wait-checks we
converge to an accurate value of T2. Algorithm 1 describes
the two estimation procedures.
InterPacketInterval and TestPeriod are used for infer-

ring the value of T1. InterPacketInterval defines the time
between the sending of test packets and TestPeriod is the
duration of estimating the value of T1. Note that this period
has to be longer than the actual (unknown) T1. As described
above, LowerBound and UpperBound are used for the bi-
nary search of the value of T2 until the gap between them
is smaller than MinGap. Note that UpperBound should be
longer than the actual (unknown) T2. All values are speci-
fied in seconds.

We further describe the part of Algorithm 1 that infers
T1 (lines 2-15) using an example. We define as large test
packet a packet that will trigger the PCH-DCH state transi-
tion (e.g., 1200 bytes). A small test packet is the minimum
size packet. Fig. 6 shows the RTT values computed by run-
ning Lines 3-12. In line 13, the DetectRTTJump procedure
simply identifies an RTT increase in orders of magnitude.
In the example, the increase shown for packet number 9 in-
dicates a DCH-FACH transition. Therefore, the procedure
returns j equal to 9, which leads to the value of T1 to be
4.5 seconds (9 times 0.5).

Lines 16-29 infer the inactivity timer T2 by performing
the aforementioned binary search. In line 17 the UE sends
a small packet that triggers the transition to FACH state.
The UE waits trialT imer seconds and checks its state by
computing the RTT. If the state is still FACH, T2 is longer
than the trial time and the lower bound is updated. Other-



Algorithm 1 Inactivity timer inference

Input: InterPacketInterval, TestPeriod, LowerBound,
UpperBound, MinGap

Output: T1, T2 //Inferred parameters
1: for each ReconfigurationEvent do

//T1 inference. UE starts in PCH.
2: n← TestPeriod/InterPacketInterval
3: for i = 1 to n do
4: if i = 1 then
5: send large test packet //Force move to DCH
6: else
7: send small test packet
8: end if
9: receive echo test packet

10: compute RTT(i)
11: wait InterPacketInterval
12: end for
13: j ← DetectRTTJump(RTT)
14: T1 ← InterPacketInterval · j
15: FACH-RTT ← average(RTT(j + 1), RTT(n))

//T2 inference. UE starts in PCH.
16: while (UpperBound − LowerBound > MinGap) do
17: send small test packet
18: trialTimer ← (UpperBound − LowerBound)/ 2
19: wait trialTimer
20: send small test packet
21: receive echo test packet
22: compute RTT
23: if RTT is close to FACH-RTT then
24: LowerBound ← trialTime
25: else
26: UpperBound ← trialTime
27: end if
28: end while
29: T2 ← trialTime
30: end for

wise, if the state of the UE is PCH, T2 is shorter than the
trial time and the upper bound is updated. This process
continues until the gap between the lower and upper bound
is smaller than MinGap.

4.2 RLC data buffer threshold estimation
We next describe the algorithm for inferring the RLC data

buffer thresholds that trigger state transitions. There are
typically four thresholds, two for the PCH-DCH transition
and two for FACH-DCH transition (uplink and downlink).
Algorithm 2 describes our approach for inferring the PCH-
DCH and FACH-DCH thresholds respectively. As in the
previous algorithm, we use the RTT to infer the state of the
UE by sending a small test packet and receiving the echo
from the server.
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Figure 6: RTT values obtained for T1 inference. In the
example InterPacketInterval is set to 0.5 seconds and Test-
Period of T1 is 7 seconds.

For inferring the PCH-DCH data buffer threshold, we use
an estimate of the buffer size denoted by an upper and lower
bound (MaxBytes and MinBytes) in an analogous manner
to Algorithm 1. T1 and T2, inferred by the previous algo-
rithm, are used to define a boundary for every trial starting
from PCH. This is shown in lines 1-17 of Algorithm 2.

