
2006-01-0305

Database Functionality in Engine Management System
Thomas Gustafsson

Department of Computer and Information Science, Linköping University, Link̈oping, Sweden
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Copyright c© 2006 SAE International

ABSTRACT

Embedded systems of today need to manage more data than
ever before. The main reasons for the increase in number of data
items are increased functional requirements on the software.
With a larger amount of data to manage comes the problems
of storing data and its meta-information, sharing between pro-
grammers which data items exist, and ensuring freshness and
consistency requirements of the data items.

In this work we focus on efficient data management in embed-
ded systems, and develop a database for such systems. The
database has support for transactions, snapshots, and data fresh-
ness. We argue that the software maintenance efforts can be re-
duced using a database, and our performance results show that
the performance can be increased without affecting consistency
of data values.

INTRODUCTION

With the advent of devices with the availability of larger amount
of memory and more computational power, the software devel-
opment has moved from assembly programming to using high-
level programming languages such as C and C++. High-level
programming languages can abstract data into structures and
classes. Using high-level programming languages, programs
may be programmed in a modular way, where data can be global
and accessible from all modules, or local and only accessible by
functions within a specific module. Global data can be used for
communication between modules. This division of data into
global and module-specific data, complicates the way one can
get a view of existing data items and their usage. COMET
project and other projects claim that using a database in an em-
bedded system leads to reductions in development costs, im-
provements in software quality, and increased maintainability
of the software (see also the appendix) [22].

In an embedded system we have studied, an engine control soft-
ware, the software is divided into applications with certain re-
sponsibilities, e.g., calculating fuel and diagnosing the system.
Each application consists of tasks that perform calculations.
The calculations take inputs forming a subset of all available
data and derive results composing a subset of the available data.
Furthermore, some of the data items are subject to freshness
constraints, meaning that they might be stale as the external en-
vironment changes. The freshness constraints are ensured by
deriving the data items often enough, i.e., the data values never
get older than what is dictated by a worst-case scenario. By
storing data decentralized, it is easy to introduce duplicates of
data items—since it is hard to get a picture of which data items
exist—and update data items multiple times only to be sure the
freshness requirements are fulfilled. Hence, excess memory and
CPU resources might be needed, which is an undesirable con-
sequence of the data management technique that is used.

An important aspect of the deterioration of data values as ex-
ternal environment changes is that a calculation should get a
consistent view of its input data. This means that the input data
must be sufficiently correlated in time. One way to achieve this
is to freeze the input data and let the calculation read the frozen,
unchanged, data [21]. The frozen data is denoted a snapshot.
Data freshness issues can also be handled by deriving period
times on calculations such that freshness of data items and time-
liness of the calculations are guaranteed [13, 14, 17, 23]. How-
ever, these techniques do not change the way data is stored and
fetched, and, thus, cannot help in the data maintenance effort.
Also, calculations are always carried out in these techniques
which might waste resources if values of data items change
within some bounds, then the calculations would produce the
same results that are already stored in the system. In essence,
we would like a system that makes software maintenance easier
and uses available resources efficiently, e.g., the CPU.

Olson describes different criteria for choosing a database
for an embedded system [19]. He classifies databases into
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client-server relational databases, client-server object-oriented
databases, and, finally, embedded library databases. The em-
bedded library databases are explicitly designed for embed-
ded systems. The embedded database links directly into the
software, and there is no need for a query language such as
SQL. Existing client-server databases are not appropriate for
real-time systems, because transactions cannot be prioritized.
Nyström et al. identify that there are no commercial alterna-
tives of embedded databases suited for embedded real-time sys-
tems [22]. Further, it is pointed out that most database sys-
tems use two-phase locking to ensure concurrent transactions
do not interfere with each other [19]. Two-phase locking is an
approach to concurrency control that guarantees the consistency
of the data [6]. However, for some applications the consistency
can be traded off for better performance [18]. This trade-off is
not possible if only two-phase locking is available.

In the engine management system (EMS) software, the mer-
its of using a database instead of storing data globally and lo-
cally in modules are that all data and data maintenance program-
ming code are concentrated to one place in the software. In this
way, the data maintenance code can easily be changed since it
is hidden behind the API. Furthermore, the database can have
functionality that would be hard to implement using data struc-
tures spread out in the software, e.g., the database takes care
of updating data items that are needed by a calculation. Such
functionality is not present in current database systems (see the
surveys [19, 22]), so we have developed a database suited for
embedded systems,Data In EmbeddedSystems maIntenance
Service (DIESIS), with support for transactions, data freshness,
consistent views of data, and reduced consistency requirements
giving higher performance but still correct results. Our per-
formance results achieved by using DIESIS in engine control
show that the number of calculations needed to keep data items
fresh with respect to changes in the external environment can
decrease considerably compared to methods normally used in
embedded systems, which are updating data items periodically.

