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Abstract—Information dissemination in disaster scenarios
requires timely and energy-efficient communication in inter-
mittently connected networks. When the existing infrastructure
is damaged or overloaded, we suggest the use of a manycast
algorithm that runs over a wireless mobile ad hoc network, and
overcomes partitions using a store-and-forward mechanism.
This paper presents a random walk gossip protocol that uses an
efficient data structure to keep track of already informed nodes
with minimal signalling. Avoiding unnecessary transmissions
also makes it less prone to overloads. Experimental evaluation
shows higher delivery ratio, lower latency, and lower overhead
compared to a recently published algorithm.

I. INTRODUCTION

When a natural disaster strikes, the critical infrastructure

that supports our society can be completely disabled for long

periods of time. After an earthquake or flood, we cannot

expect telecommunication services such as GSM or UMTS

to function. Moreover, due to the interdependencies between

different types of infrastructures [17], disruptions can also

be caused by more commonly occurring incidents such as

heavy storms.

Currently, many types of communication media are used

by first-responder communities, ranging over specialised

equipment, standard telecommunication devices and the In-

ternet. While the specialised equipment (satellite, TETRA-

based systems, JTRS, UTF radio, etc) may resist a setback

during disasters, the most likely scenario is that GSM, 3G,

etc will be severely overloaded, if not destroyed. Experience

has shown that when large number of actors are involved

in major disasters, the specialised equipment can benefi-

cially be complemented with ad hoc communication over

commodity devices. These networks can be set up quickly

without central management, where no infrastructure exists,

and allow communication at a very low cost. An experience

report from the Katrina hurricane [20] demonstrates the

usefulness of being able to set up spontaneous networks in

disaster areas.

Disaster area networking brings together the two extremes

of ad hoc networking challenges: pockets of intense activ-

ity which create locally overloaded areas, and collapse of

infrastructure together with large geographical areas creates

sparse networks with intermittent connectivity [16], [8]. In

addition, lack of energy resources and inherent bandwidth

restrictions in wireless communication create the need for

resource-efficient algorithms. In this paper we address the

need for an information dissemination algorithm with the

following characteristics:

• Can deal with intermittent connectivity by partition

tolerance.

• Assumes no knowledge about network topology or

identity of actors.

• Is bandwidth- and energy-efficient in the sense of few

transmissions per data packet.

• Has a reasonable average latency.

Note that mobility and potential for partitions implies

occurrence of partial transmissions which corresponds to lost

messages in connected networks.

Manycast algorithms [4] have the benefit of spreading in-

formation across a network without the high cost associated

with broadcasts for reaching the last few in a dispersed

network. We present a manycast algorithm which enables

a packet to reach k nodes with the characteristics needed

in a disaster area network. The algorithm keeps track of

the already informed nodes with a hash structure in the

message in a bandwidth-efficient manner. Thus, the protocol

does not need to disseminate messages unnecessarily. Fur-

thermore, no more transmissions take place when partitions

are encountered. Finally, when there is an opportunity for

a message to spread (e.g., a partition has healed due to

node movement), the protocol will actively disseminate the

message.

The contributions of this paper are as follows:

• a novel resource-efficient and partition-tolerant many-

cast algorithm that is random-walk and gossip-based

(RWG)

• an experimental evaluation of the algorithm with

– sparse and non-uniform mobility traces based on a

large training manoeuvre from FIFA world cup in

Germany [1]

– careful reconstruction of a recently published

partition-tolerant algorithm (Hypergossiping) as a

baseline [12]

• preliminary model for optimising protocol parameters

to reduce transmission energy

The rest of this paper is organised as follows: We proceed

by presenting the related work in Section II. The algorithm



is described in Section III and optimisation of its main

parameter is discussed in Section IV. Section V contains

the experimental evaluation. Finally, Section VI concludes

the paper.

II. RELATED WORK

Research on broadcast schemes can be broadly divided

into three categories, (1) reliable multicast where all-or-none

semantics is required, (2) high-throughput multicast streams

(e.g., video streaming) and (3) epidemic algorithms. Most

of the research concerns wired networks and fixed topology.

This allows keeping track of exactly which node has received

which message, and to construct trees for efficient streaming.

There is also an extensive amount of research on multicasts

in MANETs taking into account varying degrees of mobility

and disruptions.

With the disaster scenario in mind, we are mainly inter-

ested in intermittently connected mobile ad hoc networks

which constitute some kind of worst-case scenario for

message dissemination. Research work representing all of

the three categories above are found also in IC-MANETS

(e.g., [24], [23], [10], [21]). However, we further restrict our

attention to protocols that do not assume a-priori knowledge

about node mobility and contact patterns.

