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Abstract —In the event of a disaster, telecommunication infrastructures
can be severely damaged or overloaded. Hastily formed networks can
provide communication services in an ad hoc manner. These networks
are challenging due to the chaotic context where intermittent connection
is the norm and the identity and number of participants cannot be
assumed. In such environments malicious actors may try to disrupt the
communications to create more chaos for their own benefit.

This paper proposes a general security framework for monitoring
and reacting to disruptive attacks. It includes a collection of functions
to detect anomalies, diagnose them, and perform mitigation. The mea-
sures are deployed in each node in a fully distributed fashion, but their
collective impact is a significant resilience to attacks, so that the actors
can disseminate information under adverse conditions. The approach
has been evaluated in the context of a simulated disaster area network
with a manycast dissemination protocol, Random Walk Gossip, with
a store-and-forward mechanism. A challenging threat model where
adversaries may attempt to reduce message dissemination or drain
network resources without spending much of their own energy has been
adopted.

Index Terms —Delay-tolerant networks, manycast, intrusion tolerance,
survivability

1 INTRODUCTION

Experience tells us that when natural disasters wipe
out or severely overload the existing telecommunication
infrastructures, the possible means of communication are
few and expensive, thereby creating a role for hastily
formed networks (HFN) [1]. In those cases where Inter-
net has been prevalent and survived, it serves as a fan-
tastic means of creating situational awareness. However,
where there is little infrastructure-based connectivity we
are faced with pockets of local connectivity. We believe
that there is a potential in tapping into the massive access
to handheld devices as a means of establishing ad-hoc
communication over wifi links for certain mass dissem-
ination purposes. In these circumstances, there is little
room for establishment of mutual trust infrastructures.
Any dissemination protocol destined for such environ-
ments requires to function in a chaotic context where the
node identifiers or even the number of involved nodes
cannot be assumed.
The physical aspects of above networks can be charac-

terised by intermittent connectivity, leading to networks
in which existence of partitions is a norm. This creates a
variation of mobile ad-hoc networks (MANET) with no
contemporaneous routes among the nodes, also referred
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to as intermittently connected MANET (IC-MANET).
These networks are complemented with specific routing
and dissemination protocols based on store-and-forward
approaches [2], [3] that store messages in local buffers
of the nodes during periods of no network connection.
Experience from the Katrina HFN [4] shows that even in
disaster environments there are security threats – actors
who try to disrupt operations or use the information
for own benefit. However, the application of security
measures in these environments is far from trivial.
A node whose aim is to disseminate a message to

as many new nodes as possible faces a number of
challenges. First, if it tries to deduce the state of com-
munication availability (and the potential threats) by ob-
serving its vicinity it will have a local and very restricted
view of the world. Due to the nature of IC-MANET,
even in absence of attacks, the observed traffic is not
easily characterisable (due to mobility and load changes).
Second, it is difficult to have a model of an attacker both
in space and time. Third, the dissemination protocols,
including one that we use for illustration of ideas in
this paper, have a tendency that they can spread the
impact of an attack in space and in time. Thereby local
observation by a node in its vicinity is not necessarily
indicative of what is going on around it or right now.
This paper addresses the above challenges by propos-

ing a framework for monitoring adverse conditions. It
includes a collection of functions that can be used to
detect anomalies, diagnose them (if earlier knowledge
for classification exists) and to perform mitigation ac-
tions. The measures are deployed in each node in a fully
distributed fashion, but their collective impact is that the
life of the network is prolonged, so that it can pursue its
dissemination goals under adverse conditions.
As an example of a dissemination protocol, we use

Random Walk Gossip (RWG) that is designed to run in
IC-MANET in a disaster area network [2]. This many-
cast algorithm tries to disseminate important messages
to any k receivers, not relying on knowledge about
the network nodes. Its main characteristics are that it
exploits opportunistic contacts and uses a store-and-
forward mechanism to overcome network partitions.
Moreover, to act in an energy-efficient manner it will try
to avoid excessive transmissions by decentralised control
of number of custodians for a given message.
Our approach is to model the attacker as general as

possible. As opposed to the cases where the attacker
can be identified by acting in a different way from the
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rest of the nodes, we consider that attackers’ behaviours
resemble the rest of the nodes in the network, thus al-
most indistinguishable by pattern matching. We further
assume that the adversary too needs to be efficient in its
use of energy and bandwidth resources. The adversary
may not act normally, but seen from a restricted view,
being the local knowledge at each mobile node, it follows
fragments of the protocol specification.
Thus, the threat model that we adopt is an adversary

that tries (1) to drain the network resources, both at
node level (battery life) and network level (available
bandwidth), thereby reducing the dissemination flows,
or (2) acts as an absorbing patch which reduces some
message dissemination in its vicinity, acting as a grey
hole at certain times and locations.
The framework that we propose has independent

elements that fulfil different functions: detection of
anomaly, diagnosis of known attacks if information is
available, and response to the known/unknown attack
by enabling a mitigation in the own node. The sys-
tem would work with a subset of the functions, i.e.
with/without diagnosis (a kind of misuse detection), and
with/without anomaly detection. However, there is no
impact on the network behaviour unless some mitigation
is available. We show extensive evaluations of each of the
functions, and when all the functions work together.
Our approach is evaluated in a simulation setting

where an implementation of RWG is running with a dis-
aster mobility model adapted from earlier work [5]. The
evaluations indicate that the approach indeed creates a
resistance to attacks, and show that the network recovers
once the attack is over. Moreover, our approach reduces
the impact of the attack to a significant extent, i.e. when
the attack is overloading the network we reduce the
impact by 40-90%, and when the attack reduces the
delivery ratio we reduce the impact by at least 40%.
The contributions of the paper are as follows:

• A framework for survivability of information dis-
semination in presence of scarce resources in IC-
MANET scenarios. In particular, characterisation of
the functions needed, and implementation of in-
stances of these with a goal to demonstrate surviv-
able communication despite paucity or uncertainty
in information, and adverse conditions – both in
network connectivity and adversary presence.

• An anomaly detection component based on sta-
tistical methods, together with a methodology for
how to set the parameters of the component in a
plausible context. This includes also a clarification
of relevant metrics for evaluation of an anomaly
detection function in challenged networks with ad-
versaries, and the role of the classic metrics.

• A diagnosis component that can be trained to recog-
nise known attacks when fed with evidence from
network behaviour collected locally.

• Effective mitigation mechanisms that are based on
observations from the vicinity and that impact the
behaviour of a network in the vicinity of the mit-

igating node only – thus, being able to deal with
uncertainties and inaccuracies of detection.

The survivability framework includes also an adapta-
tion function intended to act as a mechanism to make the
overall security approach self-organising. The detailed
evaluation of this function is not included in this paper.
However, we believe that the methodologies proposed
for how to configure each of the other three elements in
the framework pave the way for intelligent adaptation
leading to higher survivability in changing environ-
ments. This is currently explored in ongoing work.

