
BATMAN Store-and-Forward: the Best of the Two Worlds

Laurent Delosières and Simin Nadjm-Tehrani
Department of Computer and Information Science,
Linköping University SE-581 83 Linköping, Sweden
{laurent.delosieres, simin.nadjm-tehrani}@liu.se

Abstract—The need for communication is highest in disaster
scenarios when the infrastructure is also adversely affected.
A recent protocol for ad hoc communication, the BATMAN
protocol, is dependent on minimal infrastructure, in the form
of mesh nodes that are used as access points, or nodes acting as
an intermediary in a multi-hop connection. While BATMAN
works well in a scenario in which there is a multihop path
from senders to receivers at all times, it will drop the pack-
ets in intermittently-connected networks. Moreover, although
implementation on a device is essential as a proof of concept,
performing large scale evaluations requires a simulation plat-
form in which variations in the operating environment can
be studied. This paper is about adding the store-and-forward
mechanism to the routing component in BATMAN nodes,
to overcome intermittent connectivity through mobility. We
describe an extension of the protocol, SF-BATMAN, that has
been implemented in an interoperable manner with BATMAN,
i.e. with no added signaling, and no change of basic BATMAN
settings. We have implemented SF-BATMAN in a packet
level simulator (NS3), and demonstrated its performance in
a scenario that consists of two regions of connectivity: a well-
connected mesh network and a set of sparser subnetworks. We
show that the added capability enhances the performance of
BATMAN, through an increase of the delivery ratio by 20%
with a lower overhead, while it exhibits a similar latency in
comparable network scenarios.

Keywords-mesh network, delay-tolerant routing, BATMAN,
store-and-forward, NS3.

I. INTRODUCTION

Communication in disaster area networks is vital for es-
sential services that create situation awareness and facilitate
disaster relief. Since the need for communication is often
highest when the infrastructure is most overloaded or indeed
damaged, there is a growing evidence that ad hoc networks
have a role to play in post-disaster communication [1], [2],
[3]. Such infrastructure-free networks are a complement to
the existing technologies such as satellite phones, TETRA-
based devices, mobile base stations etc., which are too
expensive to deploy in a large area for mass communication.

A recent deployment of a mobile ad hoc network
(MANET) routing protocol, the BATMAN protocol, in so
called Bat-phones [4], is dependent on minimal infrastruc-
ture [5]. The idea is to use mesh nodes as access points, or
use them as peers which rely on every phone acting as an
intermediary in a multi-hop connection. While BATMAN
works well in a scenario in which there is a multihop
path from senders to receivers at all times, it will drop

the packets in intermittently-connected networks. Moreover,
although implementation on phones is essential as a proof
of concept, performing large scale evaluations requires a
simulation platform in which variations in the operating
environment can be studied.

This paper is about adding the concept of store-and-
forward from delay-tolerant networks (DTN) to the rout-
ing component in BATMAN nodes, in order to overcome
intermittent connectivity through mobility. We describe an
extension of the protocol implemented in a packet level
simulator (NS3) and demonstrate its performance in a sce-
nario that consists of two regions of connectivity: a well-
connected mesh network and a set of sparser subnetworks
that are intermittently connected to some elements of the
mesh network. We show that the added capability enhances
the performance of BATMAN both measured as delivery
ratio and overheads.

The BATMAN store-and-forward version enables to route
packets both in mesh and delay-tolerant subnetworks by
using only one routing protocol. As opposed to other
works [6], [7], [8], [9] in which one routing protocol was
used for delay-tolerant networking and another one for mesh
networking, our approach provides interoperability with an
existing performant mesh network routing protocol.

The contributions of this paper are (1) implementation of
the BATMAN protocol in Network Simulator 3 (NS3), (2)
adding the store-and-forward capability in an interoperable
manner with no extra signaling and (3) evaluation of the
extended protocol in a hybrid scenario, a mix of mesh nodes
and mobile DTN nodes, showing an added value.