Such an assumption is reasonable for disaster scenarios,

but can result in more expensive protocols. Karp et al. [11]

show that there is a large cost associated with performing

address-oblivious epidemics. That is, if the state of each

node is only dependent on how many messages it has

received, and not from which nodes it has received messages,

then more messages have to be sent in order to guarantee

high probability of delivery.

The work by Luo et al [13] uses a combination of push-

based gossip and pull-based anti-entropy (with limited buffer

sizes, so delivery is not guaranteed). They use a simple group

membership protocol to provide nodes with node knowledge

and assume the existence of a unicast routing protocol. The

authors evaluate their protocols using both an analytical

model and by simulation.

Khelil et al. [12] use a two-stage approach called hyper-

gossipping to achieve efficient broadcasts in partitioned

networks. A message is first broadcasted within the current

partition (using gossip). When a node encounters a partition

that has not heard the message, it is rebroadcasted in

that partition. This protocol is the one we have found to

be closest to ours in trying to stay silent in an isolated

partition and thus conserving resources until uninformed

nodes appear. Therefore, we have used this protocol as a

baseline in our experimental evaluation.

Vollset and Ezhilchelvan [22] present a manycast algo-

rithm called Scribble that is in some respects similar to

ours. It is designed to be partition-tolerant and uses a node

signature to keep track of informed nodes (several different

signature types are suggested). However, their approach can

be significantly more resource-demanding in a disconnected

network. In Scribble, a subset of nodes (termed responsible)

periodically send messages until the message is considered

to be delivered by a sufficient number of nodes (or another

node takes over that responsibility). In contrast, in our algo-

rithm nodes keep silent until they discover an uninformed

node, and only then send the message. Another difference is

that our algorithm has a small fixed header size whereas the

Scribble algorithm requires headers that grow with a number

of bits (8 bits [22]) for every informed node.

Random walk is a basic technique for constructing ran-

domised algorithms, and has been analysed and used in a

large variety of areas, including membership services [5],

[2], searching [6], [3], distributed computation [9], and

routing [19]. Mian et al. [14] use the same low level

mechanism for random walk to implement a unicast with

no provision for partitions.

III. RANDOM WALK GOSSIP ALGORITHM

In this section we describe the RWG manycast algorithm

which consists of two elements: a random walk element

(Section III-B) and an optimisation element to avoid unnec-

essary transmissions (Section III-C). The latter is used to

avoid transmitting to already visited nodes without ending

up in local dead ends.

We start by explaining the terminology. The goal of the

algorithm is to deliver the message to k nodes, whereby the

message becomes k-delivered. A node in the network can be

in one of the following states, with regard to one particular

message m:

• Uninformed, has not received m

• Informed, has received m, can be in one of the follow-

ing disjoint subclasses:

– Active, is the current custodian of m,

– Inactive, silently holds m,

– Done, knows that m is k-delivered.

When a node is active, it tries to forward the message

to a randomly chosen node. Since the nodes cannot be

expected to have an up to date view of their neighbours each

such hop is preceded by a sequence of packet exchanges.

First a “request forwarding” (REQF) packet is sent by the

current custodian. The neighbour nodes will reply with an

“acknowledge” (ACK) message. The custodian will then

randomly choose one of these nodes and send an “OK to

forward” (OKTF) message to that node. The receiver of the

OKTF message then becomes active, and the sending node

becomes inactive. The reason for inactive nodes to retain the

message is that if an uninformed neighbour is discovered

at some later point, then the inactive nodes will become

active and thus initiate a new random walk. If an uninformed

node hears a REQF message, but is not selected as the next

forwarding node, it will go directly from being uninformed

to being inactive. Finally, when k nodes have been informed

the node becomes done. In this state the node does not need

to retain the message any longer. Moreover, it sends a “be



Table I
RWG HEADER

0-7 8-15 16-23 24-31

packetLength type hops

groupSize sequenceNumber

origin

target

sender

timeToLive

informed
. . .

silent” (BS) message to all its neighbours so that they can

also proceed to the done state. Thus, every node retains only

copies of inactive messages (up to their expiry time).

A. Message Header

Every message sent by the RWG protocol contains a

header as shown in Table I. The packetLength field indicates

the total length of the packet. The packet type can be one of

REQF, ACK, OKTF, and BS. The hops field is needed for

energy optimisation and will be explained in Section III-C.