Algorithm 2 Buffer threshold inference

Input: T1, T2, FACH-RTT
//parameters for PCH-DCH
MaxBytes, MinBytes, MinDiff,
//parameters for FACH-DCH
InterPacketInterval, LargeIncrement, SmallIncrement

Output: B PCH-DCH, B FACH-DCH //Buffer thresholds
1: for each ReconfigurationEvent do

//PCH-DCH buffer threshold inference. UE in PCH.
2: while (MaxBytes − MinBytes > MinDiff) do
3: triaSize ← (MaxBytes − MinBytes)/ 2
4: send trialSize test packet
5: wait InterPacketInterval
6: ComputeRTT()
7: if RTT is close to FACH-RTT then
8: MinBytes ← trialSize
9: wait T2

10: else
11: MaxBytes ← trialSize
12: wait T1 + T2
13: end if
14: end while
15: B PCH-DCH ← trialSize

//FACH-DCH buffer threshold inference. UE in FACH.
16: RTT ← FACH-RTT
17: trialSize ← 0
18: increment ← LargeIncrement
19: for phase = 1 to 2 do
20: while RTT is close to FACH-RTT do
21: trialSize ← trialSize + increment
22: send trialSize test packet
23: wait InterPacketInterval
24: ComputeRTT()
25: wait InterPacketInterval
26: end while
27: increment ← SmallIncrement
28: trialSize ← trialSize − LargeIncrement
29: wait T1
30: end for
31: B FACH-DCH ← trialSize + LargeIncrement
32: end for

For inferring the FACH-DCH data buffer threshold, we
adopt a different approach. In this case, by triggering fewer
state transitions we save energy used up for inference. This
part of the algorithm works in two phases. In phase one, we
approach the buffer threshold using large increments to the
test packet size. In the second phase we use small increments
in order to fine-tune the estimate of the threshold.

We illustrate the bottom part of Algorithm 2 that infers
the FACH-DCH buffer threshold in Fig. 7. The impulses
show the time and the size of the sent trial test packets
(the packets to compute the RTT are omitted). The test
packet size is increased in FACH by a large increment (50
bytes) until the DCH state is triggered. The 300 bytes
sent in time point 5 triggers the state transition, therefore
the buffer threshold is between 250 and 300 bytes. The
RTT calculated with each packet is used to infer the cur-
rent UE state. Then, after waiting T1 to return to FACH
from DCH in time point 10, the size increment is set to
SmallIncrement and the algorithm starts sending 250 +
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Figure 7: Example of lines 18-34 of algorithm 2 showing the
packets sent, their size and the state of the UE.

increment bytes again (e.g., 260 bytes in time point 10).
Note that the InterPacketInterval in Algorithm 2 has to
be large enough to allow the clearing of the RLC data buffer.
The example uses an InterPacketInterval of 1 second.

4.3 Cross-layer burst buffering algorithm
We next present our uplink scheduling algorithm that uses

the parameters inferred in the previous sections. The goal of
the algorithm is to minimise energy consumption by means
of scheduling small data packets in FACH state and avoiding
costly state transitions to DCH that lead to DCH TAIL and
FACH TAIL energy overheads. In addition, we will stop
sending packets before their deadlines while we are in the
PCH state. Our algorithm is divided in two parts: a packet
driven mechanism that inserts application packets in two
different queues depending on their size, and a UE state
based mechanism that transmits the actual packets.

Let us define the problem as follows. Let Ah = {a1, ..., an}
be the set of running applications with strict time constraints
(c.f. hard real-time). Let Th be the shortest relative dead-
line for each packet generated by an application in the set
Ah. Let As = {b1, ..., bn} be the set of applications with
soft time constraints. Let Ts be the shortest tolerable de-
lay for scheduling transmissions for the set As. In practice,
Th < Ts. We further classify the packets of the set of ap-
plications (Ah ∪ As) in two categories according to their
size, L (for long) and S (for short). Let QS and QL be
queues of packets queued according to their size and sorted
by inserting the shortest deadline at the front of the queue.
We assume that these queues are implemented using red-
black trees for good performance. Algorithm 1 and 2 in-
fer the inactivity timers T1-T2 and the RLC buffer thresh-
olds B PCH-DCH and B FACH-DCH (state transition from
PCH to DCH and FACH to DCH respectively). Tclear is the
time to clear out the RLC buffers described in section 2.1
and can be measured [17].

Let us elaborate on the deadlines for the packets. Ts rep-
resents the deadline of DTA, e.g., updates from RSS, e-mail
or Facebook applications. Th is defined as a shorter dead-
line for other applications. It is clear that the maximum
energy savings are achieved when Th = Ts. Therefore, for
the sake of simplicity and in order to study the maximum
energy savings, we set Th = Ts for our algorithms.

Algorithm 3 describes the energy-aware burst buffering.
The first part of Algorithm 3 (lines 1-7) simply queues the
packets depending on their size sorted by shortest deadline.
QS contains packets that can be sent in FACH without trig-
gering a state transition to DCH.

