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Abstract. Smart grid security has many facets, ranging over a spec-
trum from resisting attacks aimed at supervisory and control systems,
to end user privacy concerns while monitored by the utility enterprise.
This multi-faceted problem also includes vulnerabilities that arise from
deployment of local cyber-physical attacks at a smart metering location,
with a potential to a) manipulate the measured energy consumption, and
b) being massively deployed aiming at destabilisation. In this paper we
study a smart metering device that uses a trusted platform for storage
and communication of metering data, and show that despite the hard
core security, there is still room for deployment of a second level of de-
fence as an embedded real-time anomaly detector that can cover both
the cyber and physical domains.

1 Introduction

Limitations of today’s power networks, combined with the need for sustainable
energy resources has led to promotion of smart grid architectures [1]. These
promise higher reliability due to the inherently distributed nature of production
and distribution, higher efficiency due to incorporation of mass scale sensors and
faster management dynamics, and fine-grained adaptation to local failures and
overloads. The large scale deployment of such networks is, however, dependent on
exploitation of standard (IP-based) protocols, commodity sensors and actuators,
and the ability of vendors to create a trusted environment on which adaptations
of supply and demand can be based. The notion of cyber-physical systems, aim-
ing to cover the "virtually global and locally physical" [2] is nowadays used even
to encompass smart grids as an illustrating example.

Security is one of the less developed attributes in the cyber-physical domain.
While security is indeed part of the grand challenges facing large scale develop-
ment of cyber-physical systems, the focus of smart grid security is increasingly
on threats to control systems [3], or serving the privacy of the end user while
being subject to monitoring [4]. In this paper we address the risk of manipula-
tions at the end-user level, even when a trusted infrastructure is assumed to be
present at the smart metering end points.

The contributions of this paper are as follows:



1. We analyse the design of a smart meter which uses trusted computing tech-
nology to enforce strong security requirements, and we show the existence
of a weakness in the forthcoming end-nodes, justifying real-time anomaly
detection.

2. We propose an architecture for embedded anomaly detection for both the
cyber and physical domains in smart meters and create an instance of a
clustering-based anomaly detection algorithm in a prototype under industrial
development.

3. We illustrate the detection of cyber attacks, which in principle can be script-
based and massively deployed, and provide the infrastructure owner with
reliable alerts.

The rest of the paper is organised as follows: Section 2 discusses the related
work in this field, Section 3 presents the smart metering infrastructure, Section
4 discusses our proposed anomaly detection architecture and Section 5 shows
the detection results on some cyber-attacks performed on a prototype of a smart
meter.

2 Related Work

Smart grid cyber security has been a hot topic in recent years, with both re-
searchers, industry and organisations involved in the definition of security re-
quirements and standard solutions [5–7].

The Advanced Metering Infrastructure (AMI) is particularly vulnerable to
cyber attacks, and careful attention has been given to its specific security re-
quirements analysis [8]. Confidentiality, privacy, accountability, integrity and
availability are critical requirements for accurate electricity billing and real-time
power demand estimation. Cleveland [8] points out that encryption alone is not
the solution that matches all the requirements, and automated diagnostics, phys-
ical and cyber intrusion detection can be means of preventing loss of availability.

Intrusion detection has been considered as a possible defence strategy in
AMIs. Berthier et al. [9, 10] highlight the need for real-time monitoring in AMI
systems. They propose a distributed specification-based approach to anomaly
detection in order to discover and report suspicious behaviours during network
or host operations. The advantage of this approach, which consists of detecting
deviation from high-level models (specifications) of the system under study, is
the effectiveness on checking whether the system follows the specified security
policies. The main disadvantages are the high development cost and the com-
plexity of the specifications.

Kush et al. [11] analyse the gap between conventional IDS systems and the
specific requirements for smart grid systems. They find that an IDS must sup-
port legacy hardware and protocols, be scalable, standard compliant, adaptive
to changes, deterministic and reliable. They evaluate a number of existing IDS
approaches for SCADA systems, the approach by Berthier et al. and few con-
ventional IDS systems that could be applied to AMIs, and they verify that none
of them satisfy all the functional requirements.



