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Abstract

As mobile ad hoc networks provide a wide range of

possibly critical services, providing quality of service

guarantees becomes an essential element. Yet there is a

limited understanding of the performance characteris-

tics of different resource allocation algorithms. In par-

ticular, there is little work that comparatively studies

different algorithms in the same traffic environment.

Therefore we study two algorithms, adhoc-TARA and

an algorithm based on the gradient projection method,

for optimised bandwidth allocation in ad hoc networks

under overload situations. The focus is on convergence

properties and performance measured in terms of ac-

cumulated utility. The simulation results show that

the gradient projection algorithm converges to an opti-

mal solution even in large, dynamic networks, but that

in such dynamic environments the convergence time

can significantly influence the overall performance. In

comparison, the near-optimal algorithm adhoc-TARA,

which quickly adapts to changes in the state of the net-

work, can exhibit superior performance. Further we il-

lustrate how different parameter settings influence the

performance of the algorithms. We conclude that find-

ing an optimal allocation comes at a high price in the

rapidly changing environments of ad hoc networks and

that near-optimal allocation can be an ample alterna-

tive.

1. Introduction

Mobile ad hoc networks are formed by wireless nodes
that move freely and have no fixed infrastructure. Each
node in the network may act as a router for other nodes,
and flows follow a multi-hop path from a source to a
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destination. Mobile ad hoc networks aim to provide a
wide range of services in which soft real-time (multime-
dia), and high priority critical data, should seamlessly
integrate. As society becomes dependable on provision
of such services, their availability under overloads be-
comes a critical issue. If not adequately dealt with,
this problem may become a serious threat to critical
infrastructures of the future.

Due to the nature of ad hoc wireless networks, re-
source allocation and routing that respects quality of
service (QoS) parameters should be adaptive to the
rapidly changing environment, work in a distributed
manner, and have light computational and signalling
overhead. While CPU utilisation and power are impor-
tant resources to consider, here we focus on allocation
of bandwidth as a resource.

Although the need for resource allocation in ad
hoc networks has clearly been recognised and many
allocation-algorithms were proposed (e.g. [11, 5, 4, 12,
13, 6]), their comparative performance has, to the best
of our knowledge, not yet been studied. In the related
field of ad hoc routing however, steps in this direction
have already been taken (e.g. [2, 3, 8]) and a picture of
the properties of different algorithms begins to emerge.

In this paper we compare two algorithms for opti-
mised resource allocation in ad hoc networks. Both al-
gorithms attempt to maximise the accumulated utility,
which is given as the sum of utility experienced by the
users for given bandwidth allocations. The first algo-
rithm, proposed by Xue, Li and Nahrstedt [12, 13], uses
the gradient projection method on the Lagrangian dual
of the optimisation problem to find an optimal alloca-
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tion (here referred to as GPA). The second algorithm,
Time Aware Resource Allocation (adhoc-TARA), pro-
posed by Curescu and Nadjm-Tehrani [6], is also based
on Lagrangian duality but uses a bidding scheme to
allocate resources.

Xue et al. [13] proved that their allocation scheme
converges to the optimal solution and provided exper-
imental results for small to moderate sized networks
and light load. Also, some experiments with mobil-
ity for small networks have been performed. Adhoc-
TARA has been evaluated in an experimental setting
with mixed traffic, mobility, and highly overloaded sce-
narios. Our motivation for this comparison is to get a
deeper understanding of both algorithms and charac-
terise their respective strengths in a common experi-
mental platform.

It is worthwhile to assess GPA’s performance for
larger networks under overload situations. Thereby, for
different connection interarrival times and under mo-
bility, we can study the time that the system remains
in a non-optimal state. We conjecture that this time
may be significant in scenarios where the state of the
network is frequently changing. Thus, it is interesting
to compare GPA with adhoc-TARA, which has so far
shown promising results in such environments.

Time awareness in adhoc-TARA was designed to
deal efficiently with rigid traffic. For rigid traffic a min-
imal allocated bandwidth has to be guaranteed during
the whole lifetime of the connection. If the connection
is dropped due to overloads, its accumulated utility
will be lost (examples are voice or video phone appli-
cations). As GPA does not incorporate special mech-
anisms to handle rigid traffic, this paper is only based
on flexible traffic and hence not exploiting the full po-
tential of adhoc-TARA in this respect.