2 RELATED WORK

The proposed framework is devoted to detection, di-
agnosis and reaction to security threats by using in-
trusion detection approaches. Neither trust [6] estab-
lishment, which is not easy to achieve in HFNs [1],
nor cryptographic techniques [7], [8], which are com-
putationally and energy-wise expensive, are required.
Several approaches [9], [10], [11], [12] exist for regular
MANET, which present many common challenges [13]
to IC-MANETs. However, to our knowledge no earlier
works present a holistic approach that improves protocol
performance in a challenged network in presence of both
intermittent connectivity and adversary attacks.
The anomaly detection component detects deviations

from the normality of each node from its own obser-
vations [14]. The most popular techniques in anomaly
detection are classified by Garcia-Teodoro et al. [15]
into statistical based, knowledge based, and machine
learning based. In MANET, depending on the location
and interaction of the detectors Xenakis et al. [16] classify
them as standalone, cooperative, and hierarchical.
In IC-MANET only a few works that address intrusion

detection exist. Chuah et al. [17] proposes a rule-based
misuse detection mechanism targeted towards delay-
tolerant networks. It builds on a history-based routing
protocol, identifies attacker nodes, and mitigates their
effects by keeping them on a black list, i.e. through
isolation. In the same context, Ren et al. [18] leverage
physical properties of the radio transmission to detect
wormhole attacks (without any mitigation mechanism).
While we are aware of the general limitations of

anomaly detection, such as difficulty of distinguishing
good data from bad data, and impact of false positives in
a scalable manner, as described in earlier works [19], [20],
we believe that detecting deviations from a perceived
normality is the only achievable objective in challenged
networks. Actors in disaster area networks have a pos-
sibility to perform training exercises and train their nor-
mality models in terms of levels of dissemination envis-
aged. However, a new situation will include unforeseen
elements and having a perfect detection is inherently
not possible. Thus, we aim to show that good results
can be achieved despite the presence of detection errors.
In particular, we show that given a reasonable accuracy
in detection, when combined with existing diagnosis
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and mitigation knowledge, the system performance is
indeed superior to the undefended case during periods
of attacks, and the regime does not cause any significant
negative effects during periods without attacks.
The diagnosis of anomalies in MANETs has not been

a priority. Few exceptions exist where misuse detection,
which is somewhat related to diagnosis, is used to
detect more than one attack. Vigna et al. [21] propose
a misuse detection approach based on the characterisa-
tion of the sequences of actions that attackers perform
to compromise the AODV routing protocol. Razak et
al. [22] propose a collaborative intrusion detector where
misuse and anomaly detection are both used for a better
detection accuracy. Şen et al. [23] propose the use of ge-
netic programming for evolving programs to detect each
particular attack. None of the above works evaluates the
diagnostic performance or uses it to take a specific action
for each attack. Furthermore, our work is in the context
of IC-MANET, a special instance of challenged networks.
Some works [17], [22], [24], [25], [26] propose certain

actions in the presence of attacks, but only a few evaluate
the consequence of mitigation [17], [26]. Furthermore, a
common response consists of the isolation of the nodes
that are suspected to be attackers [17], [26], [27]. In chal-
lenged networks since accurate identification of attackers
is hard and false positives are prevalent, an isolation
policy can create worse effects than the attack itself. A
number of works [26], [28] evaluate the impact of the
attacks and the impact of the isolation to intelligently
decide when it is worth applying isolation.
Countermeasures based on actions different from node

isolation are very few. They are typically preventive
mechanisms. For example, Li et al. [29] propose an
encounter ticket mechanism for probabilistic routing
protocols to defeat black hole attacks. The approach is
effective, but requires a trusted third party and resource-
demanding cryptographic methods. Solis et al. [30] pro-
pose a technique to reduce the effects of “resource hogs”
by establishing different priority classes for different
domains. The approach requires node authentication and
domain node membership management and does not
cope with attackers that belong to the trusted domain.
The evaluation of intrusion detectors is usually based

on the accounting for detection rate and false positive
rate typically presented as ROC curves. In most cases
these metrics reflect the number of attacks detected,
but sometimes they show the number of attackers de-
tected [17]. The detection delay is not usually taken
into account, but there are a few exceptions [24], [31],
[17]. There are approaches that quantify the impact of
the detectors, such as network overhead or the CPU
speed-up [32], or data delivery ratio to evaluate the
impact of attack response [17]. Delivery ratio and total
transmissions (as an indicator of overhead) are also
chosen as main metrics for evaluation of our system.
We use available detection rates and false positive rates
from earlier scenarios or off-line studies as an input to
the calibration of our algorithms only.

Detection Diagnosis Mitigation

Fig. 1. General Survivability Framework (GSF)

This paper is a substantially extended version of an
earlier paper [33]. That work included a preliminary
version of the anomaly detector, no overall survivability
framework and methodology, and only generic mitiga-
tion. The current paper includes a diagnosis component
and targeted mitigations for different classified attacks.

3 A FRAMEWORK FOR SURVIVING ATTACKS

We will now proceed to introduce our General Sur-
vivability Framework (GSF) for survivability in IC-
MANETS. It is aim is to help the system to survive
attacks in extremely challenged environments due to
unreliable and intermittent connectivity, lack of trust
between nodes, and unknown network characteristics.
Fig. 1 shows the framework consisting of four in-

dependent components: detection, diagnosis, mitigation
and adaptation to be run in every node in the network.
We argue that each of these boxes can be developed
and optimised separately and then be combined to form
an effective whole. The main loop (illustrated with bold
arrows) shows how the characteristics of the network are
observed by the system, anomalous behaviour is flagged
by the detector, classified by the diagnosis as a possible
attack, and how the mitigation changes the behaviour of
the node to account for this fact. The adaptation box is
intended to monitor the other three boxes and tune their
parameters to cope with changes of the network.
The detector raise an alarm if the current traffic devi-

ates from what it considers to be normal. This alarm
needs to be coupled with the collected evidence that
led to raising the alarm, and fed to the diagnosis box.
Obviously, the detection component needs a model of
normality to detect deviations from it. Moreover, in a
heterogeneous network, with intermittent connectivity,
this normality model must be specific for each particular
node, since the characteristics of the network will vary
considerably depending on the node’s location. The in-
formation coming from the network must also be filtered
and aggregated as it is computationally infeasible to
analyse all data which is going through the node.
When an alarm is fed to the diagnosis box together

with the collected evidence it should classify it according
to previously known attacks. Thus, the diagnosis compo-
nent needs to have a model for each previously encoun-
tered attack. If the attack is new, the alarm cannot be



4

classified, and the diagnosis should output the attack is
unknown, which might still be useful for the mitigation
component to enable some generic mitigation.
The mitigation component can decide to change the

behaviour of the node to minimise the effects of the
attack based on the information given by the diagnosis
component. Since this information might be inaccurate
and incomplete, the mitigation component must take this
into account in deciding when to enable or disable a
given mitigation scheme. Note that since the mitigation
changes the behaviour of the node, this will result in
a changed characterisation of the local network. This
means that the detection and diagnosis elements need
to cope with the effects of mitigations.
The adaptation box will continuously monitor the per-

formance of the other three boxes and has the ability to
change parameters and provide training data to account
for changing dynamics of the network. In this paper we
have focused on the first three boxes and have used a
systematic but manual version of the adaptation. Else-
where, Raciti et al. [34] describe a scheme for adaptation
with respect to available energy in the handset.