The paper is structured as follows: Section II introduces
the concepts of mesh and delay-tolerant networks, and ex-
plains how the routing protocol BATMAN works. Section III
explains the modifications brought to BATMAN in order to
incorporate store-and-forward. Finally, Section IV evaluates
BATMAN and its store-and-forward version in a mixed
scenario composed of DTN and mesh nodes.

II. BACKGROUND

A MANET is a self-configuring and infrastructureless
network in which mobile devices may be used as relays to
facilitate the communication between unreachable pairs of
devices. The assumption on such a network is the existence
of a multi-hop path between each pair of devices at all times.

Second International Workshop on Pervasive Networks for Emergency Management (PerNEM 2012)

978-1-61284-936-2/12/$26.00 ©2011 IEEE 727

A mesh network is very similar to a MANET except that
the nodes composing the infrastructure tend to be stationary
or have limited mobility, and some can be used as dedicated
routers. This network is quite reliable since there are many
paths to connect two devices.

A DTN is composed of devices which may not be
able to communicate with each other because of temporary
disruptions. To cope with these disruptions, a mechanism
called ”store-and-forward” is central to DTN protocols. This
mechanism enables to store the messages when no paths are
available towards the destination and forward it later to the
destination or to custodians that will transmit the message
towards the destination.

BATMAN [5] is a protocol originally developed for
mesh network routing based on the ant pheromones. The
pheromones created by every node or originator in the
network are called Originator Messages (OGMs). Each node
periodically broadcasts an OGM to its neighbours, which in
turn rebroadcasts the OGM to its neighbours. While some
OGM messages will be lost due to contention or mobility,
most nodes will get an update of the information about the
nodes in the network on a regular basis.

Upon receiving a new OGM, each node stores it in a
buffer to keep track of the previous OGMs received. Each
node also updates the last aware time of the originator which
corresponds to the latest time of the reception of the OGM
created or forwarded by this originator. The node having
the highest quantity of pheromones from a given originator
is likely to be the first hop on the best path to reach this
originator. Each node keeps a timer for each originator in its
list of originators in order to remove the obsolete originators
from its list.

In order to avoid one-way communication, there is added
information in the OGM to check whether or not the link
between two nodes is bidirectional. This process is done
in three steps. First, a node broadcasts its new OGM.
Secondly, the node in its proximity upon receiving this OGM
broadcasts it in turn. Thirdly, the first node will receive
its own OGM and will know that the communication is
bidirectional between it and the node that has sent back
the OGM. In other words, these nodes are neighbors. A
node A considers the link as bidirectional with a node B as
long as the number of new OGMs that are self-originated
by the node A since the last establishment of the link
bidirectionality with node B is below a certain threshold.
This threshold is called the bidirectional link timeout.

When a node wants to send a message to a given des-
tination, it will forward the message to its best neighbor.
The best neighbor is the one that has forwarded the highest
quantity of OGMs issued by the destination within a sliding
window as described below.

Since each neighbor may forward different OGMs from
a given originator, a unique sliding window of constant size
is used to keep track of the freshest OGMs rebroadcasted

by each neighbor. This window is updated each time a
new OGM is received from a neighbor. The notion of best
neighbor towards a given destination at a given time can
thus replace the classic routing table in proactive MANET
routing. In the descriptions below, we will use the primi-
tives GetNextHop and UpdateRoutingTable for the routing
operations that are performed on the OGM lists.

Reineri et al. [10] have used a smart sliding window which
counts the OGMs according to their weights. These weights
are computed by an exponential function based on the rank
of OGMs contained in the sliding window. In other words,
the latest OGMs received are more prioritized than old ones.
This version of BATMAN is referred to as SW-BATMAN.
From now on, when we refer to BATMAN, we intend the
optimized version (SW-BATMAN).

III. BATMAN AND ITS EXTENSION

In this section, we describe the processing of packets with
BATMAN that has been modified and extended to create
a delay-tolerant version of BATMAN (SF-BATMAN). We
begin by describing the skeleton of the original protocol,
and then go on to extend it in order to include the partition
tolerance mechanism.