Earlier studies of GPA have been performed based
on detailed simulations at packet level. To overcome
the challenge of running both algorithms on a common
platform we have made an abstraction that ignores the
packet level and hence cannot quantify overhead as-
pects only measurable in such environments. Being
aware of this deficiency, we still believe that this com-
parative study has a value and provides new insights for
both algorithms. Our simulation results show that even
in large networks under mobility and highly dynamic
traffic patterns, the gradient projection algorithm con-
verges to an optimal solution. However, the experi-
ments support our conjecture that in such dynamic en-
vironments the convergence time for the gradient pro-
jection algorithm can significantly influence the overall
performance and that a near-optimal algorithm, such
as adhoc-TARA can show superior performance. We
investigate the influence of the parameter step-length

in GPA and show that the optimal value for the step-
length depends on the traffic characteristics. Further,
the experiments show that GPA’s performance is very
dependent on quick dissemination of the price infor-
mation whereas adhoc-TARA is more robust in this
respect.

The paper is organised as follows: In section 2 we
introduce the mathematical model underlying both al-
gorithms and formulate a general optimisation problem
to be solved. Thereafter we describe how the two al-
gorithms solve this optimisation problem. Section 3
discusses and illustrates convergence properties of the
algorithms. After a discussion of our simulation envi-
ronment and methodology we present in section 4 the
results of our experimental study under varying traffic
and mobility conditions.

2. Background

Both algorithms we compare in this paper assume
that each flow comes with a resource-utility function.
The function indicates the utility that is accrued if the
flow is allocated a given resource level. Both algorithms
also apply the idea of price-based resource allocation.
The basic concept is to set prices on mutually contend-
ing links based on their congestion. The goal is to al-
locate the bandwidth in such a way that the network’s
utility is maximised.

A distributed algorithm is obtained by considering
the Lagrangian dual of the optimisation problem and
hence decomposing the problem. A thorough discus-
sion and motivation of using Lagrangian duality for
rate control in networks is given in the seminal paper
of Kelly et al. [10].

We first present the general mathematical model un-
derlying both algorithms before proceeding with the
details of the algorithms.

2.1. Mathematical model

This section is essentially a condensed version of the
mathematical model as described in [12]. Through-
out this document boldface symbols represent vectors.
When a vector is used to refer to elements of a set,
we use the set elements as index, e.g. vf refers to the
component corresponding to element f of set F .

As usual the ad hoc network is modelled as a graph
G(V, E), where V is a set of nodes (i.e. wireless de-
vices) and E a set of bidirectional links. Each node
v ∈ V has transmission range dtx and interference
range dint. Two nodes vi, vj ∈ V are connected by
an edge {vi, vj} ∈ E if they are within each other’s
transmission range.



Figure 1. A simple network configuration and
its contention graph

We define F to be a set of end to end flows, where
each flow f ∈ F can span multiple hops, and denote
the set of links comprising flow f as E(f). If for a flow
either the source or the destination of a single hop is
within the interference range dint of another flow, the
flows are said to contend. Given the characteristics of
the medium, it is clear that in such a case only one of
the flows can send at a given time. The contentions
at a specific time can be modelled by a link contention
graph Gc(Vc, Ec) where the vertices correspond to the
wireless links (i.e. Vc = E) and there exists an edge be-
tween two vertices if there are flows which contend for
these links (i.e. they cannot transmit simultaneously).
The cliques in the contention graph then represent mu-
tual contending flows that “share” the medium (and
hence the available bandwidth). It is therefore natural
to regard maximum cliques (i.e. cliques that are not
contained in any other clique) as the fundamental re-
source for pricing in the network. The set of maximal
cliques q is denoted by Q.

We define R = (rqf ) to be the |Q| × |F | matrix
consisting of the elements rqf = |Vc(q) ∩E(f)|, that is
the number of links flow f uses within clique q.

To illustrate these concepts consider Figure 1, which
depicts a simple network configuration and its con-

tention graph. In this example the matrix R becomes

R =

[

0 3
1 2

]

.