4 PROTOCOL DESCRIPTION AND THREAT
MODEL

This section will provide the background on the protocol,
and the assumptions on attack scenarios that will be
used in later sections.

4.1 Protocol description

The Random Walk Gossip (RWG) is a message dissem-
ination protocol for intermittently connected networks
that has been presented earlier [2]. Here we will provide
just the information needed to understand the threat
model that we have used.
The protocol is designed to cope with the challenges

faced in disaster area networks including scarcity of
bandwidth and energy, as well as unknown and un-
predictable network topologies with partitions. RWG is
a manycast protocol, which means that a message is
intended to reach a given number k of nodes. When
k nodes have been reached, the message is k-delivered
and does not need to be propagated anymore, thus not
wasting energy. RWG is based on a store-and-forward
mechanism, i.e. each node keeps the messages to for-
ward in a local buffer until they have been delivered.
This mechanism prevents the loss of messages because
of network partitions.
When a message is sent in a connected part of the

network, it performs a random walk over the nodes,
until all the nodes in the partition are informed of
this message. This is controlled by a three-way packet
exchange shown in Fig. 2. First a Request to Forward
(REQF), that includes the message payload, is sent by
the current custodian of the message (grey node in the
picture). The neighbouring nodes that hear the REQF

reply with an acknowledgement packet (ACK). The cus-
todian chooses one of them randomly and sends an OK
to Forward (OKTF) to this node indicating that it will be
the next custodian. The other nodes retain the message
without actively disseminating it. They keep the message
as inactive until it expires. Partitions can be overcome by
the movement of nodes. Thus, new uninformed nodes
will be informed by some node that keeps the message
as inactive and restarts to disseminate. This process will
continue as long as no more uninformed nodes remain
in the network or the message is k-delivered.

Fig. 2. Random Walk Gossip

All the packet types share the same header structure.
In order to keep track of which nodes have seen a given
message, each packet header contains a bit vector called
the informed vector (implemented as a Bloom filter).
When a node receives the message it produces a hash
of its own address and puts a 1 in the bit vector in
the field corresponding to the hash. This allows the
protocol to know when a message is k-delivered, and
to tell the potential future recipients of the message how
far the message has reached towards its dissemination
goal (summing the number of 1’s indicates the current
known local knowledge on this). The informed vector also
indicates which nodes have received the message. If a
node A hears a new neighbour B, then A will go through
the messages stored in its buffer to see if B has not yet
been informed of any of the messages, in which case
those messages will be reactivated and broadcast to node
B (and other uninformed nodes in the vicinity).
Finally, when a node realises that a message is k-

delivered it sends a Be Silent (BS) packet to its vicinity.
This packet will cause all receiving nodes to also realise
that the message is k-delivered and thus remove it from
their buffers. No new BS packets are sent upon the
reception of a BS packet.

4.2 Threat model

Routing and dissemination protocols for MANET are
usually based on cooperation of the network nodes
and assume fair play. RWG is not an exception and an
attacker can take advantage of it. There are many ways a
malicious node can attempt to disrupt the dissemination
activity in a network. This paper focuses on the miti-
gation of low-cost attacks consistent with the protocol
specification. We study how a disrupting node try to
impact the dissemination and resource drain the network
without investing too much of its own energy resources.
We assume that the adversaries will have a complete

knowledge of the protocol and that will act according to
the RWG specifications. For example, by changing the
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contents of the informed vector in the header, an attacker
can fool the other nodes into believing a message has
been delivered to more nodes than is actually the case.

5 DETECTION, DIAGNOSIS AND MITIGATION

This section describes our instantiation of GSF described
in Section 3. We have implemented the Detection, Diag-
nosis, and Mitigation components (see Fig. 1).

5.1 Detection

The detection component implemented is a statistical
anomaly detector. It will raise an alarm if a given set of
observations deviate too much from what is considered
normal. The statistical approach has a small footprint in
the resource-constrained context of mobile devices.
Like many other anomaly detection techniques our

approach requires a learning phase in order to amass
a model of normality. Obtaining traces of a running net-
work with no attacks may be considered as unrealistic.
However, we believe that networks can be deployed in
learning environments, e.g. exercises prior to live testing,
and this is a good start for accumulating preliminary
normality models. The normality during deployment
might be different to the learnt normality, but our ap-
proach does not rely on ”perfect” normality, and it will
be able to contribute to higher survivability even in
presence of inaccuracies (see Section 7).

5.1.1 Detection logic

The detector represents the state of the network as per-
ceived by a node i at a given point of time with a status
vector xi of numerical values for selected features. The
basic idea of the algorithm is to calculate the Euclidean
distance D(xi(t)) between a given observation xi(t) and
the normality model local to a node. The distance is
compared with a node-specific threshold T d

i (generating
an alert if D(xi(t)) > T d

i ). This threshold is part of the
normality model of the node, and specifies how far from
the average a normal observation can be.
Statistical anomaly detection requires a certain time to

detect an anomaly within the system. As alerts cannot
be mapped to the specific packets causing the attacks,
the alarms must be raised after an interval of suspicion.
This is the reason why the alerts raised by the detector
are processed and aggregated during the interval Ia of
aggregation. In each of these periods the number of
packets evaluated and the number of alerts registered are
counted. Then an alarm is raised if the number of alerts
within that period exceeds a certain threshold (T a). The
threshold is a tunable parameter of the system which is
defined in terms of proportion of alerts registered over
the number of packets evaluated during Ia.

5.1.2 Training

We now proceed to explain how the normality model
of the system is automatically generated by training the

system. The model is composed of three elements: the
average feature vector (x̄i), the distance threshold T d

i ,
and two vectors (xH

i , xL
i ) representing the maximum and

minimum values observed for each feature.
Calculation of normality vectors: During a period

of time with a set N of observations, the average (x̄i),
maximum (xH

i ), and minimum (xL
i ) vectors are calcu-

lated. The minimum and maximum vectors are simply
the extreme values recorded for each feature in the
vector during that period of time. xH

i and x
L
i are used

for normalisation, i.e. to equalise the magnitude of the
different features in the vector. Given a vector v at node
i, the normalised vector vn = (v − x

L
i )/(x

H
i − x

L
i ).

Calculation of the threshold: After calculating the
normality vectors, the threshold (T d

i ) is determined by
characterising the distribution of the distances D(xi(t))
given a set of M different observations. The idea is to set
the threshold using the three-sigma rule [35] so that only
a small tail of the distribution falls outside the threshold.
First the mean distance (µi) and standard deviation (σi)
of this distribution are determined. Then the threshold
T d
i = µi + 3σi is defined as the mean of the distances

plus three times their standard deviation. For a normal
distribution the three-sigma rule states that the range
[µi−3σi, µi+3σi] covers 99.7% of the observations. Since
the distribution of the observed distances is close to the
normal distribution we can expect that the three-sigma
rule will cover most of the normal observations.