The outline of this paper is as follows. In the next section
we state our problem formulation. Section “Description of
DIESIS” describes DIESIS and the algorithms being used. Sec-
tion “Performance Evaluations of DIESIS” shows results from
conducted simulations, and section “Conclusions” concludes
this paper.

PROBLEM FORMULATION

Figure 1 shows a calculation using module-specific and global
data. We have seen in the section “Introduction” that how the
data is stored clearly affects the maintainability of the software.
Having data items stored decentralized, i.e., spread out in differ-
ent modules, makes it hard to overview which data items exist,
what are their timing and freshness requirements, and whether
these requirements are fulfilled. In figure 1, it is impossible to
see if, e.g.,globalData3, is up-to-date when the calculation
reads it.

The following bullets exemplify problems that are hard to solve
using unsupervised storage of data, i.e., where data is fetched
and stored uncontrollably to different memory areas.

/* code in a calculation */

/* local data */

int v1, v2, v3, result;
v1 = structName1.dataItem1;
v2 = globalData3;
/* perform calculations */

result = v3;
Figure 1: An example of a calculation accessing data from
global and local data.

• For instance, let us denote the calculation in figure
1 as c1, and assume another calculation,c2, changes
structName1.dataItem1 to an intermediate value dur-
ing its execution. Then there could be an interleaving
of c1 and c2 such thatc1 reads the intermediate value
of structName1.dataItem1. This, unwanted, effect is
calledghost update(see the appendix for three other unde-
sirable effects that can arise).

• Assumec1 gets interrupted by some other calculations
after the assignmentv1 = structName1.dataItem1.
Then if any of the calculations being executed beforec1

continues to execute updatesglobalData3, then the vari-
ablesv1 and v2 can have values from different system
states. This can affect the quality of the value ofv3, and,
thus, the end result ofc1.

Thus, the following problems exist when maintaining data in
embedded systems:

• The effort of maintaining embedded software is large be-
cause data is spread out in different modules.

• Memory and CPU resources might be ineffectively used
due to duplicate data items and unnecessary updating of
data items.

• Calculations need to get a consistent view of its input data
in order to control the external environment effectively.

• Calculations need to be controlled such that no unwanted
and wrong results are stored and further used by other cal-
culations.

We believe a wide range of embedded system software, e.g.,
all embedded systems doing any kind of control of the exter-
nal environment, have the following properties. The embedded
system:

• Makes readings of the external environment by using sen-
sors or reading values arriving on communication links.

• Derives data items directly or indirectly from sensors or
values arriving on communication links.

– All data items are known before the system starts,
i.e., functionality for adding and removing data items
is not needed.
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– Data items have specified freshness requirements that
are measurable in the value domain of the data item.

– Calculations deriving data items often require values
that are derived from the same system state, e.g., ac-
tuator signals.

• Starts calculations in response to external events, e.g., a
clock tick of a periodic timer.

– The calculations have soft deadlines (see the ap-
pendix).

– Calculations can be assigned fixed priorities without
affecting the intended functionality of the system.

• Has data that is volatile in the sense that all data is re-
initialized at system startup. This means that calculations
are independent from results produced in previous execu-
tions of the software.

We envision that using a database makes it easier to maintain the
software in an embedded system. We have seen in the introduc-
tion that there are no available databases that address these prob-
lems. We believe that specializing a database for systems ful-
filling the properties above can increase the performance com-
pared to using a general database. Furthermore, by adopting
an approach of central storage and maintenance of data implies
that we have a global view of all data and its current status.
This knowledge should be possible to exploit to effectively uti-
lize available CPU-resources. Using a database for storing data,
it would be easier to spot duplicate data items since they are
stored in a central repository. Moreover, the database could
have functionality that is difficult to implement using an un-
supervised storage approach, e.g., concurrency control and data
freshness insurance.

DESCRIPTION OF DIESIS

This section contains a description of the functionality of
DIESIS. The section is divided into a description of the
functionality and interface of DIESIS (section “Applica-
tion Programming Interface”), and descriptions of the fresh-
ness and consistency functionality that are used in sections
“Data and Transaction Model”, “Data Freshness”, “Updating
Algorithms”, and “Concurrency Control”.

APPLICATION PROGRAMMING INTERFACE

DIESIS is written in the programming language C, and it is
built to work with the real-time operating systems Rubus [1] and
µC/OS-II [16]. DIESIS uses the notion of transactions. Trans-
actions are atomic units of computational work, and, thus, do
not see intermediate results from each other (an elaborate de-
scription can be found in the appendix). The operations that are
allowed on data items are reading and writing.