Let Cq be the available bandwidth of clique q. A
bandwidth allocation (xf |xf ≥ 0, f ∈ F ) is said to be
feasible if and only if

∑

f∈F

rqf xf ≤ Cq , ∀q (1)

To quantify the ”satisfaction” gained from an allo-
cation xf , utility functions Uf : R

+

0 → R are defined.
That is, given an allocated bandwidth xf , the flow f
accrues a utility corresponding to Uf (xf ). The util-
ity functions are used as inputs to the algorithms in
this paper, and also for evaluating results for each al-
gorithm. Then the system utility is the sum of the
individual flow’s utilities. We are thus able to formu-
late the optimisation problem

z∗ :=max
x

∑

f∈F

Uf (xf )

s.t.
∑

f∈F

rqf xf ≤ Cq , ∀q

0 ≤ xf ≤Mf , ∀f

(2)

where Mf is the maximal bandwidth needed by flow f .
We introduce the vector of multipliers µ and relax

the constraints (1) to obtain the Lagrangian function

L(x, µ) =
∑

f∈F

Uf (xf )−
∑

q∈Q

µq(
∑

f∈F

rqf xf − Cq)

=
∑

f∈F

Uf (xf )−
∑

f∈F

xf (
∑

q∈Q

µqrqf ) +
∑

q∈Q

µqCq

(3)

We let X = {x|0 ≤ x ≤ M} and define the La-
grangian dual function

θ(µ) = max
x∈X

L(x, µ) (4)

and the dual problem accordingly

θ∗ = min
µ≥0

θ(µ). (5)

The multiplier µq can be interpreted as the price a
flow has to pay for accessing clique q. Consequently
the quantity

∑

q∈Q µqrqf in (3) corresponds to the ac-
cumulated price of all resources a flow f uses. It is
therefore referred to as its path-price and denoted by
λf .

We observe that the last term in (3) is constant for
a given µ and does not influence the optimal solution



x∗. We can therefore neglect it without changing the
problem. For clarity, we restate the Lagrangian dual
function in its new form:

θ(µ) = max
x∈X

L(x, µ) = max
x∈X

∑

f∈F

Uf (xf )−
∑

f∈F

xfλf

(6)

Thus, the problem is decomposed into two separate
problems, the subproblem (6), which aims at finding an
optimal allocation given the current clique prices µ and
the Lagrangian dual problem (5) for finding the opti-
mal prices for the cliques. From optimisation theory
it is known that if the utility functions are concave,
then it holds that at an optimal solution µ∗ to (6),
θ∗ = z∗ and the optimal solution x∗ to (2) satisfies
x∗ ∈ argmaxx∈X L(x, µ∗). In other words we can ob-
tain a solution to our initial problem (2) by solving the
problems (5) and (6) . Furthermore, µ∗

q is the shadow

price of clique q, which is defined as the increase in sys-
tem utility if we were allowed to increase its available
bandwidth by one unit.

2.2. The gradient projection algorithm

Xue, Li and Nahrstedt [12] proposed the application
of the gradient projection algorithm (GPA) to the La-
grangian dual function. To use this method the utility
functions must be twice differentiable. It is further as-
sumed that the utility functions are strictly concave,
and hence the problem has a unique optimal solution.
The gradient projection method is an iterative method
to find an extreme point of a constrained function. It
approaches an extreme point by taking from the cur-
rent position a step with a fixed length γ, in the direc-
tion of the (negative) gradient. If outside, the obtained
point is projected back onto the feasible region.

In our case, a gradient at θ(µ) is given by
∑

f∈F rqf xf −Cq , q ∈ Q and thus each component can
be calculated separately on a given clique q, requiring
only knowledge of the flows traversing the clique. Sim-
ilarly, the allocated bandwidth can be determined by
the source nodes, given the prices of the cliques that
the flow traverses (since for all other cliques rqf = 0).
Hence the problem can be solved in a distributed man-
ner without resorting to any global information about
the network.

It is shown in [12] that for a given set of prices, a
unique optimal solution is obtained by letting xf =
[ d
dx

Uf ]−1(λf ). Algorithm 1 summarises the basic steps
for the rate allocation.

Algorithm 1 The gradient projection allocation algo-
rithm (GPA)

{At clique q and time t}
µt

q ← [µ
(t−1)
q − γ(Cq −

�
f |E(f)∪V (q)6={} xt

frqf )]+

{At source node of flow f and time t }
λf ←

∑

q∈Q µt
qrqf {Calculate path-price}

xt
f ← [ d

dx
Uf ]−1(λf ) {Calculate rate allocation}

2.3. The adhoc-TARA algorithm

In contrast to the previously discussed (continuous)
utility functions, in adhoc-TARA it is assumed that
the utility function is discrete; the user specifies the
conceived utility using a (small) fixed set of possible
allocation points. This corresponds to business models
that allow differentiated rates for different quality of
service, and charge the user in accordance with the
QoS delivered.