5.1.3 Features
The features of an anomaly detector are the variables
which are believed to characterise the behaviour of the
monitored system. In our case this consists of character-
ising the RWG protocol behaviour at routing layer and
some notion of normality in the network that a node is
operating. Hence, we use a number of derivatives from
the four packet types that exist in the RWG protocol
(REQF, OKTF, ACK and BS) to capture the protocol
operation over time, and a few features that describe
typical scenario dynamics, e.g. dynamics of spreading.
These features are at the routing layer and are mostly
based on statistical measurements, thus not geared to a
particular attack.

• Packet rates: Number of packets of each type re-
ceived during the last I1 seconds. There are four of
these features, one for each packet type.

• Packet distances: Distance, measured in number
of packets received, between the reception of two
specific types of packets. E.g., number of packets
received between the reception of a REQF and the
next ACK. There are sixteen of these features that
cover all the possible packet type combinations.

• Packet rate differences: Relative difference in the
packet rates calculated for each type of packet. There
are six features, one for each relevant combination.

• Number of different source addresses: Number of
different source addresses counted in the packets
received during the last I2 seconds.
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• Packet ratios: Quotient of the number of packets re-
ceived of a specific type compared to another packet
type among the last I3 packets. Three features are
used: ACK/REQF, ACK/OKTF, ACK/BS.

• Summation of informed vectors: Summation of all
the positions of the informed vectors received in the
last I4 packets.

The features that provide information about the last
packets received are implemented as sliding windows
over the intervals I1, I2, I3, and I4. In Section 6.5 we
come back to how these intervals are selected based on
analysis from the training phase.

5.2 Diagnosis

When an alarm is raised by the anomaly detector, the
diagnosis component is engaged, in order to identify
the nature of the attack. The diagnosis is based on a
geometric interpretation of the features that describe the
status of the node at a given time. This assumes that
the effects of a particular attack in the m-dimensional
space are always of the same nature, irrespective of the
location of the nodes and the conditions of the network.
The method applied to diagnose the attack is based

on the status vector xi(t) and the average feature vector
x̄i provided as evidence by the anomaly detector along
with the alarm. The component calculates a unit length
vector d̂i(t), for node i, which is the normalised differ-
ence between these two vectors (see Eq. 1 and 2). The
diagnosis is done by matching the attack vector with the
smallest angle to the evidence vector d̂i(t).

di(t) ≡ xi(t)− x̄i (1)

d̂i(t) ≡ di(t)/‖di(t)‖ (2)

All the possible attacks cannot be characterised during
the training of the system (some of them might not be
known). Therefore, the diagnoser may return an output
indicating an attack is not modelled and thus unknown.

5.2.1 Attack model generation

The attack model is composed of a number of vectors
called exemplar vectors that represent the effect that a
particular attack will have on the different features on
the status vector. For instance, if an attack is associated
with a sharp increase of a specific feature, this will be
the only non-null component in the exemplar vector.
An exemplar vector for a particular attack is calculated

by running a simulation or real exercise in which an
(emulated) attack is applied. All the observed differences
across the network di(t) where the status vectors were
classified as anomalous are averaged and normalised
to form the exemplar vector êj , where j is the asso-
ciated attack’s status. The resulting model is a matrix
E =

[

ê1 ê2 · · · êk

]

, with k columns. Note that an
attack can be characterised by more than one exemplar
vector. For example, when an attack is mitigated, but it
is still carried out by the attacker, the state of the system

is neither similar to the normal state nor to the state of
the unmitigated attack, hence a separate exemplar vector
can be devised to represent this case.
In order to catch non-modelled attacks, a threshold φj

is determined for each exemplar vector êj . The idea with
this threshold is to determine the degree of (angular)
closeness of a matching with an attack vector in order
to classify a given state as an attack. The threshold is
determined using the following methodology. First, all
the observations used to create êj are projected against
the vector. The distribution of the projections is studied
and the threshold φj is chosen as the range between φj

(< 1) and 1 that contains most of the projections.
The proposed implementation of the diagnosis compo-

nent, based on the difference from the normal behaviour
allows us to use the same exemplar vectors over the
entire network’s feature space, without requiring an
additional, specific training for every node. The effect
of attacks is considered to be approximately uniform
regardless of the normality model generated for a node.

5.2.2 Run-time evaluation

At deployment time, for each interval Ia in which the
detector raises an alarm, the observations considered
anomalous are provided to the diagnoser as attack’s
evidence. Each observation is diagnosed and the attack
type associated with the largest number of observations
for this interval is selected as output of the diagnoser.
For each observation considered anomalous, the dif-

ference vector d̂i(t) is evaluated against the exemplars
for the known attacks. The exemplar that most closely
resembles d̂i(t) is chosen as indicator of the possible
attack. The similarity is determined in terms of the
angular distance between d̂i(t) and the exemplar vector.

The dot product between d̂i(t) and the transposed
matrix (ET) of exemplar vectors is calculated, giving as
a result a projection vector θi(t):

E
T · d̂i(t) = θi(t)

These vector’s components are the scalar projections of
the observation along the direction of each of the k
exemplar attack models. A higher projection value for a
given attack model means that the observation resembles
that attack most closely. The dot product between two
vectors can be geometrically interpreted as the scalar
projection of one vector on the other. Since we have unit
length vectors this means that the projection will be:

1 if the two vectors point to the same direction
0 if the two vectors are orthogonal
-1 if the two vectors point to opposite directions

Let Ji(t) be the attack whose exemplar vector has the
highest projection value θi,j(t) at node i during observa-
tion t: Ji(t) = j : max1≤j≤k (θi,j(t)). In order to identify a
possible non modelled attack, after selecting an exemplar
vector êj , the projection θi,j(t) is evaluated against the
threshold φj . If θi,j(t) ≥ φj the output is Ji(t), otherwise
is unknown.
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Finally, all the observation diagnostics in the interval
Ia are aggregated and the attack type with the largest
number of observations is provided to the mitigation
component. If the largest number of observations cor-
responds to the unknown case, this is notified as well.

5.3 Mitigation

The mitigation component receives the results from the
diagnosis component. With this information the com-
ponent selects a suitable action as a response to the
suspected attack. The component includes a number
of mitigation actuators and a mitigation manager. The
mitigation manager decides the type of mitigation to
apply and when to apply it. If the attack is classified
as unknown a generic mitigation may be applied.

5.3.1 Mitigation actuators
The mitigation actuators are the actual actions applied
in response to the attacks. In the current implementation
there are three different mitigation actuators, one for
each known attack, which are described in more detail
in Section 6.5.2. Here it suffices to say that all the
mitigation types are of the nature that affect the own
node’s behaviour. They do not identify a given attacker
or try to affect the attacker node’s impact. The latter
would need extra communication and attackers are very
hard to precisely identify in challenged networks. Our
mitigation mode will often take the detecting node into
a careful mode which implies it will reduce the network
performance; though restricted in time and space.