Beside cyber attacks, physical attacks are also a major cause of concern. Elec-
tricity theft is the main motivation that induces unethical customers to tamper
with the meters, and the minimisation of energy theft is a major reason why
smart metering practice has been initiated. McLaughlin et al. [12, 13], however,
show that smart meters offer even more vulnerabilities than the old electrome-
chanical meters. Physical tampering, password extraction, eavesdropping and
meter spoofing can be easily performed with commodity devices.

An approach for discovering theft detection with smart metering data is dis-
cussed in Kadurek et al. [14]. They devise two phases: during the first phase the
energy balance at particular substations of the distribution systems is monitored.
If the reported consumption is different from the measured one, an investigation
phase aims as locating the point where the fraud is taking place.

In our environment the security requirements for AMI are fulfilled using
trusted computing technology, complemented by our proposed embedded anomaly
detection architecture that takes into account both the cyber and the physical
domain.

3 The Trusted Smart Metering Infrastructure

The Trusted Sensor Network (TSN) [15] is a smart metering infrastructure de-
fined as a use case within the EU FP7 SecFutur Project [16]. The main goal

Fig. 1: Trusted Smart Metering Infrastructure [15]

of this solution is to ensure authenticity, integrity, confidentiality and account-
ability of the metering process in an environment where multiple organisations
can operate and where legal calibration requirements must be fulfilled [15]. This
goal is achieved by a careful definition of the security requirements supported by
trusted computing techniques. As depicted in Figure 1, a Trusted Sensor Module
(TSM) is located in each household. The energy measurements produced by one



or more sensors are encrypted and certified by the TSM, which sends them to
a Trusted Sensor Module Collector (TSMC). This component gathers the data
coming from several TSMs and relays it to the operator server infrastructure
for its storage. Through the general purpose network several organisations can
get remote access to the functionality of the metering system for installation,
configuration and maintenance, but strict access policies and accountability of
the actions are enforced.

A smart meter in this architecture is called Trusted Meter (TM), and it can
be composed of one of more physical sensors, one or more TSMs and one TSMC.
A detailed description of the architecture is presented elsewhere [15].

MixedModeTM, a partner company within the SecFutur project, has devel-
oped a prototype of a Trusted Meter, described in the next section.

3.1 Trusted Meter Prototype

Fig. 2: Trusted Meter

The prototype of a TM is composed of one physical sensor and includes the
functionalities of a TSM and a TSMC. The sensor is an ADE7758 integrated
circuit, which is able to measure the accumulated active, reactive and apparent
power. The functionality of the sensor is accessible via several registers that can
be read or written through its interface to the Serial Peripheral Interface (SPI)
bus. There is a variety of registers that can be accessed for reading out energy
measurements, configuring the calibration parameters, operational states etc.

The sensor is then interfaced with an OMAP 35x system where the function-
alities of the TSM and TSMC are implemented in software, with the addition
of specialised hardware, namely Trusted Platform Module (TPM), that provides
the trusted computing functionalities. The system, running Ångström Linux,
uses secure boot to ensure that the hardware and software modules are not cor-
rupted and encryption is used to send out the readings to the operator servers.

3.2 Threats

After a careful study of the security requirements of the system, the applied
security mechanisms and the design of the meter prototype, we came up with
the following observations:



– The consumption measurements, certificates, and credential recorded in the
processor module (OMAP 35x) will not be subject to change by malware or
external applications due to the use of TPM technology, which also prevents
typical smart meter vulnerabilities reported in an earlier work [12].

– The metering data that is sent out to the operator servers is encrypted by
the application, hence secure while in transmission.

– The weakest point in the system is represented by the unprotected physical
connection between the sensor and the OMAP 35x system where the TSM
and TSMC functionalities are implemented.

The main threat is hence represented by potential man-in-the middle attacks
on the SPI bus that affect the values of data or commands transmitted, as
depicted in Figure 3.

(a) Manipulation of consumption val-
ues

(b) Manipulation or injection of control
commands

Fig. 3: Possible attack on the communication bus

A possible solution would be again based on encryption of the messages prior
to the transmission on the SPI bus. This could be applicable in the cases when
the sensor and the TSM are two physically separate modules, but when it comes
to an embedded system, encryption would dramatically increase the complexity
of the sensor circuitry, that must be kept cheap due to the large scale deployment.