Figure 2 shows a transaction. Every transaction is a C-
function, since in this way the transaction is easily accessed
by a function pointer. To register a transaction with DIESIS,
theBeginTransaction function is called. The transaction is

void TD9(s8 mode, void *arg)
{

s8 transNr=TRANSACTION_START;
DB_Data dbd,dbd0,dbd1,dbd2;
while(BeginTransaction(&transNr, 10000, 200,

LOW_PRIORITY_QUEUE, mode, D1))
{

UpdateDB(&transNr,D9,2500);
ReadDB(&transNr, D6, &dbd0);
ReadDB(&transNr, D7, &dbd1);
ReadDB(&transNr, D8, &dbd2);
/* Calculation of new value */

WriteDB(&transNr,D9,dbd,&TD9);
CommitTransaction(&transNr);

}
}

Figure 2: A transaction deriving one value.

wrapped in a loop to model the possible occurrence of a trans-
action needing to be restarted. The only possible cause for a
transaction to restart is that the operations of two concurrent
transactions conflict meaning that at least one of them produce
a wrong result. This is further discussed in section “Concur-
rency Control”.

As is discussed in section “Introduction”, the values of data
items need to accurately reflect the state in the external envi-
ronment. The functionUpdateDB schedules data items need-
ing to be updated before the current transaction continues de-
riving values (the scheduling is described in section “Updating
Algorithms”). A value of a data item is read from DIESIS by
using theReadDB function. The values are enumerated with an
enum type, e.g.,D6, and the read value is stored indbd0. A
value is written to DIESIS using theWriteDB function. Finally,
last in the loop, theCommitTransaction function should be
called. This function checks if the values read by the transac-
tion are consistent (this is further described in section “Con-
currency Control”), and if that is the case the transaction can
commit. The function registers the transaction as completed
andBeginTransaction returns zero, which jumps out of the
loop.

DATA AND TRANSACTION MODEL

This section describes the data and transaction models derived
from the properties stated in section “Problem Formulation”.

Data Model

Embedded systems that monitor a natural environment can rep-
resent the set of data items asbase items, i.e., data items that
are read from sensors or communication links, andderived data
items, i.e., data items that are calculated from a set consisting
of base items and derived data items. In our work, we divide
the data items into a setB of base items, and a setD of derived
data items.

The values a calculation produce depend on values derived by
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other calculations. Hence, there are precedence constraints on
the calculations, and these can be described in a directed acyclic
graph (DAG). The DAG is denoteddata dependency graph, G,
and an example of a data dependency graph is figure 3. Base
items have zero in-degree, and nodes representing actuator val-
ues have zero out-degree. The read set of a data itemdi, i.e., the
data items that are read and used when derivingdi, is denoted
R(di). Furthermore, if a calculation derives a value of only one
data item then there exists a simple mapping from precedence
constraints in a DAG to calculations to data items.

By a snapshot at timet we mean that the values of data items
in the database are frozen att, and these values are read by a
calculation [21]. By an up-to-date snapshot at timet we mean a
snapshot att where all values areup-to-date, i.e., all data items
that are affected by changes in values of other data items are
updated.

Transaction Model

Transactions are divided intosensor transactions (STs)that are
periodically executed updating the base items,user transactions
(UTs) that are started by applications in the software, andup-
date transactionsor triggered updates (TUs)that are started by
DIESIS to update data items before a user transaction starts to
execute. Every transaction updates one data item, and, thus,
there exists a mapping via the data dependency graphG and a
function pointer to a transaction.

The transaction in figure 2 is an update of data itemD9 in fig-
ure 3. The transaction is a user transaction when it is invoked
by the software. The transaction is an update transaction if the
data itemD9 has been scheduled by a user transaction, and de-
termined to be necessary to be executed. Whichever of these
two cases that apply is regulated with the argumentmode to the
functionTD9.

DATA FRESHNESS

With the notion data freshness we mean a way to decide if a
value of a data item is a correct reflection of the state of the
external environment. As we saw in section “Introduction”, in
the EMS software, data freshness is implemented using aging
of data items. When a data itemdi is too old it is considered
to be stale, i.e.,|ct − tdi | > adi , wherect is current time,tdi

is the time when the value ofdi was calculated, andadi is the
maximum allowed age on the value ofdi [20]. However, when
a value ofdi is stale it may still be unchanged or close to the
old value. We can reason about thesimilarity of two values in-
stead of reason about their ages [9–12,15]. Two values are said
to be equal if they are similar according to a similarity relation.
An example of a similarity relation is the one-dimensional dis-
tance between two values. If the distance is less than a specified
bound then the values are similar, and, thus, equal.

In this work, the data freshness that is specified on every data
item is adata validity bound (DVB)giving the allowed distance,
e.g., using a data validity bound of 9 of data itemD3, the two
values 50 and 58 of data itemD3 are similar since the distance

|50− 58| is less than 9.

UPDATING ALGORITHMS

In this section we describe an algorithm, On-Demand Top-
Bottom with relevance check (ODTB), which is part of DIESIS,
that creates a schedule of data items needing to be updated [11].
The algorithm is executed as a response to the start of a user
transaction. The algorithm needs to find the data items that must
be updated, and it needs to schedule these in the correct order,
i.e., fulfilling the precedence constraints.