To make the problem computationally tractable, the
algorithm uses the piece-wise linear, concave utility
function given by the convex hull of these discrete
points, say L(x). It is even possible to linearise the
problem completely. Let the kinks of L(x) have co-
ordinates {(B1, U1), (B2, U2), . . . , (Bn, Un)} (cf. Fig-
ure 2). Instead of considering one flow with utility
function L(x) we can decompose a flow into n− 1 sub-

flows where each sub-flow corresponds to a linear seg-
ment. That is, sub-flow i has a linear utility function
U(x) = Bi + ux, where

u =
Ui+1 − Ui

Bi+1 −Bi

(7)

is the slope of the ith segment. In context of our op-
timisation problem, the sub-flows are treated as inde-
pendent flows. We have thus obtained a problem for-
mulation where all the flows are linear. The optimisa-
tion problem (2) therefore becomes an instance of the
linear programming problem (LP) and the Lagrangian
dual problem (5) corresponds then to its LP-dual. It is
easy to see that due to concavity of L(x), any optimal
solution to the linearised problem is also an optimal
solution to the original problem [6].

Adhoc-TARA’s optimisation method is motivated
by the concept of shadow prices as defined in sec-
tion 2.1. The idea is to approximate the shadow price
at a clique by letting the flows bid for using its re-
sources. Such an ”auction” should come close to the
true value of the clique (its shadow price), which in
turn is known to be the solution to the LP-dual.



In adhoc-TARA, the flows construct the bids as fol-
lows:

bidqf = µq +
uf − λf

∑

q∈Q rqf

(8)

where uf is the slope of the linear utility function (see
Equation 7).

A clique q considers all the bids and allocates band-
width to the flows in a highest bid order, until the
capacity is exhausted. The bandwidth allocation to a
sub-flow is then the minimal allocation of all the cliques
it traverses. The price of a clique is set to the lowest
bid that was accepted. Through this bidding scheme
we achieve an approximation of the shadow price and
optimise allocation in a completely distributed way.

Note that the algorithm allocates either the maxi-
mum bandwidth demanded by a sub-flow or none, as
the utility is specified only at these allocation points.
This might however lead to some residual bandwidth
of a clique remaining unused.

A thorough description of adhoc-TARA is given by
Curescu and Nadjm-Tehrani [6]. Algorithm 2 sum-
marises the computations performed in adhoc-TARA.

Algorithm 2 Allocation Algorithm adhoc-TARA

{at clique q and time t}
for all f ∈ F do

{Calculate bid for flow f}

bidf = µ
(t−1)
q +

uf−λ
(t−1)
f�

q∈Q rqf

end for

avBw ← Cq {Initialise the avail. bandwidth}
{Process flows in order of increasing bids}
F s ← sort(F )
for all f ∈ F s

do

{Allocate until bandwidth exhausted}
if avBw > Mfrqf then

xfq ←Mf

avBw ← avBw −Mfrqf

else

break
end if

end for

µt
q ← min{f∈F}{bidf |xfq > 0}

send µt
q and xfq to source node of flows f ∈ F

{At source node of flow f and time t}
xt

f ← min{q∈Q}{xfq}

λt
f ←

�
q∈Q

µ
(t−1)
q rqf {Calculate path-price}

send λt
f to cliques flow f traverses

3. Convergence properties

Although the above algorithms are similar in their
goals there are some crucial differences between them.
For example, adhoc-TARA considers only the bids at
the clique when prioritising among the bidders. Fur-
ther it always allocates bandwidth until the clique ca-
pacity is exhausted. A sub-flow might therefore be
dropped at a clique, with an abrupt consequence for
the involved connection. On the other hand, the band-
width for GPA is adapted smoothly. This is also the
case when a rapid change occurs, as for example a new
connection is added or a mobile node enters a new
clique and hence contributing to a possible congestion.
As a result, a clique can be under- or overutilised until
the optimum is reached.

In GPA the allocated rate of a connection is a
strictly decreasing function of the path price. Hence
changes in the path price always cause changes in the
allocated bandwidth for a connection. On the other
hand, adhoc-TARA’s bidding mechanism makes it less
sensitive to price changes. Changes in the path-price do
not necessarily imply changes in the allocation. This is
in particular an advantage when dealing with connec-
tions that are sensitive to fluctuations of the allocated
bandwidth.