5.3.2 Mitigation manager
The mitigation manager is responsible for deciding when
to enable/disable mitigation. Because of the network
dynamics and detection accuracy, the alarms received
from the detector are not accurate in time and space,
or indeed in value. Thus, there may exist some non-
detected attack intervals while an attack is ongoing.
A mitigation management policy is applied to obtain a

more stable mitigation. The policy uses the detection rate
of the diagnosed attack, which is calculated during the
modelling of the attacks, to extend the mitigation during
a period ǫ of time after an alarm. We next describe how
the duration of the mitigation is computed.
The detection rate can be expressed as P (D|Aj), which

is the probability of detection given that an attack j
is present. Hence, the probability of no detection is
P (¬D|Aj) = 1− P (D|Aj). Given a window ω of a finite
number of intervals during which the detector evalua-
tions have taken place, the expected number of intervals
γ in which attacks are detected is E[γ] = ω ∗ P (D|Aj)
and ǫ in which attacks are not detected is E[ǫ] = ω ∗ (1−
P (D|Aj)). From these equations it is possible to obtain
the expected number of non-detections expressed as a
function of the expected number of detected intervals:

E[ǫ] = E[γ] ∗
(1− P (D|Aj))

P (D|Aj)
(3)

Fig. 3. Example mitigation manager policy (A=attack
present, D=detected attack, M=mitigation present)

At run-time, this information can be used to extend
the duration of the mitigation actions after the first
interval in which no anomalies are detected. Given a
number of observed consecutive detection intervals γ, the
mitigation period will be extended with ǫ intervals of
mitigation even if no attack is detected during this time.
The rationale for the policy is that the estimated false
negative rate should be related to the maximal duration
for applying a mitigation when no alarms are present. 1

An example of the policy is shown in Fig. 3. Assume
an estimated detection rate of 60% and 6 consecutive in-
tervals (γ) are detected as anomalous. When an interval
without anomaly is detected, an extension of 4 additional
intervals (ǫ) with mitigation is calculated, covering the
hypothetical 40% undetected remaining intervals.
The adaptive mitigation mechanism above has two

benefits: (1) it will not mitigate for unnecessarily long
periods, thus avoiding reduced performance, (2) it will
mitigate for long enough periods when the attack is
persistent. Note that when the latest attack is classified
as unknown, the mitigation actions are not extended (i.e.
discontinued when the alarm disappears).

6 EVALUATION METHODOLOGY

This section describes our evaluation framework in the
complex setting of challenged networks. While evaluat-
ing on real testbeds and attackers would be ideal, we
find that simulation platforms create a first proof of
concept and are useful due to reproduceability of their
results. Thus, GSF will be evaluated using Network Sim-
ulator 3.6 (ns-3) running together with a RWG protocol
implementation at the network layer.
Our evaluation of the GSF is conducted as follows.

First we measure network performance in presence of
no attacks. Then we introduce attacker nodes in the
simulator and collect similar data. Finally, we activate
the GSF and observe its impact on network survivability.
The details of the settings of these three scenarios (no
attack, no defence, defence) are described in Sections 6.3,
6.4, and 6.5 respectively. The overall evaluation of the
GSF will be presented in Section 7.
Before evaluating the GSF as a whole we test each

component individually and tune certain parameters.
The tuning of the components is described in Section 6.5,

1. The length of the extension period is based on the number of
extension intervals which has the same proportion to the number of
detected intervals as the corresponding expected entities in Eq. 3.
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and the evaluation results for isolated components, as
well as GSF as a whole, is presented in Section 7.

6.1 Evaluation setup

Since NS-3 performs packet level simulations, each sim-
ulation may take a long time. For example, in the longer
scenarios where the whole GSF is evaluated we experi-
ence ten hours of real time for 8800 seconds (146 min-
utes) of simulation. Therefore, in the following sections,
we use shorter simulations when we are testing a GSF
component in isolation (e.g. 3000 seconds) and longer
simulations where the combined GSF is evaluated with
several attacks introduced in sequence. In all the cases
we rely on a 1400 seconds initial training duration. This
duration was found experimentally to suffice for estab-
lishing normality models. Within all evaluation intervals,
prior to the training interval we used 200 seconds as
start-up period to get the dissemination protocol going.
All evaluations were done with ten simulation runs per
scenario and averages were computed over these runs.

6.2 Performance measurements

For each scenario data has to be collected to establish the
impact of attacks and defences. The ground truth in our
case can be construed in two ways, a local view observed
at one node or a global view observed at network level.
In mobile networks running a dissemination protocol,

the concept of being under attack for a particular node is
unclear. An attacker can be mobile (its impact varying in
space) and the attack lasting over a period can continue
to impact other nodes after the duration of the attack
(this is specially true for flooding attacks). In networks
with intermittent connectivity and store-carry-forward
dissemination protocols, a message will typically have
a long life time in the network thus accentuating this
effect. Just considering an attack interval for measuring
the impact on all the nodes is meaningless, since attacks
do not impact the network in a well-determined time
interval and confined space. Nodes can be isolated from
the attackers during some periods or can be too far from
the attackers to be significantly affected by them.
When we evaluate individual components in isolation,

we use data collected per node as a ground truth, and
when we evaluate the GSF as a whole we measure
network-wide performance.
Classic metrics, Detection Rate (DR) and False Positive

Rate (FPR) [33], are collected as follows. First we deter-
mine whether during the period of alarm a node was
under attack. The packets sent by an attacker and their
responses are tagged. Thereby, a node is considered un-
der attack if at least one of the tagged packets is received
during its aggregation interval Ia (see Section 5.1.1).
Given the chaotic nature of challenged networks the

success of the approach is not measurable only with
these metrics neither on a per node basis nor on a
network-wide (average) basis. The locality of the attack-
ers, the nature of the partitions, and the mobility of the

nodes, all affect the results so that DR and FPR are not
meaningful across time and space. Therefore, we also
adopt other metrics that show the global impact of the
attacks in terms of network performance:

• Packet Transmission Rate (PTR): Denotes the num-
ber of data and signalling packets transmitted dur-
ing the interval of study. Besides being an indicator
of the usage of bandwidth as a resource, PTR is an
indicator of the energy spent by the nodes, since the
more transmissions the more energy is consumed.

• K-Delivery Rate (KDR): Depending on the network
connectivity, the load, and the dynamics, only a pro-
portion of the messages sent are finally k-delivered.
Thus, a good metric to evaluate the effects of an
attack and its mitigation is the number of messages
which are k-delivered over the interval of study.

In the network-wide evaluation we will use the actual
message k-delivery rate in the absence of attacks as
one baseline in the evaluation. Also, the transmission
volume will indicate the attack-induced unnecessary
transmissions compared to the no-attack scenario.