First, we discuss how ODTB can decide which data items need
to be updated. The algorithm uses similarity to measure data
freshness. Since similarity uses the value domain of data items
to define their freshness, the freshness of a data item,di, only
needs to be reconsidered at an update of any of its ancestors,
i.e., a member ofR(di). Hence, the execution of calculations
can be data-driven, meaning that during periods when the ex-
ternal environment is in a steady state fewer calculations need
to be executed compared to during periods when the external
environment is in a transient state. Using periodic invocations
of calculations, it is difficult to adapt to such changes in the
external environment. For instance, consider the following.

1. Data itemb7 in the DAG in figure 3 has changed such that
its new value is dissimilar to its previous value.

A value becomes dissimilar when|nvb7 − ovb7 | > dvbb7 ,
wherenvb7 andovb7 are the new and the old values ofb7

respectively, anddvbb7 is the data validity bound ofb7.

2. Data itemd5 must be recalculated to reflect the new value
of b7.

3. Data itemsd8 andd9 might as well need recalculations,
but that depends on the new value ofd5.

Using periodic updating ofd5, it is updated even thoughb7 has
not changed.

Recalculations of data items can be done at different moments
in time. The two extremes are:

• recalculate a data item as soon as a data item the calcula-
tion reads is found dissimilar, and

• recalculate when the data item is requested by DIESIS.

The first approach is denotedupdates first, and the latteron-
demand[3]. The on-demand approach is found to use less CPU
time than updates first [3]. In the implementation of DIESIS,
recalculations are executed on-demand. Thus, there must be
a way to postpone recalculations and start a subset of them in
response to the starting of a user transaction. In DIESIS there
is a scheme,affected updating scheme (AUS), that marks a data
item as affected when any of its immediate parents in the DAG
changes to a dissimilar value. Returning to figure 3, whenb7

becomes dissimilar data itemd5 is marked as affected by this
change. The scheme does the following:
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Figure 3: An example of a DAG.

• keeps base items up-to-date by periodically updating them,
and

• marks immediate children ofdi as affected when a recal-
culation ofdi finds the new value to be dissimilar to the
old.

The marking may be a binary value, marked or not marked, but
on rare occasions this approach can lead to missed updates. The
marking can be a timestamp indicating with a timestamp greater
than zero if the data item is changed or not. See [9] for a more
detailed discussion.

Using AUS there is a way to decide which data items are af-
fected by changes in data items. Thus, to schedule the data
items needing to be updated, the DAG can be searched for data
items that are marked as affected by a change. However, we
must take the pessimistic approach and assume that a data item
with a changed value renders descendant data items stale. This
means that if a user transaction deriving data itemd9 starts, and
data itemsd4 andd5 are marked as changed, thend7 andd8

need to be scheduled for being updated. The order these up-
dates should be executed is firstd4 andd5, and thend7 andd8,
since there is no meaning in executingd8 befored5 because it
will then read an old value ofd5.

To find data items to schedule for being updated, the DAG can
be traversed from base items toward the data itemd′ being de-
rived by the user transaction. When a data itemd is found to be
marked, all other data items that are on paths1 from d to d′ in G
must also be put in the schedule.

One representation of the data items and the precedence con-
straints that allows for easy access is a depth-first order of the
DAG. The algorithm in figure 4 is run on a DAG with an added
bottom element resulting in the scheduleStotal. Executing

1Remember that there is a one to one mapping from data items to nodes in
graphG.

depthfirst(S,d9) on the DAG in figure 3 yields the following
schedule:[d1, d6, d2, d3, d4, d7, d5, d8, d9].

depthfirst(schedules, dataitemd)
for all x ∈ R(d)\B do

addx first tos
depthfirst(s, x)

end for

Figure 4: The depth-first algorithm.

For every data item there exists a subschedule ofStotal that rep-
resents the data item and all its ancestors. Hence, only one
schedule,Stotal, needs to be stored together with information
of where inStotal the subschedules, one for each data item, are
located [11]. The storage requirements for the schedule and the
location information is low, e.g., a graph consisting of 45 base
items and 105 derived data items has 246 elements inStotal

requiring 592 bytes of ROM.

The scheduling algorithm is executed on-demand, i.e., when
a user transaction starts, and it traverses the subschedules of
the read set for changed data items. The algorithm is denoted
On-Demand Top-Bottom with relevance check (ODTB) and is
presented in figure 5 [11]. This algorithm produces a schedule
with data items that need to be updated. For each data item in
the schedule a corresponding update transaction is triggered and
executed.

ODTB(schedules)
for all x ∈ R(d)\B do

for all u in top-bottom order of a depth-first subschedule
of x do
if data itemu is markedthen

Copyu and the remainder of subschedule tos
break

end if
end for

end for

Figure 5: The On-Demand Top-Bottom with relevance check
algorithm.

CONCURRENCY CONTROL

In a database there is normally functionality to handle concur-
rent transactions. DIESIS supports different concurrency con-
trol algorithms, and the algorithm is chosen at compile time. In
this section we elaborate on problems of concurrently executing
transactions and describe one solution.