The groupSize field is used in order to know how many

nodes the message should be delivered to (i.e., the parameter

k in the protocol description). Each message is uniquely

identified by the fields sequenceNumber and origin. All the

address fields can be ordinary IP addresses or some other

id that uniquely identifies each node. target is used when a

specific node is intended to receive the message (used for

OKTF messages), and sender is the node that sent out the

packet, that is, the most recent custodian. The timeToLive

indicates the time that the packet is allowed to remain

in the network. This will be passed as a remaining time

from one node to another, thus avoiding the need for time

synchronisation.

The field informed is a bit-vector which is used to indicate

which nodes have seen this message. The semantics of the

vector is the following: if hash(nodeId) = j where nodeId

is informed about m, then informed[j] = 1, where hash()

is a standard hash-function (e.g., modulo division). This

field allows each message to keep track of informed nodes

in a bandwidth-efficient manner, enabling recognition of

uninformed neighbours and reactivation of inactive messages

on a new encounter. The length of this vector must be at

least k. We have fixed the length to 256 for a delivery with

k ranging from 30 to 90. In Section IV we provide a formula

for deciding a suitable length of the bit vector given k and

the desired collision ratio.

B. The Random Walk Element

The random walk element of the algorithm description is

divided in three parts: 1, 2 and 3. We begin by explaining

a few general concepts. The algorithm is presented in an

event-based manner by scheduling procedures to execute at

certain times. This is denoted:

schedule <PROCEDURE> in [T1, T2],

Table II
ALGORITHM PARAMETERS

Parameter Symbol Default value

Group size k 30

Time to live TTL 600 [s]

Minimum wakeup interval Twmin 4 [s]

Maximum wakeup interval Twmax 6 [s]

Max time before sending Ts 0.01 [s]

Time to wait for acks Ta 0.1 [s]

Limit on number of acks L 3

Time to wait for forward Tf 0.1 [s]

Length of the informed field b 256 bits

meaning that <PROCEDURE> will be invoked at a time

uniformly distributed between T1 and T2 seconds from the

current time. It is also possible to cancel a scheduled process

by the cancel keyword.

The parameters of the algorithm are summarised in Ta-

ble II. Their meaning will be given during the description

of the algorithm.

SEND(m):
m.groupSize ← k

m.origin ← nodeId
m.seq ← unique sequence number
m.timeToLive ← TTL
SENDREQF(m) // originator forwarding m

RECEIVE(m):
update m.informed
WAKE(hash(m.sender)) // wake inactive messages

// not seen by this sender
if m is not k-delivered:

switch (m.type):
case REQF:

if new packet:
DELIVER(m)

schedule SENDACK(m) in [0, Ts]
cancel SENDREQF(m)

case ACK:
store m.sender in receivedAcks[m]

case OKTF:
if m.target = nodeId:

SENDREQF(m) // custodian forwarding m

else:
inactive ← inactive ∪ {m}

else: // m is k-delivered
cancel all procedures related to m

inactive ← inactive \ {m}
if (m.type 6= BS):

schedule SENDBS(m) in [0, Ts]
cancel WAKEONEPACKET

schedule WAKEONEPACKET in [Twmin, Twmax]

Figure 1. Random walk gossip, part 1

Now consider part 1 (Figure 1) showing the basic primi-

tives SEND(m) and RECEIVE(m). The send procedure, which

is invoked from the application layer, initialises the basic

header fields and then calls the SENDREQF(m) procedure in

order to spread the message to the nearest neighbours.

Now lets turn to what happens when a packet is received

by a node (i.e., the RECEIVE procedure). First, the node



updates the m.informed field by flipping the hash(nodeId)

cell to 1. Next, irrespective of what type of packet the

node n receives, it could be an indication of a neighbour

n′ that some of n’s inactive packets have not traversed (i.e.,

for some messages held by n the informed field for n′ is

zero). The WAKE procedure, explained later, will deal with

activating those messages.

Consider the first case where the received packet is a

request to forward (see line case REQF:). If it is the first

time that this packet visits the node, then it is delivered

to the application layer. Moreover, the node will reply to

the sender by sending an ACK message. This is done by

scheduling the SENDACK(m) procedure to run within Ts.

If the node intended to forward this packet itself, then this

activity (SENDREQF) is cancelled. Cancelling the forwarding

prevents a flood of REQF messages every time an unin-

formed node comes into contact with a number of inactive

nodes, which will otherwise all try to send a message to the

uninformed node.