To illustrate the basic functioning of the algorithms
we apply them to the simple scenario depicted in Fig-
ure 1. As a utility function we use the logarithmic
function U(x) = ln(x). It is linearly interpolated at 7
points to obtain a piecewise linear function for adhoc-
TARA, as shown in Figure 2.

0 B1 B2 B3 B4 B5 B6
0

U1

U2

U3

U4

U5

U6

Bandwidth (bps)

Ut
ilit

y

U(x)
L(x)

Figure 2. A logarithmic utility function is in-
terpolated to obtain a piecewise linear func-
tion

The required bandwidth of both flows is 3Mbps.
The resource capacity Cq is set to 4Mbps. As the flows



contend for the link (3, 4) there is no feasible allocation
which respects both flow’s required bandwidth.
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Figure 3. Bandwidth allocation for the flows
and cliques in Figure 1

Figure 3 illustrates how the two algorithms allo-
cate bandwidth to cliques and flows in this situation.
We observe that once both algorithms have converged,
the allocation is quite similar, but not exactly the
same. The reason is that adhoc-TARA can only al-
locate at a discrete number of points. It is known
that GPA converges to the (unique) optimal solution,
but that adhoc-TARA’s allocation is slightly subop-
timal. On the other hand, we see that GPA needs
a few iterations to converge to the optimal solution,
while TARA reaches the near-optimal allocation at
once. Figure 3(a) illustrates that in an optimal solu-
tion the allocated bandwidth for flow 2 is much smaller,
despite the fact that both flows have the same utility
function. This allocation intuitively makes sense, as

flow 1 uses fewer resources of the network per unit of
bandwidth and hence a larger utility can be achieved
by favouring it. Mathematically, this is reflected in the
lower path-price of the flow, leading to a higher allo-
cation. In Figure 3(b) the bandwidth allocation at the
two cliques is depicted. We observe that in the ini-
tial phase the GPA allocates more bandwidth than is
actually available, until it converges to a feasible allo-
cation. In real networks this would lead to packet loss
and retransmission.

It is clear that in any static network where the con-
nections are sufficiently long living the outcome will be
similar to this simple case, and GPA will eventually
perform somewhat better than adhoc-TARA.

4. Overloads and Mobility

We have seen that GPA’s allocation converges to
the optimal solution. However, the above scenario is
very static and does not represent a typical adhoc net-
work. In the following we consider a larger network
of 60 nodes under different load levels and mobility.
Our goal is to see how the convergence time of GPA
influences the results in cases where the state of the
network is frequently changing. In particular we are in-
terested to know how GPA compares to adhoc-TARA
which converges much faster. Further, we investigate
how the dissemination time influences the results and
study the influence of the step-length in GPA as these
are our main parameters to tune the algorithms.

4.1. Simulation setup

We perform the experiments using a simulator based
on J-Sim [1]. The simulation environment is syn-
chronous, that is, the bandwidth allocation is per-
formed after a fixed time interval, in which all nec-
essary information for making an allocation decision is
computed. For routing we use an on-demand shortest
path algorithm, where the length of a path corresponds
to the number of hops. Connections are represented as
flows, rather than at packet-level. This approach was
chosen due to ease of extension of J-Sim for compara-
tive purposes. Thus, some characteristics like packet-
level overhead are not studied in this context and the
obtained results should be interpreted accordingly.

4.1.1 Baseline

To set the results in context, we compare them to two
other algorithms, a simple greedy algorithm and an
optimal algorithm having global information. Both al-



gorithms solve the linearised formulation discussed in
section 2.3.

The greedy algorithm is obtained as follows: The
bid construction in adhoc-TARA could be simplified
so that the bid is set to the slope of the flow’s utility
function divided by the number of links of the clique it
uses, i.e. bidqf = uf/Rqf . This corresponds to a simple
greedy strategy, where at each clique the flows that use
the granted bandwidth most ”efficiently” are accepted.
Note that no path-prices need to be calculated. Thus,
the bid is independent of congestion at other cliques
in the flow’s path. Another immediate consequence
is that the length of the flow path will play no role
in the allocation although longer flows consume more
resources.

For the global optimal algorithm, we solve the lin-
ear program (2) with the LP-solver GLPK [9]. This
algorithm is in sequel referred to as ”global”.