The main part of Algorithm 3 (lines 8-48) transmits data

Algorithm 3 Cross-layer burst buffering

Input: B PCH-DCH, B FACH-DCH, Tclear

1: for each new packet p do
2: if p.size ≥ B FACH-DCH then
3: QL ← p sorted by shortest deadline
4: else
5: QS ← p sorted by shortest deadline
6: end if
7: end for

//UE state-based packet scheduler. UE in PCH.
8: while QL ∪QS 6= ∅ do
9: if UE state = DCH then

10: transmit QL

11: transmit QS

12: end if
13: if UE state = FACH then
14: sum ← 0
15: while QS 6= ∅ do
16: p← QS .front
17: sum ← p.size + sum
18: if sum > B FACH-DCH then
19: wait Tclear

20: sum ← p.size
21: end if
22: transmit p
23: end while
24: end if
25: if UE state = PCH then
26: Tnearest ← shortest deadline ∈ (QL ∪QS)
27: wait until Tnearest

28: choose p ∈ QL ∪QS with Tnearest

29: if p ∈ QL then
30: transmit QL //Leads to DCH
31: else //Packet with shortest deadline is in QS

32: compute VL ←
∑

p.size ∀ p ∈ QL

33: if VL ≥ B PCH-DCH then
34: transmit QL //Leads to DCH
35: else //Choose the channel based on QS

36: compute VS ←
∑

p.size ∀ p ∈ QS

37: ch ← ChannelChoice(VS) //Function 1
38: if ch = DCH then
39: transmit QS //Leads to DCH
40: transmit QL

41: else
42: transmit QL //Leads to FACH
43: wait Tclear

44: end if
45: end if
46: end if
47: end if
48: end while

based on the UE state if there is any packet to be sent. The
actions that the UE can perform are to transmit a single
packet, transmit a queue in a burst or wait. The UE starts
from the PCH state and for every packet sending is able
to distinguish between a state transition to DCH or FACH
with the knowledge of the RLC buffer thresholds and T1-T2
timers. Every time a packet is sent it updates the time of the
last transmission and the current state. After the inactivity
timer duration the state of the UE is changed.

When the UE is in DCH we transmit the packets stored
in QL and QS . When the UE is in FACH, it transmits
the packets stored in QS avoiding to trigger a costly state
transition to DCH. This is done by sending a number of
packets that sum up to less bytes than the buffer threshold.
Then, the UE waits Tclear before the next sending of packets.
This allows the UE to remain in FACH state until QS is
emptied.



Function 1 ChannelChoice

Input: VS //Volume of QS in bytes
Output: channel

P1, P2 //Power consumption of DCH and FACH
T1, Tclear, B FACH-DCH
if VS < P1/P2·B FACH-DCH·T1/Tclear then

channel ← FACH
else

channel ← DCH

end if

Finally, when the UE is in PCH, the algorithm compares
the deadlines of packets in the front of QL and QS and waits
for the nearest deadline Tnearest. Next, the UE decides if it
will send a packet or burst that triggers a state transition
to DCH or FACH. There are three cases.

First, in case the packet with the shortest deadline is in
QL (line 29), it needs to be sent. QL will be transmitted
triggering a transition to DCH. Second, if the packet is in
QS , the UE will transmit QL if the volume in bytes of QL

is larger than the PCH-DCH buffer threshold (line 31-34).
This will lead to a trigger of a transition to DCH.

In the third case, the transmission in FACH is feasible
with the current volume of the queues. However, a large
volume of QS can lead the UE to stay in FACH for a long
period, which would consume more energy than sending the
queues in burst in DCH. The choice of the less consum-
ing option, i.e., sending on DCH or FACH, is performed by
Function 1 (ChannelChoice) in line 37 given the volume of
QS . If sending in FACH is less consuming, the UE will trans-
mit QL which triggers a FACH transition and wait Tclear.
QS will be emptied in the FACH state. If sending in DCH
is less consuming, the UE transmits both queues in burst
triggering a DCH transition.

Function 1 is an optimisation to avoid the case when a
large volume of data in QS (denoted by VS) leads the UE to
stay in FACH for a long period. Given the power consump-
tion of DCH and FACH (P1 and P2) and the transmission
time (ε) of QS in DCH, the energy cost of transmitting in
DCH is estimated by E1 = P1(T1+ε)+P2T2. Given the
high data rate of DCH, we consider that ε is negligible for
the estimation. The energy cost in FACH is estimated by
E2 = P2(T2+Tclear · VS/B FACH-DCH). Therefore, when
the inequality E1 > E2 holds, ChannelChoice will return
FACH, otherwise DCH.