A database has a set of integrity constraints (see the
appendix)—e.g., a fuel compensation factor TOTALMULFAC
that should be calculated from, say, two sensor readings that are
at maximum 200 ms old—that defines what states the database
can be in. Concurrency control, which maintains some of the in-
tegrity constraints, is intimately connected with the ACID prop-
erties of transactions (see the appendix). The purpose of hav-
ing transactions with these properties is that committed transac-
tions always write values that correctly reflect an environment
the database models. For instance, in a banking application,
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transactions must have the ACID properties in order to have the
correct balance on accounts that are touched by a money trans-
action.

Naturally, there are different integrity constraints for every
database application. This means that some of the ACID proper-
ties can be loosened. The effects are that the throughput of the
database, i.e., the number of committed transactions per time
unit, increases compared to using full support for the ACID
properties. Furthermore, the properties stated in section “Prob-
lem Formulation”, that the system resets all values at a system
startup, simplify the concurrency control algorithms, because
there is no need to make sure committed results persist in the
event of a system failure. Hence, the durability property is not
needed.

Two well-established concurrency control algorithms that sup-
port the ACID properties are two-phase locking (2PL) and op-
timistic concurrency control (OCC) [6]. Two-phase locking has
been extended to work in real-time databases, e.g., high-priority
two-phase locking (HP2PL) [2], and OCC works correctly un-
changed in real-time systems, provided fixed priority schedul-
ing of calculations is used, i.e., the priority of the calculation
never changes during the execution of it. Lee and Park present a
database consistency denoted statewise consistency [18]. They
claim that as long as transactions produce results equivalent to
results from transactions executed one at a time, conflicting in-
terleavings of operations do not matter. As we recall from sec-
tion “Problem Formulation”, data items can have freshness re-
quirements measurable in the value domain. This implies that
values on data items can take a range of values for a specific
state in the external environment, and as long as conflicting
operations for a data item produce results within the range of
the data item, the conflicts do not matter. Hence, we can con-
clude that well-established concurrency control algorithms are
too strict for the kind of embedded systems we focus on, and
similarity provides necessary conditions wielding a loosened
consistency that can improve performance.

We can infer, for databases for embedded systems, that the
concurrency control algorithm should be similarity-aware since
such an algorithm can increase the performance. Moreover, the
database should be able to present a snapshot (section “Problem
Formulation”), from a specific time, of up-to-date data items to
a transaction. To achieve this, the updating algorithm and the
concurrency control algorithm can be combined.

In DIESIS there is a multiversion timestamp ordering concur-
rency control algorithm using similarity (MVTO-S) [10], that
ensures that transactions read an up-to-date snapshot of data
items.

Next is an outline of the MVTO-S algorithm given (more de-
tails are in [10]). Every transaction gets a unique timestamp,
and data items can have several versions where the versions are
annotated with a timestamp. The timestamp on a version writ-
ten by a transaction is the maximum of the timestamps on read
versions by the transaction. The rationale behind using the max-
imum is that a version is valid when all members of the read set
are valid, and they are all valid from the mentioned time. A

transaction reads the latest version of a data item that is older
than or as old as the transaction. Such a version is denoted a
proper version. Hence, DIESIS is restricted to read values that
were valid when a transaction starts. There are no guarantees
that these values are valid when the transaction commits. We
think this is not a drawback, since this is the functionality that
is normally requested in the EMS software we have studied.
Furthermore, when there are active but preempted transactions
in the system, then written values result in new versions, since
the old values might be needed by preempted transactions.

To ensure up-to-date values the ODTB algorithm (section “Up-
dating Algorithms”) is used to schedule needed updates. The
scheduling of updates is done atomically when a user trans-
action starts, which gives a view of which updates might be
needed. Scheduled updates need to be executed if input data
to the update is different from the input data an existing ver-
sion of the data item used. Thus, updates can be skipped due to
that the value already exists in a version. This check is done by
comparing the values of the read set members of the update to
the corresponding values of a proper version. If all values are
similar, then the update is not needed.

The MVTO-S algorithm is an abstract algorithm that can be
implemented in different ways. The next subsection describes
three implementations.

Description of Implementations of MVTO-S

The MVTO-S algorithm uses a memory pool to store versions
of the data items. The amount of memory available for ver-
sions is limited, and therefore there are three implementations
of MVTO-S, which each requires different amount of mem-
ory for storing a version. The algorithm MVTO-SUV stores the
value of each member ofR(di) when derivingdi in the version.
This strengthens the possibilities to make a similarity check.
The MVTO-SUP implementation, on the other hand, stores no
values from members ofR(di), but these values are instead
looked-up in the pool. The version size gets smaller, but the
possibility to do a similarity check depends on if the values of
members ofR(di) can be found in the pool. When the pool be-
comes full, versions are removed from it, and affected transac-
tions are restarted. The implementation MVTO-SCRC constructs
versions with the same information as MVTO-SUV but they are
reduced in size because the values of members ofR(di) are con-
densed into a cyclic redundancy check (CRC) value. The CRC
is calculated by taking an interval number (IN) for the value
of each member ofR(di) by, e.g., dividing the value with 64,
and calculating a CRC from these interval numbers. We assume
these interval numbers can be represented as an 8-bit or 16-bit
integer, and that the CRC of two versions are equal if and only
if the used values are similar. For instance, let us denote two
versions that the transaction in figure 2 has produced asv1 and
v2, and the values the versions used are:

Data item Used values Data validity bounds
v1 IN v2 IN

D6 11 2 13 2 5
D7 10 2 10 2 5
D8 5 1 6 1 5
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From the table above we can easily see that used values onD6,
D7, andD8 have the same interval numbers, and, thus, the same
CRCs, which means thatv1 andv2 are similar.

PERFORMANCE EVALUATIONS OF DIESIS

This section describes performance evaluations of DIESIS in
two settings. One setting using DIESIS in an EMS connected to
an engine simulator is described in section “Performance Eval-
uation using EMS”. The other setting using DIESIS together
with the real-time operating systemµC/OS-II on top of Win-
dows 2000 is described in section “Performance Evaluation of
MVTO-S”.

PERFORMANCE EVALUATION USING EMS

In many cases an embedded and real-time system is installed in
a dynamically changing environment meaning that the system
has to respond to these changes. Since tasks use data that should
be fresh, state changes in the environment also affect the need to
update data. This experiment treats steady and transient states
and the number of required updates in each state. The number
of updates is contrasted between an updating algorithm using
value domain for data freshness and periodic updates.

We evaluate the algorithms on the EMS using the implemen-
tation of DIESIS. In the performance evaluations, we use the
engine simulator to adjust engine speed. The EMS reacts upon
the sensor signals as if it controlled a real engine. The perfor-
mance evaluation shows how the updating algorithms react on
state changes (transient and steady states).

The derived data item TOTALMULFAC is requested periodi-
cally by a task in the EMS software (see data itemd9 in figure
3). The request is transformed into a user transaction that arrives
to DIESIS (see figure 2). ODTB is used in the EMS software,
i.e., relevance checks are done if calculations are needed based
on specified data freshness. This means that the data itemsd1–
d8 in figure 3 are updated when needed, but not more often
than the periodicity of TOTALMULFAC. In this experiment,
the HP2PL concurrency control algorithm is used.

Recalculations of TOTALMULFAC are needed when the en-
gine speed changes. Figure 6 shows how the requests for calcu-
lations are serviced only when the system is in a transient state,
i.e., when the engine speed is changing. The plots in the bot-
tom graph show the cumulative numbers of requests. The num-
ber of requests (dashed line) is increasing linearly since the re-
quests are periodic and in the original EMS software each such
request is processed. However, when using ODTB only some
of the requests need to be processed. The number of serviced
requests (solid line) shows how many of the requests need to
be processed. In steady states, none of the requests need to be
processed, and the stored value in DIESIS can be used imme-
diately (e.g., the steady state in the time interval 2–7). Hence,
during a steady state a considerable amount of requests can be
skipped. Notice also that the data validity bounds allow DIESIS
to accept a stored value if changes to the engine speed are small
(in this case±50 rpm). This can be seen in the time interval
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Figure 6: Number of requests of calculation of fuel compensa-
tion factor in EMS.

17-22, where the small changes in engine speed do not result in
recalculations of the TOTALMULFAC variable. The number of
serviced requests does not increase in this interval.

PERFORMANCE EVALUATION OF MVTO-S

The performance evaluations are conducted using DIESIS run-
ning on a real-time operating system that can be used in an em-
bedded system. The operating system isµC/OS-II [16], and it
provides the same functionality as Rubus we used in the EMS
software in the experiments described in previous section. The
simulations simulate periodic tasks invoking transactions from
a database with similarity-aware updating and concurrency con-
trol algorithms. The base items are changing rapidly to model
a transient state, where, as we saw in the previous section, the
system needs to execute the most updates, i.e., the workload
used in the simulator typifies a worst-case workload in a real-
life system. The simulations run in a DOS command window in
Windows 2000 Professional with servicepack 4. The computer
is an IBM T23 with 512 Mb of RAM and a Pentium 3 running
with 1.1 GHz.