4.1.2 Utility functions and accounting

The gradient projection method requires the utility
functions to be strictly concave and differentiable while
for adhoc-TARA they have to be linear. We adopt the
following strategy to make the results comparable. The
utility function is specified as U(x) = a log(bx + c),
where a, b, c are arbitrary parameters that control its
shape. This function is linearly interpolated at 7
equidistant points so as to get a piecewise linear utility
function consisting of 6 segments, say L(x) (cf. Fig-
ure 2).

The utility accounting is based on each algorithm’s
utility function. More precisely, given a period length
of τ , the utility for allocation xt

f for period [t, t + τ ]

is given by ut
f = τL(xt

f ) for adhoc-TARA and ut
f =

τU(xt
f ) for GPA. The system utility is then simply

∑

t

∑

f∈F ut
f . Although L(x) is slightly lower than

U(x) our experiments showed that this difference is
negligible.

For GPA it happens during overload situations, that
more bandwidth is allocated than resources are avail-
able. In real networks this would lead to packet drop
and probably retransmission. We simulate packet drop
by granting all connections the allocated bandwidth
until the resources at a clique are exhausted. The re-
maining connections will then be allocated zero band-
width. The possible overhead that frequent retrans-
mission induces in real network is not accounted for.

4.1.3 Traffic model

In the following we will use a traffic mix which com-
bines connections with different bandwidth demands
and utility functions. We define six different traffic

classes as depicted in Figure 4. Projection of each
curve’s end point on the x-axis shows the average band-
width that is used by a connection of this class. The
aim of having these classes is to mimic typical require-
ments of real world applications (refer to [7] for a more
detailed discussion).

New connections are created at random, according
to an exponential distribution with given interarrival
rate, while the connection classes are chosen uniformly
at random. In a realistic setting the utility function
for some of the connections (for example voice service)
would be rigid, meaning that zero utility would be ac-
counted if its allocation was ever decreased below a
given threshold. For simplicity we treat them in our
simulation as flexible connections and apply the utility
accounting described above.

4.1.4 Simulation Parameters

Unless otherwise indicated, the following parameters
have been used for all the simulations.

Parameter Value
Period time, τ 0.02 s
Simulation duration 600 s
Connection interarrival
rate (per node) 1/600 s−1

Mobility model Pseudo random waypoint
Simulation area 1500 m × 1500 m
Transmission range 250 m
Traffic model see Section 4.1.3
Step-length γ (GPA) 1e-10

To ensure high connectivity and keep the mobile nodes
from clumping together, we modified the random way-
point model such that nodes move away from each
other when they come closer than a third of their trans-
mission range.

For all our experiments we use the initial network
topography of 60 nodes whose location is chosen uni-
formely at random.

4.2. Results

The following experiments illustrate how increasing
load and mobility affects the accumulated utility. Fur-
ther the dependence on the dissemination time and
step-length (for GPA) is illustrated. We use the ac-
cumulated utility as the main metric in all our experi-
ments.
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4.2.1 Network load

Figure 5 shows the accumulated utility under the given
traffic model under different network loads for a static
topology. Higher loads are generated by increasing the
arrival rate of the connections. Although the differ-
ences are not large, it can be seen that while for light
load GPA yields very good results, its performance de-
teriorates under higher loads. This is explained by the
fact that the shorter the interarrival time, the larger the
fraction of time GPA is in a non-optimal state. Surpris-
ingly, adhoc-TARA’s performance is even under higher
loads close to the optimum.
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Figure 5. The accumulated utility as a func-
tion of the network load

We can gain more insight by looking closer at how
the different algorithms allocate the bandwidth. Fig-
ure 6 shows the allocated resources at an arbitrary
clique during some time period. We observe that the
allocation for GPA is generally close to the optimal
(global) allocation. However, until it converges it uses

more resources than are actually available, leading to
suboptimal allocation as some connection’s allocated
bandwidth is dropped (compare section 4.1.2). We can
see in the same figure, that at around allocation point
1800 GPA starts to oscillate. This is an indicator that
we did not choose the step-length small enough to en-
sure convergence for so many flows. This is easily reme-
died by decreasing the step-length, however at the ex-
pense of slowing down convergence under lighter load.
Adhoc-TARA is also generally close to the optimal al-
location. Yet it can be seen that between allocation
point 1000 and 1200 significantly more bandwidth is
used at this clique, at the expense of another clique.
Note that this gives us no information about how the
the accrued utilities differ.
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Figure 6. Allocated bandwidth at a sample
clique (interarrival rate 1/200s−1)

4.2.2 Mobility

We proceed by studying the influence of mobility on
the accumulated utility. One of the difficulties under
mobility is that nodes join and leave the interference
range of other nodes and hence changing the clique’s
load abruptly. Moreover, a route can be lost forcing
the connection to take another route. As already dis-
cussed, it may take quite a few iterations for GPA
to adapt when facing such abrupt changes, whereas
adhoc-TARA’s allocation reflects this change immedi-
ately. We therefore expect that the performance of
GPA deteriorates quicker than adhoc-TARA. Figure 7
clearly confirms our expectation.