5. EVALUATION
We begin this section by presenting the evaluation of the

inference algorithms followed by the evaluation environment
for the scheduling algorithm and discussing the results.

5.1 Evaluation of inference algorithms
We implemented Algorithms 1 and 2 in Java using UDP

packets to calculate the RTT. A simple UDP server was
developed to echo UDP packets. The algorithm to infer the
buffer thresholds (Algorithm 2) was also implemented in the
UDP server to infer the downlink thresholds.

Algorithm 2 was evaluated using our measurement setup
described in section 3.1. We first ran the algorithm and in-
ferred the thresholds. In order to verify them, we sent pack-
ets with the triggering sizes and observed the state tran-
sitions on the live power consumption trace generated by
our measurement setup. The settings for the test were 1100

bytes for MaxSize, 50 bytes for MinSize and 10 bytes for
MinDiff . LargeIncrement and SmallIncrement were set
to 50 and 2 bytes respectively. T1 and T2 were set to 5.
InterPacketInterval of Algorithm 2 was set to 1.5 seconds.
Averaging 3 rounds of the running of the algorithm itself
consumed 78 Joules and took 97 seconds.

Algorithm 1 was evaluated in a similar manner. We com-
pared the values inferred by the algorithm to the time that
the UE stays in DCH and FACH (observed in the recorded
power trace) when triggering a PCH-DCH transition. The
settings used in the implementation of Algorithm 1 were
the following: small and large tests packets were set to
43 and 1200 bytes respectively. InterPacketInterval was
0.5 seconds. InitialGuess, LowerBound, UpperBound and
MinGap were set to 7, 0, 16 and 0.5 seconds for the tests
respectively.

We also compared our algorithm to the one presented
by Qian et al. [18] in terms of energy consumption and
elapsed time. In short, the idea behind their state demotion
inference algorithm is to use the RTT difference between
states to infer the state transitions and therefore inactivity
timers. Their algorithm sends a packet that triggers PCH-
DCH state transition and calculates the RTT by sending
another packet after a number of seconds. They increase
the number of seconds starting from 0 to a maximum and
infer the inactivity timers from the measured RTT values.
The elapsed time and the energy consumption of the algo-
rithm is very dependent on the first guess of the maximum.
It is clear that the maximum needs to be longer than the
sum of T1 and T2. We implemented their algorithm in Java
using UDP packets. For comparing with our algorithm we
used the same value for TestPeriod as their maximum, and
started our UpperBound with TestPeriod. The average of 3
different rounds is calculated for each of the points in Fig.8.

Fig. 8 shows that their algorithm results in larger elapsed
time and more energy consumption. It can be seen that
whereas the increase of consumed energy and elapsed time
is somehow linear in their case, in our case it varies depend-
ing on the performance of the binary search (changing the
maximum, we change the upper bound of the search). How-
ever, in the least favourable case, our algorithm consumes
65% less energy and takes 35 seconds less to converge on the
estimated value for the timers.

5.2 Evaluation environment for scheduler
The evaluation environment consists of the physical mea-

surement setup and a UDP server on the Internet. The UDP
server was used to keep track and make sure that all the in-
tended packets were indeed sent from our physical measure-
ment setup. We developed a C++ TestFramework which
runs in the test computer of our physical setup in order to
run any packet-driven algorithm. The application allows
us to replay any previously captured data traffic trace and
schedule the packet sendings to our 3G modem.

The traces are pcap (packet capture) files that consist of
data traffic packets. An input parser uses TShark2 com-
mands to convert the gathered pcap traces into sequence
of packet sendings with the following format: {timestamp,
packetsize, packetnumber, source, destination, protocol}.

An user thread replays the original trace providing the
input packets to the interchangeable algorithm in turn. We

2Terminal based Wireshark.
http://www.wireshark.org/docs/man-pages/tshark.html
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Figure 8: Comparison of algorithms in terms of energy consumption and elapsed time.

implemented a simple packet forwarder (simulating FIFO),
our cross-layer burst buffering algorithm and the scheduling
algorithm of TailEnder [3] for DTA. Our algorithm is imple-
mented in two different threads (producer-consumer). The
queues are implemented using C++ STL multimaps.