This analysis shows the need for real-time monitoring for intrusion detection
is still present although trusted platforms offer higher level of protection than
earlier solutions. This motivates proposing an embedded anomaly detection as
potential technology to explore.

4 Embedded Anomaly Detection

The proposed embedded anomaly detection architecture is devised to be included
in the functionality of the Trusted Meter. Figure 4 illustrates the main compo-
nents of the architecture. It consists of five modules: a data logger, a data prepro-
cessor, two anomaly detection modules and an alert aggregator. The data logger



Fig. 4: Proposed Cyber-Physical Anomaly Detection Architecture

is in charge of listening for communication events and data exchange through
the sensor-TSM channel. It will record both the cyber domain information, i.e.
packet headers or connections, as well as the physical energy measurements.

The data preprocessor is in charge of transforming the raw signals detected
on the channel into feature vectors that can be fed to the anomaly detection
modules for evaluation of current state.

Anomaly detection consists of two modules: one is used for the cyber layer,
i.e. the communication protocol on the SPI bus in the prototype meter, while
the second is used to detect anomalies on the physical layer, the actual energy
consumption that is reported by the sensor. The motivation for this distinction
is the need for having two different time scales on the state estimation in the two
domains: while the cyber communication can be monitored and suspicious events
detected within seconds, anomalies on the physical domain need to be discovered
in the order of days or weeks. This is due to the fact that load profiles change
detection is only meaningful when based on a sufficiently long time window. The
two modules complement each other: while command injection on the bus can be
detected by the cyber layer anomaly detector, consumption data manipulation
leading to changing consumption statistics can be detected by the physical layer
anomaly detector.

The last component of the architecture, the alert aggregator, takes as input
the alarms generated by the two anomaly detector modules and decides whether
anomalous behaviour should be reported to the central system.

In the following sections we will describe the modules in depth and present
their implementation in our current test system.

4.1 Data Logger

In the prototype meter, the unprotected communication channel between the
sensor and the TSM+TSMC module is the SPI bus. The SPI communication
is always initiated by the processor (in the OMAP 35X system) who writes,
in the communication register of the sensor, a bit that specifies whether the
operation is a read or a write command, followed by the address of the register
that needs to be accessed. The second part of the communication is the actual
data transfer from or to the addressed register of the sensor. The application that



implements the TSM and TSMC functionalities performs a energy reading cycle
every second, sending calibrations or configuration commands when required.

Our bus logger records the following information: the timestamp of the oper-
ation, the command type (read or write), the register involved in the operation
of the value that is read or written. In our experimental setup, as described
later, the data logged at the driver level of the SPI interface of the TSM+TSMC
side sufficed for our evaluation. However, bus messages should be sniffed and
logged by an external element in order to record all the commands received by
the ADE7758 sensor, and its deployment will be considered in the design of the
next version of the prototype.

4.2 Data Preprocessing and Feature Extraction

The data preprocessor receives records in the format presented in the previous
section, and produces vectors of features that will be processed by the anomaly
detectors. A common data preprocessor for both domains avoids processing the
received data twice. The features selected are numerical variables that all to-
gether represent the normal operation of the system. For the cyber domain,
these are based on information regarding the frequency and types of operations
carried out on the SPI bus during a period of observation time I. There are three
categories of features:

– Operation type: percentage of number of read or write operations per-
formed in the period of observation I. An additional feature counts the num-
ber of times the read-only registers are accessed, which is useful to capture
the fact that most of the time (every second in our case) the communication
is performed to read out energy measurements.

– Category type: percentage of the number of times the registers of the fol-
lowing categories are accessed in the period of observation I : reading, configu-
ration, interrupt, calibration, event, info. The first category includes registers
used for accumulation of active, reactive and apparent energy accumulation
for the three different phases. Register categorised as configuration are those
used for configuring different operational parameters of the energy measure-
ment. Registers in the category interrupt are interrupt status flags. Registers
included in the event category are used to store information on events such
as voltage or current peak detection etc. The category calibration, groups the
important registers used to calibrate the different parameters of the sensor.
Finally, the info category groups registers where checksums and the version
of the sensor are stored.

– Register frequencies: usage frequency of each individual register addressed
in the period of observation I.