The results show that using implementations of MVTO-S
greatly improves performance and the number of transactions
that commit within their deadlines, compared to using single
version concurrency control algorithms.
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Simulation Setup

Five tasks are executing periodically, and they invoke UTs that
execute with the same priority as the task. The tasks are pri-
oritized according to rate monotonic (RM), where a task gets
a priority proportional to the inverse of its frequency [7]. The
base period times are: 60 ms, 120 ms, 250 ms, 500 ms, and
1000 ms. These period times are multiplied with the ratio
32/arrival rate, where 32 is the number of invoked tasks us-
ing the base period times, andarrival rate is the arrival rate
of UTs. The data item a UT derives is randomly determined
by taking a number from the uniform distribution U(0,|D|). In
the experiments, a database with 45 base items and 105 derived
items has been used. The graph is constructed by setting the
following parameters: cardinality of the read set (|R(d)|), ratio
of R(d) being base items, and ratio being derived items with
only base item parents. The cardinality ofR(d) is set randomly
for eachd in the interval 1–8, and 30% of these are base items,
60% are derived items with only base item parents, and the re-
maining 10% are other derived items. These figures are rounded
to nearest integer. The number of derived items with only base
item parents is set to 30% of the total number of derived items.
We believe a database of 150 data items represents the storage
requirements of a hotspot of an embedded system, e.g., in the
EMS 128 data items are used to represent the external environ-
ment and actuator signals. Further, we believe the data depen-
dency graphG is broad (in contrast to deep), and that a data
item does not depend on many other data items.

Every sensor transaction executes for 1 ms and every user trans-
action and triggered update executes for a time repeatedly taken
from a normal distribution with mean 5 and standard deviation
3 until it is within [0, 10]. A simulation runs for 150 s with a
specified arrival rate. Every simulation is executed 5 times and
the showed results are the averages from these 5 runs. The user
transactions are not started if they have passed their deadlines,
but if a transaction gets started it executes until it is finished.

Every write operation creating the most recent version is adding
a value from the uniform distribution U(0,350) to the previous
most recent version. The data validity bounds are set to 400
for all data items. The creation of versions by the multiversion
concurrency control algorithm involves taking values of the two
closest versions, one older and one newer, and then randomly
derive a value that is between the versions. The memory pool
for storing versions holds 300 versions where 150 versions are
reserved for the current value of each data item. Base item up-
dates have a priority higher than UTs and execute on average
every 100 ms, i.e., the period time is 50 ms and for every base
item there is a 50% chance that the item is updated.

The updating algorithm used is the ODTB algorithm except in
the OD-HP2PL simulation where periodic updates of data items
is used. Table 1 shows the concurrency control algorithms that
are used in the simulations. The algorithm MVTO is MVTO-S
without a relevance check. OCC-S is OCC where the validation
phase has been extended with a check whether the conflict in-
volves similar values or not [9]. This extension of OCC is in
line with the stepwise consistency (see section “Concurrency
Control”) that considers that as long as transactions produce

Table 1: Concurrency control algorithms used in simulations.
Algorithms

MVTO-SUV MVTO-SUP MVTO-SCRC

OCC-S HP2PL OCC
OD-HP2PL RCR-OCC RCR-OCC-S
NOCC RCR-NOCC

end results correctly reflecting the external environment, then
all conflicts are acceptable. By using a similarity check in the
validation phase of OCC, it is possible to allow small errors in
values that do not affect end results. The RCR implementations
of OCC and OCC-S are restarting transactions until they are
able to read a snapshot of DIESIS [9]. The on-demand updat-
ing and using HP2PL for concurrency control (OD-HP2PL) al-
gorithm [4] triggers updates based on time instead of similarity,
and in our test platform setup the allowed age on data items is
set to 400 ms which is a good estimate on how long time a sen-
sor value lives, since the average period time of sensors are 100
ms and it requires, on average, 3 updates to change outside a va-
lidity bound giving that values live 300–400 ms. The algorithm
no concurrency control (NOCC) does not use any concurrency
control, and is used as a baseline.

Simulation Results

The experiment investigates the number of committed user
transactions within their deadlines. The no concurrency control
scheme is used as a baseline. Figure 7 shows the performance
of the algorithms.

First the benefit of using similarity can be seen in figure 7(a)
studying the difference in performance between HP2PL and
OD-HP2PL. In figure 7(b), MVTO-SUV outperforms the single-
version concurrency control algorithms at all arrival rates. The
difference is most notable at higher loads where MVTO-SUV

performs significantly better than HP2PL, OCC, and NOCC.
MVTO-SUP cannot perform as good as MVTO-SUV because
less transactions are skipped [10]. MVTO-SUP performs bet-
ter than single-version algorithms at high arrival rates, but for
small arrival rates OCC-S performs better.

Using multiple versions there are in total fewer restarts of trans-
actions, i.e., less unnecessary work of transactions is done, com-
pared to algorithms using restarts as resolving conflicts. More-
over, more transactions can be skipped since updates do not
overwrite each other results because old values are stored in new
versions. A transaction that derives an old version of a data item
can benefit from versions from almost the same point in time
that might exist in DIESIS, because a relevance check checks
against such a version and not the most recent version as in
single-version concurrency control algorithms. Table 2 shows
the percentage of the total number of UTs and TUs that restart
and can be skipped. The multiversion timestamp ordering al-
gorithms have considerably fewer restarts than single-version
algorithms. Every restart for MVTO, MVTO-SUV , MVTO-SUP,
and MVTO-SCRC is due to a full memory pool, whereas for
single-version algorithms restarts are due to conflicts among
concurrent transactions.
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Figure 7: Experiment 1: Performance evaluations of single-version and multiversion concurrency control algorithms.