A. BATMAN

Procedure 1 describes how hop-by-hop forwarding works.
When an OGM packet arrives from a bidirectional link, or
an originator in the list of originators becomes obsolete, the
routing table will be updated.

When an application packet needs to be sent, we first get
the chosen neighbor from the routing table via the function
GetNextHop and then we send the packet via the function
SendPacket if there exists a chosen neighbor. Otherwise
we drop the packet.

When a forwarded packet arrives, we first check if it is
intended for us via the function GetPacketDestination. If
so, we deliver the packet via the function DeliverPacket
otherwise we find the chosen neighbor, if it exists, and send
the packet to it. If it does not exist, we simply drop the
packet.

B. Store-and-Forward BATMAN

Procedure 2 describes how hop-by-hop forwarding works
with SF-BATMAN. SF-BATMAN is similar to BATMAN
except that in the point where BATMAN would send
a packet SF-BATMAN tries to send it via the function
TrySending (Procedure 3) which saves the packet in
case the chosen neighbor does not seem to be reachable.
More specifically, the operations GetNextHop, UpdateRout-
ingTable, SendPacket, DeliverPacket, and GetPacketDestina-
tion are identical to the corresponding BATMAN operations.
This means in particular, that a packet can be forwarded
towards a destination for which the path information is

728

Procedure 1 BATMAN running at node i
When an application packet arrives

chosen neighbor = GetNextHop(packet)
if chosen neighbor 6= NULL then

SendPacket (packet, chosen neighbor)
else

DropPacket(packet)
end if

EndWhen
When a forwarded packet arrives

if GetPacketDestination(packet) 6= i then
chosen neighbor = GetNextHop(packet)
if chosen neighbor 6= NULL then

SendPacket(packet, chosen neighbor)
else

DropPacket(packet)
end if

else
DeliverPacket(packet)

end if
EndWhen
When a new OGM packet arrives from a bidirectional
link

UpdateRoutingTable()
EndWhen
When an originator becomes obsolete

UpdateRoutingTable()
EndWhen

somewhat stale. But this is also a property of BATMAN
and our goal is not to redefine the original protocol.

Another difference is the attempt to send the pack-
ets stored in the buffer SFbuffer via the function
IteratePackets (Procedure 4) when a packet to forward
or an OGM packet arrives.

Procedure 3 describes how we try to send the message.
First we get the last aware time of the next hop via the
function GetMostRecentAwareTime as well as the current
time. If the difference between the current time and the
last aware time of the chosen neighbor is less than TC

(explained below) then the chosen neighbor is likely to be
in our transmission range, thus we forward the message to
it. If the packet is not likely to succeed in forwarding and
it is new, we store it in the SFbuffer.

DTN protocols typically use replication to reduce the risk
of losing a packet at the MAC Layer [11], [12]. Since
BATMAN has a single forwarding policy, we need to be
careful about partial transmissions resulting in lost packets
at the MAC layer 1. To cope with this, we only forward to
neighbors that we believe are currently in our range. The

1Note that changing the MAC layer would make the protocol non-
interoperable.

nodes that are currently in contact are most likely those that
have sent OGMs in the latest OGM period. If movements
are slow the duration of the contact window could be larger
than the OGM period. In our work, the approximation of
the contact window is a configurable parameter TC . We
have chosen not to estimate the contact window as in earlier
works [12] to preserve interoperability with BATMAN (i.e.
avoiding a change of the OGM structure by adding speed,
position, etc). In addition, using this method we keep the
standard BATMAN timers for removing originators from the
list which is another interoperability argument. Even though
the SF-BATMAN protocol tries to limit the loss of partial
transmissions, some may still occur due to interferences or
node mobility subsequent to transmission. While retransmis-
sions at the transport layer or application layer are not ruled
out, our goal here is not making any assumptions on their
existence, and try to reduce the partial transmissions at IP
layer with minimum overhead.