If the message received was an ACK message, then this

is simply stored locally to be further processed. When an

OKTF message is received the node checks whether it was

the intended receiver (m.target) and if so, forwards the

packet using the SENDREQF(m) procedure. If the node was

not the intended receiver the packet is stored as an inactive

packet in that node (until the TTL expires). If a message

with the same message ID already exists in inactive it is

overwritten. This way, every node who has received a packet

can potentially start spreading it if it happens to encounter

an uninformed node in the future. This causes the random

walk to branch when there is an opportunity to spread to

uninformed nodes, but not otherwise.

When the number of 1’s in the m.informed field is k or

higher, then the message has been successfully k-delivered.

When this happens, it is just a waste of resources to continue

spreading the message. Thus, when a node detects that a

message has reached the threshold, a BS message is sent

out to its neighbours informing them to stop all activities

related to this message (using the SENDBS procedure).

The last two lines in RECEIVE reschedules the

WAKEONEPACKET procedure which ensures that the net-

work does not become permanently silent (thus preventing

nodes from being able to detect uninformed neighbours). We

will come back to this in part 3.

We now proceed to describe the primitive functions used

above in the algorithm, described in Figure 2. First, we

see the code for SENDREQF(m), which also takes care of

expunging old messages. Before a message is forwarded

the node makes sure that time-to-live for message m has

not expired. The actual sending of the packet is done by

invoking TRANSMIT(m), which represents the MAC-layer.

The HANDLEACKS(m) procedure is scheduled to run Ta

seconds later (when hopefully a number of acks have been

received for this message).

After the Ta seconds have elapsed, the HANDLEACKS(m)

procedure randomly chooses one of the acknowledging

nodes and sends a “OK to forward” message to it. If

no acknowledgements have arrived, the message becomes

inactive. Note that the TRANSMITHEADER procedure does

not transmit the payload, thereby reducing bandwidth and

energy consumption.

Any node that intends to send an ACK message, by

invoking SENDACK, will only do so if not more than L
such messages have been sent by other nodes. This is to

avoid a flood of acknowledgement messages in response to

a REQF message.

The purpose of SENDBS has already been explained.

SENDREQF(m):
decrease m.timeToLive with time spent in the node
if m.timeToLive < 0

cancel all procedures related to m

inactive ← inactive \ {m}
else

m.type ← REQF
m.sender ← nodeId
TRANSMIT(m)
schedule HANDLEACKS(m) in [Ta, Ta]

HANDLEACKS(m):
if receivedAcks 6= ∅

randomly select t from receivedAcks[m]
m.target ← t

m.type ← OKTF
TRANSMITHEADER(m)

else
inactive ← inactive ∪ {m}

receivedAcks[m] ← ∅

SENDACK(m):
if (|receivedAcks[m]| < L): // default L = 3

m.type ← ACK
TRANSMITHEADER(m)

receivedAcks[m] ← ∅

SENDBS(m):
m.type ← BS
TRANSMITHEADER(m)

Figure 2. Random walk gossip, part 2

We now proceed to describe how the WAKE procedure, in-

voked from the RECEIVE procedure, reactivates the inactive

messages not seen by the sender of any received message

(Figure 3). Every time a message m is received, the address

of the sender is hashed and all the inactive packets m′ at the

receiving node are checked to see if the sender is uninformed

of m′. Although this information is possibly stale in most

cases, the sender of m has probably not seen m′. Hence,

the SENDREQF(m′) is scheduled to run. The elegance of

this mechanism is that the sender node does not have to

provide information about which packets it has seen, this

information is already in each message.

Finally a procedure is needed for the special case where

all nodes are silent, waiting for another node to activate their

packets. This can in principle happen if the application does



WAKE(h):
for all m

′ such that
m’.informed(h) = 0 AND m

′ ∈ inactive:
schedule SENDREQF(m′)
inactive ← inactive \ {m′}

WAKEONEPACKET:
choose mi so that:

mi ∈ inactive ∧ ∀mj : | mi.informed | ≤ |mj .informed|
schedule SENDREQF(mi) in [0, Ts]
inactive ← inactive \ {mi}
schedule WAKEONEPACKET in [Twmin, Twmax]

Figure 3. Random walk gossip, part 3

not generate new messages within the system for a while. To

counteract, there is a procedure WAKEONEPACKET which

is run at least every Twmin (and at most every Twmax),

except when there is any other activity going on. When

the procedure is run, it will activate the message with the

least number of informed nodes. Just in case activation of

mi does not lead to any responses, the WAKEONEPACKET

reschedules itself. This is harmless since the last two lines

of part 1 ensures that such scheduled events are postponed.