Our TailEnder implementation is divided in two threads
as well. The packet driven thread sends or queues a packet
based on the following: if the UE is still within a time frac-
tion of the tail time from the last sending it directly sends
the new packet, otherwise the packet is queued. The other
thread checks the shortest deadline of the queue and sched-
ules transmissions when it is about to expire. Our implemen-
tation keeps track of the fraction of tail time by calculating
the relative elapsed time from the last transmission.

Finally, we use a network module which provides the al-
gorithms the functionalities to send and receive packets to
the server using simple functions based on UDP sockets.

5.3 Data generation
In the data gathering phase, we used tcpdump in a Sam-

sung Galaxy SII running Android 2.3 connected to the same
operator in Sweden using the SIM card described in Section
3. In order to only allow the traffic from the desired appli-
cations we used a iptables based firewall named DroidWall3.
We captured all the 3G communication for 40 minutes.

The applications running in the smartphone were Skype
version 2.5.0.108 and Facebook 1.7.2. All the traces were
gathered with the screen switched off and the application
running in background. No user interaction was performed.
The gathered trace has many small packets.

5.4 Energy saving results
In order to calculate the energy savings, we transmitted

the original trace gathered from the Android smartphone
using the TestFramework and measuring the energy con-
sumption by means of our physical setup. The energy con-
sumption value obtained from the trace is used as base line
for both algorithms. For each of the points in Fig. 9 we
ran our TestFramework with the original trace as input and
measured the energy consumption using TailEnder and our
cross-layer burst buffering algorithm separately. Then we
computed the energy savings with respect to the base line
(i.e., no burst buffering) varying the deadline for the packets.
We set Tclear to be a constant with value 300 milliseconds.
The energy consumption base line was 777 Joules for the
original trace.

Fig. 9 shows that the energy savings of the cross-layer
scheduler are higher than TailEnder. The minimum energy
savings in our measurements are 27%.

3http://code.google.com/p/droidwall/
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Figure 9: Energy savings of cross-layer scheduling and
TailEnder.

It is worth mentioning that for the shortest deadline our
method achieves higher energy savings compared to TailEn-
der. This is due to the fact that transmitting small packets
in FACH is more energy efficient than triggering DCH state
transitions. Our method takes advantage of the small pack-
ets avoiding the unnecessary state transitions to DCH.

For TailEnder, the larger the deadline the more energy
savings can be achieved. This is due to the fact that the
traffic aggregation is performed with more data packets and
then triggering a DCH state transition is needed. The same
issue arises for the cross-layer burst buffering when increas-
ing the deadline. However, the energy savings of our method
decreases for applications with longer deadlines. This hap-
pens since the probability of having bigger packets in the
queues increases when increasing the deadline and therefore
the possibilities of sendings in FACH are fewer.

The gap in Fig. 9 can further increase by network settings
that have higher B FACH-DCH or shorter Tclear. Further,
data sets with smaller packets would be more beneficial to
our system; as it would be the case with a longer T1. How-
ever, our experiments confirm that the gap will not be re-
versed even with parameter changes in the network settings.

6. CONCLUSION
In the search for reducing the energy consumption in wire-

less networks awareness of the radio communication layer
plays an important role. In our work, we have quantified
the energy footprint characteristics of the 3G radio commu-
nication layer at the user end by performing actual physi-
cal measurements on a modern broadband module, isolating
the energy consumption of data transfers from other energy
consuming factors (e.g., CPU usage or screen rendering). In
particular, we show that the inactivity timers of the RRC
state machine, RLC data buffer thresholds and radio cov-
erage of the network drastically influences the energy con-
sumption of the 3G data transfers.



The knowledge of the hidden energy footprint character-
istics of the radio communication layer becomes valuable
when developing energy efficient solutions to optimise the
usage of the battery resource. We provide the upper layers
with the needed information about the parameters that in-
fluence the 3G energy consumption. To support this a set of
algorithms that are able to infer the parameters and a novel
uplink scheduling algorithm are proposed. Our scheduler
uses a more detailed radio communication layer knowledge
to improve the energy savings compared to state-of-the-art.
The results of our work demonstrate that the radio com-
munication energy footprint awareness is fundamental for
achieving higher energy savings.

Our current work includes implementing a middleware
based on our scheduling algorithm as a kernel module for
Android. Extensions of the work include explorations with
other types of applications and the inclusion of radio link
quality awareness. Furthermore, based on the results in this
paper, we believe that there is room for an energy saving
scheme based on fragmentation in order to take advantage
of FACH data transfers.
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