4.2.3 Period time

As we have already mentioned above, the period time
(τ) in our synchronous simulation is of crucial impor-
tance for GPA. In fact it is clear that the accumu-
lated utility is monotonically increasing as τ goes to
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Figure 7. The effect of mobility on the accu-
mulated utility

zero. Figure 8 shows how the accumulated utility is
affected by the period-time. We observe that a short
period time is vital for GPA to show good performance,
while adhoc-TARA is less sensitive to longer dissemi-
nation times. In a real network, the period depends
on the transmission time of the packets and how often
the control information is transmitted. Thus, there is
a trade-off between signalling overhead and the time
GPA needs to converge to an optimal solution.
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performance

4.2.4 The influence of the step-length

Choosing the right step-length (γ) is crucial for the per-
formance of GPA. Xue et al. [13] show that convergence
is guaranteed if γ satisfies 0 < γ < 2/κY Z, where, in-
formally speaking, κ is a bound on the curvature of the
utility functions, Y the length of the longest path for
a flow and Z the number of sub-flows at the most con-
gested clique. In our case κ is the dominating factor

and it turns out to be of the same order of magnitude
as the requested bandwidth of a connection. If we have
a good idea about the peak traffic in our network, the
above formula helps us to choose the step-length small
enough. Unfortunately such information is rarely avail-
able. Being conservative and choosing the step-length
too small will ensure convergence. This, however, is
done at the cost of convergence speed, and thus the
system spends more time in suboptimal states. The
optimal step-length depends on the traffic type, as il-
lustrated in Figure 9. The simulation was performed
with two different traffic models, namely mixed traffic
as discussed in section 4.1.3 with an interarrival rate of
1/600, and simulations where the connections are re-
stricted to allow only file transfers (see Figure 4). The
interarrival rate in the latter case is 1/1000.
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5. Conclusions and future work

We have performed experiments to compare two al-
gorithms for optimised resource allocation. Our exper-
iments confirm that even in large networks the gradi-
ent projection algorithm converges to an optimal so-
lution, given the step-length is chosen appropriately,
whereas for adhoc-TARA the allocation is sometimes
non-optimal. The experiments also showed that the ac-
cumulated network utility is not necessarily higher for
the gradient projection algorithm as it goes through a
sequence of suboptimal allocations before converging
to the optimum.

Due to the shared transport medium and mobility of
the nodes, abrupt changes in load are more frequent in
ad hoc networks than in fixed infrastructure networks.
Therefore situations where the flows have to be adapted
are many and it is crucial that a near-optimal state is



quickly reached. The number of iterations required for
the gradient projection algorithm to converge to an op-
timal solution is greatly influenced by the chosen step-
length. It was however illustrated that if the traffic-
pattern is not known in advance, it is hardly possible
to tune the step-length to ensure optimal convergence
in all situations. Therefore the period time, that is the
time needed to propagate prices of the cliques to the
source nodes of the flow, becomes crucial. The smaller
this delay is, the better the algorithm’s performance. It
is clear that fast propagation time is traded-off against
signalling overhead.

In contrast, adhoc-TARA’s performance is less de-
pendent on finely tuned parameters and network char-
acteristics. Therefore in highly dynamic, mobile net-
works adhoc-TARA is an adequate algorithm. Al-
though the allocations are not optimal, its performance
is in our tests comparable to GPA under low overload
and mobility. Under high overload or mobility adhoc-
TARA performs often better than GPA. This is mainly
due to the fact that at any allocation point a solution
close to the optimal is attained immediately.

The above studies have provided interesting insights
in the behaviour of both algorithms under dynamic
network conditions. However, the conclusions are only
valid within the abstract setting of ”above packet level”
simulations. Both algorithms may exhibit very differ-
ent behaviour if the overhead in terms of signalling and
lost package influence are taken account of. A deeper
study of such overheads is therefore an interesting area
for future works.
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