C. Avoiding Unnecessary Transmissions

The random walk described so far would waste a lot

of transmissions by visiting already informed nodes. The

natural solution to this problem is to make the random walk

avoid nodes that are already informed via the never-go-back

policy. In principle, we could have used the informed data

structure to make the random walk avoid already informed

nodes. However, at some point the walk may end up in local

dead ends due to all neighbouring nodes being informed. Our

mechanism to deal with such cases is to introduce regular

rejuvenations. Since the informed vector cannot be reset,

we introduce a new vector for this purpose by adding a

field toAvoid to the message header. This data structure is

in principle copy of informed, except that it is now and then

rejuvenated to contain only zeroes.

To illustrate the need for optimisation consider the situ-

ation in Figure 4. Node A is actively trying to forward a

message, but all its neighbours are already informed. Thus,

with the never-go-back policy, no acks will be received by

A and the message will become inactive. However, just two

hops away, there are uninformed nodes (C and D), which

will not receive the message until B discovers that they are

there and activates the message. This may take a significant

amount of time, thereby causing high latency and possible

low success ratio due to TTL timeout.

Rejuvenation allows the message to break the barrier of

informed nodes and reach new (uninformed) nodes. We

thereby find a middle way between a completely undirected

random walk that wastes resources and a never-go-back

random walk with high latency.

This results in a small change to the algorithm description

in part 1 as follows. The first line in RECEIVE (Figure

Active

Uninformed

Inactive

A B
C

D

Figure 4. Motvation for resetting toAvoid

1) is changed so that when m.informed is updated, so is

m.toAvoid. In addition, in the same procedure, the line:

schedule SENDACK(m) in [0, Ts]

is changed to:

if m.toAvoid[hash(nodeId)] = 0:

schedule SENDACK(m) in [0, Ts]

The rejuvenation is triggered by counting the number of

hops since the last rejuvenation. Thus, the message header

also needs to include a hops field (see Table I). If the number

of hops is larger than the parameter H , then the toAvoid field

and the hop count is reset. So the procedure HANDLEACKS

is changed to:

HANDLEACKS(m):

randomly select t from receivedAcks[m]

m.target ← t
m.type ← OKTF

if m.hops > H:

m.toAvoid ← [0, . . . , 0]
m.hops ← 0

TRANSMIT(m)

receivedAcks[m] ← ∅
In Figure 4, if B is not in the toAvoid vector of the

message from A it is a candidate for becoming active. In

our simulation studies we have found the value H = 10
to provide the best performance. Thus, in the simulations,

every 10 hops, the message is rejuvenated. Since the toAvoid

vector is rejuvenated after H hops it is a sparse vector1 that

can be compacted in the implementation, saving bandwidth.

IV. BIT VECTOR LENGTH

There is a non-zero probability that the algorithm will not

terminate before the message TTL even if k nodes have been

informed by the message. The reason for this is that even

if r > k nodes have been informed by a given message,

there is a non-zero probability that only s < k indices have

been marked in the informed vector. Since hashing is used

to determine the index of a given node, collisions of the

1Every hop will increase the number of 1’s in the toAvoid vector by at
most L, so the vector will never contain more than L · H 1’s.



hash function will lead to s being less than r even for small

r2. In our case , two clashing nodes B and C who ACK a

message sent by A will increase A’s count only by 1. Thus,

A might continue to disseminate unnecessarily. A second

problem arises when A is inactive and B earlier informed.

An arriving node C which clashes with B will not even be

informed (A will not wake up).

We proceed to quantify the risk of the algorithm contin-

uing to send despite k successful receipts. This means that

we want to find the probability that for a given size of the

vector b, a number of informed nodes r ≤ k, the number of

marked indices s is less than the desired k.

Figure 5. Markov chain representing the number of marked nodes

The result of the hash function can be modelled as an

integer random variable evenly distributed in the range [1, b].
Thus when s nodes have been marked and a new node i is

discovered, then the probability that the index of i is already

marked is s/b. Based on this we can set up a Markov chain

as in Figure 5 where the state Ss means that s indices have

been marked. The probability of being in state Ss after r
steps (starting in S0) is then identical to the probability of

s indices being marked after r nodes have been informed.

We can express this in matrix notation with the transition

matrix P of size (b+1)×(b+1) where Pi,j is the probability

of a transition from state Si to state Sj . We have that Pi,i =
i/b for all i ∈ {0, . . . , b}, Pi,i+1 = 1 − i/b for all i 6= b,

and Pi,j = 0 for all other i, j. The transition matrix can be

multiplied with itself so that P r
i,j represents the probability

of being in state Sj after r steps starting from state Si. Now

we can express the desired probability:

Prob(s < k) =

k−1∑

i=0

P r
0,i (1)

Clearly the size of the vector b has a huge impact on this

probability. A large b gives a low probability of collision.