6.3 Base scenario

This section describes the settings of RWG and the
mobility model (for all the nodes in the network). The
disaster area simulations include the mobility traces
from Aschenbruck et al. [5], based on a large training
manoeuvre in preparation of the FIFA world cup in
Germany in 2006. The original traces include 150 mobile
nodes. To induce partitions and create an intermittently
connected network we have selected 25 of the nodes,
chosen uniformly over the locations in the area, while
maintaining the trace for that node. This creates a sim-
ilar network with lower density. All the nodes use the
802.11a protocol, at 6Mb/s maximum link capacity with
a radio range of 24 meters. The speed of the nodes varied
in the range 1-2 m/s in an area of 350m x 200m. The load
is generated by introducing a total of 15 messages to
disseminate every second from randomly chosen nodes
in the network. Each message has set to be delivered to
a minimum number of 10 nodes (k = 10).

6.4 Attack scenario

In addition to the 25 fair nodes mentioned above, five
other nodes are chosen as attackers with a uniform
distribution among the fair nodes. The attacker nodes
do not create normal traffic (data) in the network, but
produce packets that are compatible with the protocol
specification as described in Section 4.1 (in accordance
to the threat model). In all the cases the adversaries do
not participate in the normal operation of the network,
but can listen and send packets as any other node.
The attack scenario is created by the injection of one of

three attacks that fall into the threat model described in
Section 4.2. While an anomaly-detection-based scheme
should ideally be tested for numerous attack types, we
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confine this paper to three attack types namely: drain,
grey hole and flooding attacks. These attacks were cho-
sen due to their disruptive nature of the network’s main
activity (that has the goal of disseminating information)
effectively targeting the routing layer. We believe that
our diagnosis component can be configured to learn
other attack characteristics too (e.g. sinkhole or varia-
tions of the routing attacks). In the attack scenario, we
introduce one attack type at a time, in order to manage
the complexity of evaluation of the impact of the attacks
in time, with a distribution in space as mentioned above.

Drain attack: It causes the nodes around the attacker
to transmit more packets than usual in order to drain
their batteries and waste bandwidth. The effect, that ex-
ploits the RWG node discovery mechanism, is achieved
by regularly sending ACK packets with different fake
identities. Then the nodes around the attacker retransmit
the messages they have in their buffers to forward them
to the apparent (but bogus) new node. This attack is
performed by the 5 attacking nodes each sending 10
ACK packets/second with different identities.

Grey hole attack: It exploits the propagation of the
message delivery status through the bit settings of the
Bloom filter in the packet header. It makes the nodes
around the attacker believe the messages they dissemi-
nate have already reached k nodes resulting in a reduc-
tion of the k-delivery ratio. The grey hole attack, aiming
to reduce the chances of successful message dissemina-
tion, is performed by 5 nodes each one answering to all
the REQF packets they receive with forged ACK packets.

Flood attack: It consists of introducing bogus mes-
sages to the network with a large group size k and
time to live (TTL). The larger the k value, the more
nodes are affected, and the longer the TTL, the longer
the bogus message will be in the network. The result is a
broadcast effect where a number of useless messages are
propagated along the whole network, producing high
quantities of unnecessary packets. The consequence is a
high quantity of bandwidth and energy consumed. The
attack is performed by 5 nodes each sending 10 REQF
packets/second without a payload. Each of these REQFs
originates a number of ACK packets from the neighbours
and the attacker sends an additional OKTF packet per
REQF. A chain of retransmissions is produced along the
network until the message is propagated to all the nodes.

6.5 Defence configuration

Whenever a system is used it must be calibrated for the
environment in which it is applied. This section explains
how each of the GSF’s components have been calibrated
for the scenario described. In particular, we describe
how the anomaly detector is tuned regarding its internal
parameters, how the diagnosis component is instantiated
to recognise the 3 attack types that presented above, and
which mitigations were devised to act whenever any of
those attacks were deemed in operation.

6.5.1 Parameter tuning
Calibrations were performed using simulation runs of
3000 seconds of which the first 200 seconds were dis-
carded due to start-up time. The following 1400 seconds
were used for training the system (half of it for calculat-
ing x̄i, x

H
i , and x

L
i , and the rest for the threshold T d

i ).
Detection component: The detector has two main

parameters that must be adjusted for a particular system,
the alert aggregation interval Ia and the alert aggregation
threshold T a. Both parameters influence the final DR,
FPR and detection delay. In a deployment scenario these
parameters need to be set based on studies performed
in exercise sessions (or using simulations).
Calibration starts by studying the different combina-

tions of the DR and FPR for the detector in presence
of the different conceived attacks. Running the detector
over the traces of the simulations, Ia has been tested
with values between 1 and 100 seconds, and T a with
values between 1% and 40%. The ROC curves shown
in Figs. 4a, 4b and 4c depict the DR against the FPR
obtained for each attack with the Ia at 10 and 50 seconds
(the rest are not shown for brevity). The study confirms
that the DR increases as the Ia increases. Also, with
a fixed Ia and just varying T a, the lower the T a, the
higher is the DR and the FPR. Naturally, a longer Ia also
leads to a longer detection delay. Based on these studies,
the chosen aggregation interval Ia for the evaluation
scenarios has been set to 50 seconds to maximise the DR.
The threshold T a has been set to 1%, which corresponds
to a FPR around 18%.
The intervals used to calculate the features (I1, I2, I3,

and I4) have been set up to 5 seconds, 10 seconds, 50
packets, and 100 packets, respectively, and follow the
same logic as parameter Ia, i.e. the longer they are the
more sensitive to system changes, but with longer delay.

Diagnosis component: The diagnosis component
can act on independent evidence collected from the
network. However, when anomaly detection is enabled
the idea is that diagnosis takes place when an alarm
is generated by the detector, and uses the evidence for
the alarm. For our experiments, which use the two com-
ponents cooperatively we have used the same features
monitored by the detector as the evidence for creating
the exemplar vectors and for the diagnosis.
The diagnosis component has two main parts to con-

figure. The exemplar vectors that characterise the impact
of given attacks on the network, and the set of thresholds
to distinguish unmodelled attacks. Six exemplar vectors
have been created, two for each of the attacks defined in
Section 6.4. The vectors have been characterised running
two simulations for each attack, one without mitigation
and another one with the specific mitigation related to
the attack enabled. In addition, one threshold φj for each
of the exemplar vectors j has been defined.
The intuition for creating the exemplar vectors with a

given attack in parallel with a mitigation in progress is
that an attack does not impact the network in the same
way with/without the mitigation in progress. Thus,
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Fig. 4. ROC curves with different aggregation interval (Ia)

adding the knowledge - in the form of observed be-
haviours during an early exercise/simulation - improves
the classification accuracy.

Mitigation component: The mitigation component
has been configured with the DRs obtained during the
configuration tests of the detector component as de-
scribed before. This implicitly determines the length of
the mitigation for each attack as described in Section 5.3.