Procedure 2 SF-BATMAN running at node i
When an application packet arrives

chosen neighbor = GetNextHop(packet)
TrySending(packet, chosen neighbor)

EndWhen
When a forwarded packet arrives

if GetPacketDestination(packet) 6= i then
chosen neighbor = GetNextHop(packet)
TrySending(packet, chosen neighbor)

else
DeliverPacket(packet)

end if
IteratePackets()

EndWhen
When a new OGM packet arrives from a bidirectional
link

UpdateRoutingTable()
IteratePackets()

EndWhen
When an originator becomes obsolete

UpdateRoutingTable()
IteratePackets()

EndWhen

Procedure 3 TrySending
Input: packet, chosen neighbor

T = GetMostRecentAwareTime(chosen neighbor)
Tnow = GetTimeNow()
if Tnow − T ≤ TC then

SendPacket(packet, chosen neighbor)
else

SFbuffer = SFbuffer ∪ packet
end if

729

Procedure 4 IteratePackets
for each packet ∈ SFbuffer do

chosen neighbor = GetNextHop(packet)
if chosen neighbor not NULL then

TrySending (packet, chosen neighbor)
end if

end for

IV. SIMULATION

In this section, we show that the interoperable operation
of BATMAN and SF-BATMAN in a mixed scenario has an
added value. By a mixed scenario, we mean one in which
there is a mesh network deployment in some part of the area
and there are other nodes moving in a surrounding DTN.
The hypothesis is that nodes that are equipped with SF-
BATMAN will make the best of the mesh infrastructure in
a BATMAN like fashion, and when they are in a DTN they
exploit their SF-BATMAN capabilities.

A. Scenario

The scenario is composed of 60 nodes spread all over
Helsinki. Amongst them 30 are stationary and grouped
together to form a mesh network located in the center and 30
others composed of pedestrians, cars and trams representing
DTN nodes spread elsewhere in the area (see Figure 1). The
mobility pattern has been generated by the Helsinki scenario
of simulator ONE [13] which is well-known as a platform
for DTN evaluations, and publicly available. These mobility
traces were adapted to the NS3 input format.

The pedestrians dispose of a short transmission range
reflecting mobile phones compared to the other type of nodes
such as base stations which have a much larger transmission
range. In order to reflect the interferences between the mesh
nodes, we have chosen a transmission range larger than
the distance between two neighbors. Table I describes the
characteristics of the nodes.

The UDP traffic is split equally between the mesh sub-
network and DTN subnetwork where half of the traffic was
issued and intended for the moving nodes, and the other half
by the mesh nodes and for the mesh nodes. Sender and re-
cipient are randomly selected in their respective subnetwork.

Four experiments have been done lasting 3 hours and 20
minutes each, with the number of messages sent ranging
from 3.000 messages to 60.000 messages of 1.500 bytes
each, in each subnetwork. In each experiment, the respective
load is 0,67 messages per second, 2,68 messages per second,
4,69 messages per second, and 6,70 messages per second
over all the network. Each point in the following figures
represents the average of twelve simulations along with their
95% confidence interval.

Concerning the BATMAN protocol, the sending period of
OGMs has been fixed to one second. This duration was also
used for the contact window TC . The other parameters have

been fixed according to the BATMAN rfc [14]. The first hour
of simulation has been used for building up the routing table
and getting the network started up so that BATMAN is in a
stable state to be sure to be fair when isolating the effects
of the SF. As for the counting process of OGMs, it has been
done according to the earlier work by Reineri et al. [10]. For
the sake of a complete picture we restate these parameters
in Table II. Here, we also include the parameters that are
specific to SF-BATMAN, i.e. TC .