Unfortunately this means larger message headers resulting

in unwanted overhead. Obviously, it would be useful to be

able to derive a reasonable value for b. To do this we need

to go to the average case since the above equation cannot

easily be transformed to solve for b.

Let the function y(r) be the expected number of marked

indices when r nodes have been informed (i.e., y(r) =∑
i i · P r

0,i). Since the expected probability of marking a

2The famous birthday paradox tells us that if the number of indices is
365 and r = 23 then there is a 50% probability that two nodes will have
the same index.

new index is 1−y(r)/b we can express the rate (derivative)

of y accordingly:

y′(r) = 1− y(r)

b
Solving this differential equation with the boundary con-

dition y(0) = 0 gives:

y = b(1− er/b)

We now introduce a constant c = r/y, which corresponds

to the proportion of extra nodes the message needs to

visit. Thus, if c = 1.05, then (on average) a message will

need to visit 1.05k nodes before terminating. Due to space

limitations, we cannot provide the entire derivation, but

given this substitution, and expanding using the McLaurin

series and finally approximating, we get:

b ≈ 2c2y

3c−
√

24c− 15c2
(2)

Given the redundancy factor c and the expected number

of marked indices y = k (the desired level), we can derive

the size of the vector b. For example, for k = 100 and

c = 1.2 the bit vector should be 314 bits long. Finally,

using this setting for b we can use equation (1) to calculate

the probability of a message not terminating after having

informed r = 150 nodes to be Prob(s < 100) = 4.1 · 10−7

This approximation assumes that r < b which means that

the constant c should be fairly small (i.e. in the range of 1.0

to 1.5). Note that c = 1.5 corresponds to an expectancy of

50% more nodes than desired being informed, not counting

the effects of branching.

V. EXPERIMENTAL EVALUATION

In order to evaluate the protocol we have performed

simulations using the Network Simulator 3 (ns-3) [7] which

is a successor of the popular ns-2 simulator. The baseline

which we compare our protocol against is the Hypergos-

siping protocol by Khelil et al.[12]. We believe this to

be the protocol published for the kind of scenarios we

are considering. However, it is designed as a broadcast

protocol (deliver to all) rather than a manycast (deliver to

some), so the comparison should be interpreted with this

in mind. We have used the original ns-2 implementation

of Hypergossiping and ported it to ns-3. We verified the

correctness of the port by reproducing a number of results

from [12]. In order to speed up the simulations we changed

(to the better) the hello interval from 1s to 10s (average).

See Section V-E for a more detailed discussion on this.

We have used the 802.11 protocol, with 6 Mb/s data rate.

The normal packet size (including header) was 100 byte for

RWG and 60 byte for Hypergossiping. The other simulation

parameters are listed in Table III (except those already

shown in Table II) . Some of the parameters are varied in

the experiments below (clearly indicated). Every data point

was averaged over 10 runs (95% confidence intervals are

indicated in each graph).



A. Scenario and Mobility Model

In recent years there have been a number of reports

(e.g., [15], [1]) on the drawbacks of using random waypoint

(RWP) as the mobility model for evaluating the performance

of protocols for ad hoc networks. One of the main problems

related to evaluation of partition-tolerant protocols is the

fact that RWP tends to create networks with very good

connectivity properties in the sense that nodes tends to

concentrate in the center of the simulation area. Moreover,

even if the network is sparse, all nodes move over the entire

area making it very probable that a node will meet a number

of uninformed nodes in a short time.

While access to real disaster mobility models is practically

impossible, we have used synthetic models that are sparse

and non-uniform, based on traces from Aschenbruck et

al.[1]. Their mobility generator is based on the analysis of a

large training manoeuvre in preparation of the FIFA world

cup in Germany. We have used 100 nodes out of the 150

described in [1] (thus excluding ambulances and one of the

clearing stations). However, at the time of this work the

mobility model was not publically available so we had to

resort to prepared traces.

Since we used a given scenario for mobility patterns there

are only two ways to modify the density of the network,

changing the number of nodes, or changing the radio range.

When using the default radio model in ns-3 together with

802.11a running at 6 Mb/s data rate, the resulting network is

very well-connected. Since both the RWG and the Hypergos-

siping protocols are intended for very disconnected networks

we needed to reduce the density of the network considerably,

but we did not want to drastically reduce the number of

nodes (and thereby making the simulations uninteresting).