6.5.2 Devised mitigations
A set of mechanisms, implemented as mitigation actua-
tors, are proposed to counteract the effects of the attacks
described in Section 6.4.
Drain attack mitigation: The action proposed to re-

duce the impact of this attack consists of ignoring the
ACK packets with fake identity. Of course, in the nor-
mal operation of the protocol nodes cannot distinguish
between good and fake identities. However, there is a
chance to recognise fake IDs by storing a list of known
nodes during periods when the mitigation is not en-
abled. This can be done if a list is updated with identities
of nodes that have sent REQF packets (thus creating a
white list that is relatively accurate, at least as long as
the detector is accurate). A slight increase in the latency
for recognising new fair nodes can be expected.
Grey hole attack mitigation: This attack targets the

RWG mechanism for propagation of delivery status. The
mitigation consists of going into a ”suspicious mode”
where only ACK, OKTF, and BS packets coming from
white-listed nodes are accepted and where the update of
the delivery information coming from the ACK packets
received from any node is restricted (i.e. do not set zeros
to ones in the bit vector). More specifically, if an ACK is
received from a known node, the local informed vectors
are just updated for the position that corresponds to the
sender of the ACK, but the informed vector contained
within the ACK packet is ignored. This mitigation im-
poses a heavy burden on the network resources. The
information about the number of deliveries of each mes-
sage is propagated slower than usual and the message
is kept in the network for a longer time than needed.
Flood attack mitigation: It consists of ignoring and

removing packets involved in the propagation of mes-
sages with large k group sizes and long TTLs. Two

histograms, one for each parameter, are created with the
packets received during the node training period. They
are used to define the limits over which a packet will be
associated to the attack. The limit covers a percentage
of the leftmost area of the histogram. This percentage
has been set to 95% to discard packets with unusually
high k group sizes or TTLs received during the training.
When the mitigation is enabled two actions are applied:
incoming packets exceeding one of the two limits are ig-
nored; and messages stored in the local buffer exceeding
the limits are removed. These two actions are applied to
deter the highly contagious effects of the attack.
The application of these techniques would signifi-

cantly reduce the performance of the network (dissem-
inating information) if enabled indefinitely. This is the
reason why they are not an integrated part of the RWG
protocol specification. The idea of GSF is to apply the
appropriate mitigation when needed but not otherwise.

7 EVALUATION RESULTS

This section describes evaluation results for the GSF
components and their collective impact running with
RWG in the disaster area scenario described in Sec-
tion 6.1. The network created is far from being stable and
homogeneous, which is a challenge for identifying deep
insights respect to the performance of the survivability
framework. The evaluation individually analyses each
component (Sections 7.1 to 7.3) and, finally, the coopera-
tion of the three components in the system (Section 7.4).
For the individual components tested in isolation we

used the 3000 second simulations, described in Sec-
tion 6.5.1, the last 1400 seconds of which were used for
testing. For the collective scenario an extension of the
simulation to 8800 seconds was utilised.

7.1 Detection component

In order to show why the standard metrics DR and
FPR do not make sense as indicators in a survivability
context we now proceed with a more detailed analysis.
The network wide average results obtained in terms of
these metrics, as depicted on Fig. 4a, 4b and Fig. 4c,
are computed by averaging the results of all 25 anomaly
detectors over the entire test interval of 1400 seconds.
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TABLE 1
Performance of detection and classification

(a) Detection
# Adversaries Drain Attack Grey Hole Attack Flood Attack

per Best Average Worst Best Average Worst Best Average Worst
partition DR FPR DR FPR DR FPR DR FPR DR FPR DR FPR DR FPR DR FPR DR FPR

2 98% 4% 97% 8% 94% 9% 83% 5% 79% 8% 69% 10% 96% 4% 95% 8% 89% 10%
1 99% 4% 97% 7% 94% 16% 61% 2% 48% 6% 25% 13% 49% 4% 39% 7% 30% 13%
0 63% 3% 51% 6% 44% 10% 30% 2% 22% 4% 15% 8% 51% 6% 41% 12% 34% 16%

(b) Classification: isolated
Attack Attack classified

performed Drain Grey hole Flood Unknown
Drain attack 87% 0% 0% 13%

Grey hole attack 0% 87% 0% 13%
Flood attack 0% 0% 94% 6%

(c) Classification: embedded in GSF
Attack Attack classified

performed Drain Grey hole Flood Unknown
Drain attack 71% 12% 8% 9%

Grey hole attack 0% 80% 6% 14%
Flood attack 0% 9% 72% 19%

We noted that in highly partitioned networks with
very different conditions it is not fair to analyse the
results of the detection mechanism on an aggregate
basis using these metrics. We observed that the traffic
flow, the type of attack, and the number of attackers
in each partition produce very different detection rates.
The network topology in our disaster area is composed
of eight partitions more or less stable along the whole
simulation, with moving nodes acting as ”bridges” over
the partitions. A node by node analysis has confirmed
that the parameter with more influence over the detec-
tion performance is the proximity of the adversaries to
the fair nodes. Table 1a shows the best, average and
worst DR and FPR, for the drain, grey hole and flood
attacks. Results in each column are categorised into
different classes. Each class shows the results aggregated
for partitions that have similar number of adversaries,
i.e. partitions with no adversaries, partitions with 1
adversary, and so on. There are around 1/3 of the fair
nodes in each class. The results, calculated with the alert
aggregation threshold T a at 10%, demonstrate that the
less the partition is affected by the attacks the worse
is the performance of the detection. That is, the classes
with zero and one adversary are the ones that reduce the
average detection performance. Note that despite having
partitions with no adversaries, some attacks are received
by sporadic contacts with other partitions. In Section 7.4
we illustrate that the detection errors on their own are
not significant in the context of the longer simulations
we performed with the three attack types.

7.2 Diagnosis component

This section evaluates the results of the diagnosis compo-
nent in isolation from the detector. We found experimen-
tally that learning attack vectors is faster compared to the
training period required for learning normality. Hence,
the diagnosis component was trained with 900 seconds
of traces from one node in an environment where the
three described attacks were applied in individual runs
(only exemplar vectors without mitigation). The test was
performed by classifying traces of a node running the

three attacks in three different simulations. The results,
shown in Table 1b, are the average of ten different
simulation runs. This experiment showed a correct clas-
sification performance in over 87% of the cases.

Since in practice the diagnoser is integrated in a larger
system, and the results of the detector and mitigation
components have an impact on the network state, the
performance of the diagnosis component was also stud-
ied in this context. In this case the evidence the diagnosis
uses to classify the attack is dependent on the detector,
and the state of the network also depends on the miti-
gation triggered. Therefore, each attack was additionally
characterised with an exemplar vector in presence of
mitigation. This gives two exemplar vectors per attack
(one prior to mitigation, and one during mitigation).
In addition to classification inaccuracies, the inaccu-
racy of the detector may also result in alarms/evidence
for which the diagnosis has no strong match with a
known attack, thus classifying the attack as unknown.
The results shown in Table 1c demonstrate that, de-
spite inheriting the detector inaccuracies, the diagnosis
function implemented has a relatively good accuracy. In
Section 7.4 we come back to the impact of the diagnosis
misclassifications in the longer test scenario.