Figure 1. Helsinki - mesh network and DTN nodes

B. Results

Concerning the delivery ratio for BATMAN and SF-
BATMAN, we expect SF-BATMAN to have a higher de-
livery ratio than BATMAN since SF-BATMAN stores the
packets that are dropped due to partitions in BATMAN.
This is confirmed by our results shown in Figure 2. We
can also notice that when the number of messages injected
into the network increases, the number of messages received
decreases. However, the difference of delivery ratio is con-
stant as the number of messages sent increases which may
be explained by the fact that the buffer SFbuffer is large
enough and therefore packets are not dropped due to memory
limitation (in the worst case, 1,54 MB of buffer space was
used). Moreover, since 50% of the UDP traffic is inside
the mesh network, we would intuitively expect a delivery
ratio of 50% (or higher) for the two protocols. The lower
delivery ratio is explained by higher interferences in the
mesh network since the DTN traffic is also passing through
the mesh for certain destinations.

An analysis of the overhead between SF-BATMAN and
BATMAN follows next. We define the overhead as the
total number of packets (i.e. OGM packets as well as
data packets) sent in the network over the total number of
messages received. We expect to have a lower overhead
for SF-BATMAN compared to BATMAN. This is based
on the intuition that SF-BATMAN has a higher delivery
ratio than BATMAN and the same number of OGM packets

730

Table I
CHARACTERISTICS OF NODES

Node type Number Transmission range (meters) Node speed (km/h) Pause (seconds) Buffer Size (MB) Maximum bitrate (Mbps)

Pedestrian 16 51 1.8-5.4 5-120 5 6

Car 8 95 10-50 5-120 50 6

Tram 6 95 10-50 10-30 50 6

Static node 30 102 0 0 50 6

Table II
SIMULATION PARAMETERS

Time To Live (in number of hops) 128

Sliding window size 128

Timer (to remove obsolete originators) 1280 seconds

OGM sending interval 1 second

Birectional link timeout (consecutive OGMs) 10

TC 1 second

Figure 2. Delivery ratio

which represent the overwhelming majority of packets in the
network 2. Moreover, since the number of messages received
increases as the number of messages injected in the network
increases while the total number of packets remains almost
constant, we expect to have a decrease in overhead. This is
confirmed by our results in Figure 3.

Figure 3. Overhead

2Note that this also implies that computing overhead only based on the
OGMs would not change the picture or add new insights.

We have also analyzed the average latency defined as the
average time taken for the packets to reach their destination
excluding the packets that were lost on the path for both
protocols. It turned out that BATMAN has a very low latency
of 0.2 seconds in contrast with the SF-BATMAN which
shows a higher average latency (Figure 4). This difference is
created by the mobility, and sparseness induced by network
partitions, and the time taken for buffered packets to move
towards destination. In other words, the latency is influenced
by all the waiting times for each packet at each hop.
Considering that many more messages are delivered by SF-
BATMAN, a higher average latency is expected. We also
note that the average latency for messages exchanged only
in the mesh network for SF-BATMAN (i.e. 0.4 seconds) is
not that far from BATMAN (i.e. 0.2 seconds).

As a first conlusion, we can say that SF-BATMAN
outperforms BATMAN while having a lower overhead and
an average latency below 1 second for routing packets in
the mesh network. Similar results were observed when the
messages were addressed for random destinations and not
only for the nodes belonging to the same subnetwork.

V. RELATED WORKS

One of the first communication protocols for disaster area
networks with a store-and-forward capability was suggested
by Asplund et al. [1]. That protocol was intended for
energy-efficient manycast in a network with no knowledge
of present node addresses. This paper is about directed
communication via unicast.

Johnsson et al. [5] have compared the performance of
BATMAN created by Neumann et al. [14] with the Opti-
mized Link State Routing (OLSR) [15]. They showed that
in a static grid composed of forty nine routers, BATMAN
outperforms OLSR on almost all performance metrics (i.e.
routing overhead, best overall throughput, delay, etc).

731

Figure 4. Average latency

Reineri et al. [16] have compared the performance of
their modified BATMAN (i.e. SW-BATMAN) with OLSR,
OLSR-ETX and BATMAN for routing MPEG video packets
with and without background traffic. Their SW-BATMAN
version outperforms the other routing protocols in terms of
rate loss, jitter, etc. These works motivate our interest for
the basic BATMAN protocol.