Therefore we modified the system loss (we use the term

signal loss since it is more intuitive) parameter in ns-3 which

controls how much the radio signals are dampened. The

default value in ns-3 is 1 (no dampening). In the simulations

we used the value 500 corresponding to a radio range of

approximately 17 meters. The speed of the units varied in

the range 1-2 m/s (corresponding to walking speed), moving

in an area of 200mx350m. This results in a coverage factor

of 1.3 which is an indicator of sparseness. In addition we

know that the traces create partitions due to non-uniform

distribution over the area.

The load was generated with the following procedure:

at a given interval (e.g. every 0.1 seconds when the load

is 10 packets/second), send a message originating from a

randomly chosen node. Thus, all 100 nodes are potential

senders, and every node will send a message on average

every 10 seconds if the load is 10 packets/second. The

simulation time for each run was 500 seconds (i.e. just over

8 minutes). Table III summarises the simulation parameters.

We will discuss the performance of the protocol by

considering three different performance measures: success

ratio (akin to delivery ratio), latency and overhead. There is

Table III
DEFAULT SIMULATION PARAMETERS

Parameter Value

Number of nodes 100

System load 10 packets/s

Simulation time 500 [s]

Data rate 6 Mb/s

Signal loss 500 (radio range ≈ 17m)

Time to live 600

Number of runs 10

an inherent tradeoff between these three metrics in intermit-

tently connected networks. Most protocols aim for the first

two metrics, whereas our objective was to achieve acceptable

delivery properties with low energy consumption.

B. Success Ratio

The success of a manycast protocol is not based on the

number of nodes that have been informed by a message,

but that a minimum number have been informed. Therefore,

we define the success ratio as the proportion of packets that

reach at least k nodes (i.e., 30 nodes unless otherwise stated)

during the simulation.
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Figure 6. Success ratio vs. System load

Figure 6 shows the delivery ratio as a function of system

load for the two compared protocols. We see that RWG

performs much better for loads higher than 5 packets/s.

Whereas for loads less than 1 packet/s Hypergossiping is

better. We believe that one of the main explanations for this

fact is that RWG can discard messages that have informed a

certain number of nodes, whereas Hypergossiping continues

to spread messages until all nodes have received it, resulting

in an overloaded network. Moreover, the message is not

discarded until the time-to-live has expired. The increasing

performance of RWG can be explained by the fact that an

increased activity in the network will lead to more inactive

packets being woken up by the presence of uninformed

nodes (see part 3 of the description), thereby increasing the

chance of delivery for those packets.

Note that this result partially contradicts the one pro-

vided by Khelil et al. [12] in their performance analysis

of Hypergossiping. In their setting, load had no negative
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Figure 7. Success ratio vs. signal loss (reduced density)

effect on the delivery ratio. We were able to repeat this

experiment as well, and could conclude that the different

results are due to the fact that we count the delivery for

all packets released during the entire simulation (i.e. 500

seconds), whereas in [12] only packets sent during the first

50 seconds were counted. Since the full overload effect does

not occur until after 200-300 seconds, their results were

subject to boundary effects.

In Figure 7 the delivery ratio is shown as a function of

signal loss. The result is fairly intuitive, both algorithms suf-

fer as the dampening increases. A similar graph is achieved

when varying the group size k (not shown here): the higher

the parameter k, the lower the success ratio.
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Figure 8. Success ratio vs. Time to live

In the above simulations, the time-to-live (TTL) has been

longer than the simulation time (thus emulating an infinite

TTL). In Figure 8, this was varied to see the effects of a

shorter TTL. The positive effects of a shorter TTL is to

reduce the effects of the system load. Since RWG did not

suffer any overload issues for the default load, a shorter TTL

only had a negative impact on delivery. For Hypergossiping,

on the other hand, there seems to be an optimal TTL of

approximately 100 seconds.

C. Latency

In an intermittently connected network, latency is mea-

sured on a very different scale compared to normal systems.

Still, latency can be very important even in such networks.