These features are designed to characterise the typical communication patterns,
therefore anomalous communication sequences or register access rates should be
discovered by the anomaly detector.

In the physical domain, commonly used indices for customers characteri-
sation, based on load profiles, can be utilised as features. These include daily



indices, as the widely used indices proposed in Ernoult et al. [17], such as the
non-uniformity coefficient α = Pmin

Pmax
, the fill-up coefficient β =

Pavg

Pmax
, the modu-

lation coefficient at peak hours MCph =
Pavg,ph

Pavg
and the modulation coefficient

at non-peak hours MCoph =
Pavg,oph

Pavg
, where Pmin is the minimum power de-

mand reported during the day, Pmax is the maximum power demand, Pavg is
the average power demand, Pavg,ph is the average power demand during the peak
hours and Pavg,oph is the power demand during the off-peak hours. More refined
indices that take into account weekly patterns (working days and weekends) can
be added, as those described in Chicco et al. [18].

4.3 Cyber-layer Anomaly Detection Algorithm

The sensor-processor communication is based on a series of messages exchanged
through the bus. In this context, the set of possible combinations is not very
large, due to the fact the set of registers accessible is bounded. The behaviour
in terms of the commands sequences, captured by the features selected, can be
considered as data points that fall into certain regions of the multidimensional
features space. In order to identify the good behaviour, an algorithm that is
able to identify these regions and consider them as the normality space would
be needed.

Therefore, we have adopted and embedded an instance of a clustering-based
anomaly detection algorithm [19] that uses a smart indexing strategy and is
therefore computationally efficient. Section 5 presents the evaluation of this al-
gorithm.

4.4 Physical-layer Anomaly Detection Algorithm

The features available for modelling the physical domain suggest that when
the load profile changes due to an eventual attack, the statistics over a long
period would be affected. A lightweight change detection algorithm can therefore
be embedded into the smart meter. A statistical anomaly detector using the
indicators described in Section 4.2 has been developed. However, due to absence
of long term data and ability to train and test the anomaly detector on consumed
electricity profiles, we have focused development and tests on the cyber level
attacks.

4.5 Alert Aggregator

The last component of the architecture is in charge of collecting the alerts gen-
erated by the anomaly detector modules, and performing aggregation in order
to reduce the number of alarms sent to the central operator. The alert aggre-
gation module can gather additional information in order to provide statistics
that show the evidence of an attack or the anomalous conditions. This creates
a smart meter health although individual analysis would still require a lot of ef-
fort and privacy concerns would hinder its "careless" deployment. However, this



can be useful when investigating areas in which non-technical losses (i. e. losses
that are not caused by transmission and distribution operations) are detected,
supporting for example localisation strategies as in [14]. Future works include
further investigations and privacy-aware development of this module.

5 Evaluation

In this section we present the evaluation of the anomaly detection on a number of
attacks performed in the cyber domain. We start presenting the methodology to
collect the data for evaluation, then we introduce the cyber attacks we performed
and finally we show the outcomes of the clustering-based anomaly detection
algorithm.

5.1 Data collection

In order to obtain data for training and testing the anomaly detection algorithm,
the trusted meter prototype has been installed in a household and real energy
consumption measurements have been collected during a period of two weeks in
January 2012. Although this frame of time is not long enough to capture nor-
mality for the physical domain, it is representative enough for the cyber domain,
where a 187MB data log file has been collected. The log, produced by the data
logger module as explained in section 4.1, is composed of bus communication
transactions that involve several registers for energy reading, sensor configura-
tions, calibration commands and sensor events. The energy reading operations
are performed with a period of one second, and they are predominant in the
dataset. The data preprocessor, as presented in section 4.2, gathers the trans-
actions during a period of observation I which has been set to 10 seconds, and
produces a feature vector that is processed by the anomaly detection algorithm.

5.2 Cyber attacks and data partitioning

Four types of attack have been implemented:

1. Data manipulation attack: in this scenario, the attacker performs a man-
in-the-middle attack in which the values of the registers involved in the
energy measurement are lowered. This can be easily done by overwriting the
signal on the bus on every reading cycle.