To route a packet in both a connected and disconnected
network, Musolesi et al. [6] have used the routing protocol
CAR which is the combination of the Destination-Sequenced
Distance-Vector (DSDV) routing protocol and their own
DTN routing protocol based on the delivery probability.
DSDV was used for the intra-partition communications and
a DTN routing protocol for the inter-partition communica-
tions. To limit the number of messages in the network while
ensuring a high delivery probability for each packet, they
were replicating the messages according to their delivery
probability. As opposed to their work, we only use one type
of signaling packet (i.e. OGM).

Liu et al. [9] have proposed a new routing protocol
called Efficient Adaptive Routing (EAR) which is composed
of DSDV and Spray and Wait [11]. They form logical
clouds which are defined as the set of nodes being able
to communicate with each other. However, they limit the
number of nodes per logical cloud in order to limit the
bandwidth used by each node for maintaining the DSDV
shortest paths. Indeed, nodes belonging to the same logical
cloud only need to maintain paths inside this cloud. Between
the clouds, nodes use the Spray and Wait routing protocol.
Whitbeck et al. [7] have created their own hybrid routing
protocol Hybrid DTN-MANET (HYMAD). They split the
network in small clusters where nodes use a distance vector
routing protocol for intra-partition routing and Spray and
Wait for inter-partition routing. In our case, we do not
impose any logical clouds or small clusters.

Ott et al. [17] propose a hybrid routing protocol composed
of AODV and a DTN routing protocol where AODV discov-
ers nearby DTN routers and uses DTN router information

for getting route hints. The nodes choose between routing
packets with AODV and end-to-end TCP if there is an
existing path to the destination and routing packets with
hop-by-hop DTN and bundles otherwise. In contrast with
them, we do not need to modify the signaling packets.

Lakkakorpi et al. [8] have used AODV for the MANET
routing and the epidemic routing for the DTN routing. They
switch from MANET to DTN routing based on the message
size, the node density and the path length to destination.
The epidemic routing protocol replicates unlimitedly the
messages until they arrive at the destination which causes
memory depletion of the nodes.

VI. CONCLUSIONS AND FUTURE WORK

We have embedded the store-and-forward functionality
in BATMAN and compared it with its basic version in a
scenario with a mixture of mesh nodes and DTN nodes. It
meant adding a buffer to store the packets which did not
have any routes towards the destination or packets whose
next hop seemed unreachable. To limit the number of packets
lost because of node mobility, we have used a time window
parameter to approximate a contact window in which the
nodes were allowed to send messages to their next hop or
to the destination.

We have illustrated the benefits of the extended protocol
by showing that the delivery ratio of SF-BATMAN is
20% higher than BATMAN with a lower overhead. Even
though the average latency for the whole traffic is larger
when running SF-BATMAN than the one experienced in
BATMAN, the packets which are routed inside the mesh
network have a similar average latency for the two protocols.

Future works include implementation of the protocol on a
device, its comparison with other hybrid protocols in more
detail, and the exploration of the replication mechanism for
higher delivery ratio.

ACKNOWLEDGEMENTS

This work was supported by the EU project SecFutur and
the use case with embedded devices for disaster communi-
cation.

REFERENCES

[1] M. Asplund and S. Nadjm-Tehrani, “A partition-tolerant
manycast algorithm for disaster area networks.” in
SRDS. IEEE, 2009, pp. 156–165. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/SRDS.2009.16

[2] “The serval project making communications available
anywhere, anytime.” Dec. 2011. [Online]. Available:
http://www.servalproject.org/

[3] “Lifenet: Organization.” Dec. 2011. [Online]. Available:
http://thelifenetwork.org/org.html/

[4] “Open-mesh.” Dec. 2011. [Online]. Available:
http://www.open-mesh.org/

732

[5] D. Johnsson, N. Ntlatlapa, and C. Aichele, “A simple
pragmatic approach to mesh routing using BATMAN,” in 2nd
IFIP International Symposium on Wireless Communications
and Information Technology in Developing Countries.
Pretoria, South Africa: CSIR, 2008. [Online]. Available:
http://wirelessafrica.meraka.org.za