Although RWG is designed to have reasonable latency

properties, we were surprised that it performed so well in

simulations.
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Figure 9. Average latency vs. System load

Figure 9 shows the average latency versus load reveals

surprisingly that the latency of RWG is constantly decreasing

with higher load. For RWG this can be explained by the

fact that higher load means more activity. This will result in

inactive packets waiting to hear from an uninformed node

will be woken up much sooner compared to when there is

little activity. For Hypergossiping, the overload inherently

produced by itself causes some messages to be delivered

very late, thus pulling up the average latency.

ll l l
l

l

l

0
5

0
1

0
0

1
5

0

Signal loss (approximate radio range)

L
a

te
n

c
y
 [

s
]

1 (~145m) 250 (~22m) 500 (~17m) 750 (~15m) 1000 (~13m)

0
5

0
1

0
0

1
5

0

l RWG

Hypergossip

Figure 10. Average latency vs. signal loss (reduced density)

The latency shown in Figure 10 is plotted against the

signal loss. Again both algorithms suffer. However, RWG

manages to keep the latency fairly low until the radio range

is down to 15m whereas Hypergossiping starts increasing

rapidly from start. However, in a well-connected network

with lower load, Hypergossiping outperforms RWG with

several orders of magnitude (not shown here). This is due to

the fact that Hypergossiping works as a standard localised



gossip algorithm in such cases whereas RWG uses the

comparatively much slower random walk.

D. Overhead

To quantify the overhead, we measure the total number of

transmissions sent out by the MAC-layer divided with the

total number of data packets generated by the application

layer. In our simulations, the packet payload is very small.

Thus, due to the energy overhead associated with sending

one packet irrespective of its size [18], we believe that this

is a better indication of energy-efficiency than to measure

the total number of bytes sent.
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Figure 11. Transmissions/packet vs. System load

When considering the overhead as a function of load we

see that RWG is hardly affected. This makes sense, since

each packet behaves more or less independently from all

other packets. Hypergossiping on the other hand is based on

periodic beacons causing nodes to exchange information on

their respective messages. If the number of normal packets

increases, then a smaller portion of the total number of mes-

sages will be meta-information, resulting in lower overhead.

However, note that around this point the success ratio and

latency are prohibitive making this area less interesting.

As Figure 12 shows, for Hypergossiping, the shorter TTL,

the lower overhead. RWG overhead is, on the other hand,

not sensitive to the choice of TTL.
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Figure 12. Transmissions/packet vs. Time to live

The final parameter we have investigated is the group size.

This parameter serves two purposes, first of all, it is the

basis of the definition of delivery ratio and latency used

in the evaluation (i.e. a message is deemed to be delivered

when it has informed at least “group size” nodes). Secondly

it is a parameter to the RWG algorithm which uses this

number to decide when a message is k-delivered and thus

stops spreading it.

We have already alluded to the fact that RWG has an

advantage in the fact that it can stop spreading messages

when this condition is satisfied. From this we would ex-

pect that as the group size increases the advantage is lost

and the performance is more like Hypergossiping. This is

corroborated in Figure 13. Since Hypergossiping does not

use the group size parameter, its overhead remains constant

independently of the group size. For RWG, on the other

hand, increasing the group size will mean that every message

will need to visit more nodes before it can be discarded, this

will increase the overhead as the group size increases. Still

it is 70%-20% below Hypergossiping for group sizes above

20.
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Figure 13. Transmissions/packet vs. group size k

E. Optimising Hypergossiping

We end the experimental section by returning to the

rationale for changing the default hello-interval for Hyper-

gossiping. This interval will affect all three metrics, delivery-

ratio, latency, and overhead. Intuitively, shorter intervals

should result in lower latency, higher overhead, and higher

success ratio. However, for high loads, it is not that clear.

As can be seen in Figure 14, longer hello intervals can

be beneficial also for latency and delivery. Based on these

results we concluded that 10s was a reasonable tradeoff

between overhead and latency (without sacrificing delivery

ratio). Unfortunately, this graph lacks confidence intervals

(data is still based on an average over 10 runs).

VI. CONCLUSIONS AND FUTURE WORK

We have presented RWG, a manycast protocol designed

for intermittently connected networks with scarce energy
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resources. Such a protocol could be useful in a disaster

scenario, where the infrastructure is destroyed or disabled

requiring robust and efficient communication strategies. The

experimental evaluation has shown that RWG outperforms

one of the most relevant existing solutions considerably;

e.g. decreasing overhead by an order of magnitude in some

situations. One of the main strengths of the protocol is being

able to handle much higher loads. Moreover, by being able

to keep track of informed nodes in a space-efficient way, the

protocol can reduce the number of redundant transmissions.

Based on the encouraging results we believe that the RWG

protocol is a good choice for disseminating data in dis-

connected wireless networks with energy restrictions (e.g.,

disaster response networks) when the message is intended

to be received by a subset of the nodes. Quorum systems for

data consistency is an example of an application that could

build upon such a dissemination service.

As future work, we plan to further mathematically analyse

the protocol to see if it is possible to derive bounds on

latency, given certain mobility and network properties.
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