2. Recalibration attack: this commands is injected on the bus in order to
change the value of some registers that hold calibration parameters, caus-
ing the sensor to perform erroneous measurement adjustments during its
operation.

3. Reset attack: this command causes the content of the energy accumulation
registers to be wiped out. It has to be executed within every reading cycle
in order to reduce the reported energy consumption. In our scenario, we
executed it with a period of one second, interleaving it with the period of
the measurement process.



4. Sleep mode attack: this command puts the sensor into sleep mode, e.g. no
measurements are taken. While in sleep mode, the sensor SPI interface still
replies to the commands executed by the processor module, but the energy
consumption is not accumulated by the sensor.

In our evaluation, we tested the attacks 2 to 4, since attack 1 does not pro-
duce new messages on the bus and it would only be detectable by the physical
layer anomaly detector. The attacks were first implemented at application level,
through the SPI interface drivers of the processor module. Since the data was
collected in an attack-free scenario, a script has been implemented to weave the
attack information into the clean data. Our traces consist of two weeks of logs
in which 2/3 of the data represent normal conditions, and the remaining 1/3
is affected by one attack at the time, generating therefore 3 different testing
traces. However, a physical hardware that can implement such attacks on the
bus (SecFat) is under development in the SecFutur project.

The anomaly detector algorithm is therefore trained with the feature vectors
obtained by the first third of the data, while we tested with the other 3 traces
which contain the remaining third of normal data and the third of data under
attack. When the data preprocessor computed the feature vectors, we manually
set an oracle bit to indicate whether the features are affected by an attack or
not. This will be helpful for comparison when evaluating the outcomes of the
anomaly detection algorithm.

5.3 Results

During our evaluation, we have tuned the two classical parameters of the clustering-
based anomaly detection algorithm which need to be configured manually in or-
der to create a good normality model and optimise the search efficiency. These
are the maximum number of clusters (M), and a cluster centroid distance thresh-
old (E), that is used when determining whether a new data point falls within its
closest cluster or not. The optimal number of clusters typically depends on the
distribution of the input data into the multidimensional space. The threshold is
also important, since during real-time monitoring it determines whether a new
feature vector belongs to any pre-existing cluster or not. Therefore, in order to
select a suitable combination of the two parameters, the outcomes of the detec-
tion were explored with M ranging from 10 to 100, and E ranging from 1 to
2.5.

The metrics used for evaluating the detection algorithm were the detection
rate (DR), calculated from the percentage of feature vectors during the attack
that are correctly classified as anomalous, and the false positive rate (FPR),
which measures the percentage of normal observations that are erroneously clas-
sified as anomalous.

Our results show that the algorithm does not build a correct partitioning of
the normality data when M is set to 10 and 20 with all the possible combinations
of E. In the detection phase, all the observations (with or without attacks) are
classified as anomalous, leading to 100% DR but with a 100% FPR rate. An



optimal partitioning of the normality data is found when M is set to at least
30. In this case, the algorithm uses 18 clusters to model the data, and for every
configuration of E in the range between 1 and 2 we get 100% DR with no
false positives for all three types of attacks. In the cases when E is over 2 we
allow a very large threshold and the detection rate is reduced to zero for the
recalibration attack, since it is the attack type that is more similar to normal
conditions where recalibration takes place in the training period. The results are
similar when increasing M up to 100. This means that the algorithm finds 18
clusters to be the best number for modelling the normality data.

6 Conclusion and future work

In this paper we have analysed the vulnerabilities of a recently designed smart
metering infrastructure. Although confidentiality, authenticity, accountability,
integrity and privacy are provided by the use of TPM technology embedded into
smart meters, some vulnerabilities persist and real-time monitoring for cyber and
physical tampering attacks is still a security solution that must be considered
when designing new smart meters. Therefore, we have explored deployment of
a lightweight embedded anomaly detection architecture that takes into account
both cyber and physical domains and implemented and evaluated part of this
architecture on a smart meter prototype. The evaluation performed on attacks
in this psuedo-real settings has shown that the algorithm is able to efficiently
detect several types of attacks without emitting any false positive.

Further development will target the physical layer anomaly detector and
the module that combines the outcomes of the detection on both domains and
provides a smart meter health indicator to provide the utility company with a
more accurate non-technical loss analysis.
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