7.3 Mitigation component

The mitigation manager, as explained in Section 5.3,
enables a specific mitigation actuator upon a given clas-
sified attack. Fig. 5 shows the results of two mitigation
studies, by depicting the PTR in a 3000 second simula-
tion test in which a drain attack was introduced. The
curves show the effects with and without mitigation
enabled applying two different intervals of aggregation
(namely 10 and 50 seconds respectively) in the frame-
work. As explained in Section 7.1, the higher the Ia
the higher is DR. The figure illustrates the impact of
the selected interval on the latency of the response. As
expected a long interval will delay the detection and
thereby postpone the impact of the mitigation.
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TABLE 2
Timing characteristics of the simulation

Process Time period Process Time Period
Init 0 - 200 s Attack 1: Drain 2200 - 3400 s
Train 200 - 1600 s Attack 2: Grey hole 4300 - 5500 s
Test 1600 - 8800 s Attack 3: Flood 6400 - 7600 s
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Fig. 6. PTR in simulation with three attacks

7.4 Three cooperating components

The Detection, Diagnosis, and Mitigation components in
the survivability framework were then evaluated with a
long (8800 second) simulation that includes two hours
of testing time. One instance of each attack is included
in the scenario, each one during 20 consecutive minutes
and with a separation of 15 minutes (see Table 2).
Fig. 6 shows the effects of each of the attacks and

the detection and mitigation system in terms of network
packet rate (PTR). The drain attack, the first one, sharply
increases the PTR by around 100% and then decreases
to a steady 70% additional PTR compared to the no
attack baseline. The reason is that just at the beginning
of the attack there are more inactive messages ready to
be forwarded in the buffers of the fair nodes. When the
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impact of diagnosis errors in each case

attack begins, the PTR increases, but as soon as the attack
becomes detected in most of the nodes, approximately
after 50 seconds, the mitigation actions are taken and the
attack impact is almost cleared. The grey hole attack, the
second one, has the opposite effect, it reduces the PTR
to 35% since its purpose is to stop the dissemination of
messages. When the detection and response mechanism
is enabled, the PTR is kept around 80% of the normal
state. The flood attack, shown as the last one, increases
the PTR by a 600% . As the results indicate, the effects
of this attack are significant because of its propagation
effect. In addition, even after the attack there is a period
of 500 seconds during which part of the effects of the
attack remain. The detection and mitigation mechanisms
reduce the effects of the attack to around 200% over the
normal state, i.e. one third of its initial effects and, in
addition, they remove the tail effect at the end of it.

Fig. 7 shows the effects of each attack and the detection
and mitigation system in terms of k-delivery ratio (KDR).
Although only the grey hole attack has as a main pur-
pose to reduce the KDR, all three attacks have an impact
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on delivery to some extent. The reason is that the KDR
is heavily affected by network adverse conditions, and
all the attacks in some way induce them.
The drain attack, the first one, reduces the KDR to 1/3

of the normal ratio. The reason is the overhead produced
by the attack, resulting in unnecessary signalling and
data packet transmissions that consume resources other-
wise used to deliver the rest of the messages. Detection
and mitigation reduce the effects of the attack keeping
the KDR at 80% of the normal values. The grey hole
attack, the second one, drastically drops the KDR to
10%. When the detection and mitigation mechanisms are
enabled the KDR is raised by over 5 times, although
still slightly under 50% of the normal values. It is worth
mentioning that this is a complex attack to mitigate since
once the informed vector is sent there is a contagious
impact on the other partitions whereas the mitigation is
not enabled everywhere. The flood attack, the third one,
also drops the KDR to similar low levels, since the net-
work bandwidth is consumed by bogus packets. In this
case, when the detection and mitigation mechanisms are
enabled the KDR increases by over 4 times, and a KDR
corresponding to half of the normal one is achieved.
Finally, we show a special scenario created to isolate

the effects of the diagnosis errors with the same attack
pattern as the long simulation (Table 2). Figure 8 shows
the outcome of the test dedicated to diagnosis effects.
The scenario consists of the GSF enabled once with the
diagnosis engine described in Section 7.2, and once with
a perfect diagnoser (an oracle) that exactly identifies an
ongoing attack. The significance of the errors can be
visualised by the gap between the two curves depicting
k-delivery ratio. We see that while the drain attack
mitigation is not significantly affected by the diagnosis
errors, with the grey hole attack (the second one) the
delivery ratio is lower compared to the perfect diagnoser
(averaging at 40% compared to 60%), and with the flood
attack, the delivery ratio is reduced to 50% on average
as opposed to 60%. In all three cases we see GSF creates
a significant improvement compared to the no-defence
strategy. Similar effects appeared for packet rate, but we
ommit the figure because of space restrictions.
Furthermore, Figs. 6 and 7 can be studied with a focus

on the impact of the false positives of the detector. They
show that despite the presence of false alarms indicated
by Table 1a, the GSF as a whole has no or very small
impact on the system behaviour during periods without
attacks. Overall, the results show that the approach is
successful in creating a resistance to the attacks that con-
form to the given threat model, despite the difficulties
that the complexity of IC-MANET bring to the picture.

8 CONCLUSIONS

This article has presented a modular framework for at-
tack survivability in IC-MANETS composed of detection,
diagnosis, mitigation and adaptation components.
The detector, a standalone statistical-based anomaly

detector algorithm, combats the resource constraints

in the mobile devices, i.e. CPU power (and implicitly
energy) and network bandwidth usage. The diagnosis
approach, based on a feature-space geometric interpre-
tation of the normality deviation, allows the use of
an identical set of attack signatures for all the nodes
irrespective of the environment in which each operates.
The mitigation approach, given a non perfect detection
and classification input, applies a number of actions to
mitigate the suspected attack during a certain period dy-
namically calculated for a better performance. The use of
the framework requires calibration. Extensive guidelines,
and a study on calibration have been provided.
The framework has been evaluated with positive re-

sults in a hostile environment with different network at-
tacks. Strong resistance to attacks has been demonstrated
when the framework is enabled. For example, when the
attacker aimed at reducing delivery ratio we recover
around half of the lost performance by mitigation.
The classic metrics such as detection rate and false

positive rate were shown not to be appropriate to mea-
sure the detection performance in highly partitioned
networks because they are affected by the node’s locality.
This scheme has been implemented on modern smart-

phones and shown to have a small resource foot-
print [36]. Future work includes exploration of the adap-
tive component to dynamically influence the parameters
of the components presented in this paper and to show
how the system resilience is increased by adding the
adaptive element. A starting point has been the adap-
tation of survivability depending on the energy levels of
the device [34]. A further interesting direction to explore
is the study of the impact of the mitigation actions, which
contribute to a change in the behaviour of the network
creating a recursive chain of alarms among the nodes.
Studying distributed attackers in scenarios where only

a single attack type is active over any interval of time
was only a first step in studying survivability in chal-
lenged networks. More work remains in creating resis-
tance to multiple attacks overlapping in time intervals.
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