[6] M. Musolesi and C. Mascolo, “CAR: Context-
aware adaptive routing for delay-tolerant mobile
networks,” IEEE Transactions on Mobile Computing,
vol. 8, pp. 246–260, 2009. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/TMC.2008.107

[7] J. Whitbeck and V. Conan, “HYMAD: Hybrid DTN-
MANET routing for dense and highly dynamic
wireless networks,” Computer Communications (Butterworth-
Heinemann), vol. 33, pp. 1483–1492, August 2010. [Online].
Available: http://dx.doi.org/10.1016/j.comcom.2010.03.005

[8] J. Lakkakorpi, M. Pitkänen, and J. Ott, “Adaptive routing
in mobile opportunistic networks,” in Proceedings of the
13th ACM international conference on Modeling, analysis,
and simulation of wireless and mobile systems. New York,
NY, USA: ACM, 2010, pp. 101–109. [Online]. Available:
http://doi.acm.org/10.1145/1868521.1868539

[9] C. Liu and J. Wu, “Efficient adaptive routing in delay
tolerant networks,” in IEEE International Conference on
Communications. IEEE, 2009, pp. 1–5. [Online]. Available:
http://dx.doi.org/10.1109/ICC.2009.5198967

[10] M. Reineri, C. Casetti, and C.-F. Chiasserini,
“Routing protocols for mesh networks with
mobility support,” in 6th International Symposium
on Wireless Communication Systems (ISWCS).
IEEE, sept. 2009, pp. 71 –75. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/ISWCS.2009.5285344

[11] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray
and wait: an efficient routing scheme for intermittently
connected mobile networks,” in Proceedings of the 2005 ACM
SIGCOMM workshop on Delay-tolerant networking (WDTN).
New York, NY, USA: ACM, 2005, pp. 252–259. [Online].
Available: http://doi.acm.org/10.1145/1080139.1080143

[12] G. Sandulescu and S. Nadjm-Tehrani, “Adding redundancy
to replication in window-aware delay-tolerant routing,” JCM,
vol. 5, no. 2, pp. 117–129, 2010. [Online]. Available:
http://dx.doi.org/10.4304/jcm.5.2.117-129

[13] A. Keränen, J. Ott, and T. Kärkkäinen, “The ONE simulator
for DTN protocol evaluation,” in Proceedings of the 2nd
International Conference on Simulation Tools and Techniques
(Simutools). Brussels, Belgium: ICST (Institute for Com-
puter Sciences, Social-Informatics and Telecommunications
Engineering), 2009, pp. 55:1–55:10. [Online]. Available:
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5674

[14] A. Neumann, C. Aichele, M. Lindner and S. Wunderlich,
“Better Approach To Mobile Ad-hoc Networking
(B.A.T.M.A.N.),” RFC 1, Internet Engineering Task Force,
Oct. 2008. [Online]. Available: http://tools.ietf.org/html/draft-
wunderlich-openmesh-manet-routing-00

[15] T. Clausen, G. Hansen, L. Christensen, and G. Behrmann,
“The optimized link state routing protocol, evaluation through
experiments and simulation,” in Proc. of IEEE Symposium on
Wireless Personal Mobile Communications, September 2001.
[Online]. Available: http://hipercom.inria.fr/olsr/wpmc01.ps

[16] M. Reineri, R. Rubino, C. Casetti, and C. Chiasserini,
“Experimental performance assessment of WMN
routing protocols with mobile nodes,” in Wireless
Communications and Mobile Computing Conference
(IWCMC). IEEE, 2011, pp. 1010 –1015. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/IWCMC.2011.5982679

[17] J. Ott, D. Kutscher, and C. Dwertmann, “Integrating
DTN and MANET routing,” in Proceedings of the 2006
SIGCOMM workshop on Challenged networks (CHANTS).
New York, NY, USA: ACM, 2006, pp. 221–228. [Online].
Available: http://doi.acm.org/10.1145/1162654.1162659

733