Table 2: Experiment 1: Percentage of total number of UTs and
TUs that restarts, and percentage of skipped transactions.

Alg. Restarts Skipped transactions
HP2PL 9.32% 16.2%
OD-HP2PL 9.46% 0%
OCC 9.03% 16.0%
OCC-S 0.96% 15.0%
NOCC 0% 14.5%
MVTO 0.24% 7.03%
MVTO-SUV 0.039% 55.7%
MVTO-SUP 0.15% 38.5%
MVTO-SCRC 0.23% 39.6%

In figure 7(a), we see that using OCC-S gives the same num-
ber of UTs can commit as for NOCC. However, NOCC cannot
guarantee the consistency of results produced by transactions
since transactions read and write uncontrollably to DIESIS, but
OCC-S produces consistent results. Table 2 shows that using
similarity in OCC-S compared to using no similarity as in OCC,
the percentage of restarts drops from 9.03% (OCC) to 0.96%
(OCC-S). This indicates that conflicts among transactions of-
ten involve similar values since many of these conflicts cause
restarts in OCC but not in OCC-S. Thus, a considerable amount
of conflicts that do occur do not need any concurrency control.
This is in line with observations made by Graham [8].

The implementations of MVTO-S guarantee that a transaction
reads an up-to-date snapshot of DIESIS. The single-version
concurrency control algorithms can guarantee this by restarting
transactions until they read data items that are from the same
external state. These algorithms are prefixed with RCR for rela-
tive consistency restarts. Figure 8 shows the performance using
restarts to enforce relatively consistent read sets. The MVTO-S
implementations are performing better than the single-version
algorithms with restarts since values needed for deriving snap-
shots for transactions are stored in memory, therefore new up-
dates to data items cannot destroy a snapshot for a transaction.
Using a RCR algorithm, an update to a data item can be read by
a preempted transaction which may destroy the derivation of a
snapshot.
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Figure 8: Experiment 1: Performance of relative consistency
restarts algorithms.

CONCLUSIONS

In this paper we have described a database implementation
aimed at being used in embedded systems—DataIn Embedded
Systems maIntenanceService (DIESIS)—and specifically in an
electronic engine control unit. The following is found to justify
the usage of a real-time database in an embedded system:

• Software is built as modules that naturally divide data into
different areas, but this makes it difficult to overview exist-
ing data and their freshness and time requirements. Using
a database, data is instead stored in one central repository
which is easier to overview. Moreover, it is possible to add
meta-information of data items to the database.

• Data read by a transaction should correlate to the same
state of the external environment. Using a database, the
internal functions of the database can ensure that transac-
tions read such data. This is hard (or even impossible) to
guarantee if not having a global knowledge of all data.

The contribution of this work is incorporating functionality in
DIESIS that:
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• ensures data items have a specified data freshness,

• automatically adapts the frequency of executing transac-
tions to the current state of the system, and

• guarantees a transaction reads values of data items that
were valid when the transaction started and they correlate
to the same state of the external environment.

These functionalities are transparent to the user which means
it is easier to use the system for the programmer since he can
focus on other things than data freshness and consistent val-
ues. Moreover, these functionalities are evaluated in both a
real-life system, an electronic engine control unit, and in a sim-
ulator setup. The performance evaluations show that using an
on-demand updating algorithm that is similarity-aware, i.e., de-
fines data freshness in the value domain of data values, can
greatly reduce the number of transaction invocations when the
system enters a steady state compared to periodically recalcu-
lating data. Moreover, using a similarity-aware snapshot algo-
rithm not only guarantees transactions see a consistent view of
data values, but it also improves performance since calculations
can be skipped to a larger extent compared to well-established
concurrency control such as HP2PL and OCC.

For future work we intend to study an admission control of
transactions in DIESIS to reduce the workload in the event of
an overload.

REFERENCES

[1] Arcticus AB homepage. http://www.arcticus.se.

[2] Robert K. Abbott and Hector Garcia-Molina. Scheduling
real-time transactions: a performance evaluation.ACM
Transactions on Database Systems (TODS), 17(3):513–
560, 1992.

[3] B. Adelberg, H. Garcia-Molina, and B. Kao. Applying
update streams in a soft real-time database system. In
Proceedings of the 1995 ACM SIGMOD, pages 245–256,
1995.

[4] Quazi N. Ahmed and Susan V. Vbrsky. Triggered updates
for temporal consistency in real-time databases.Real-
Time Systems, 19:209–243, 2000.

[5] Paolo Atzeni, Stefano Ceri, Stefano Paraboschi, and Ric-
cardo Torlone. Database Systems Concepts, Languages
and Architectures. The McGraw-Hill Companies, 1999.

[6] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Good-
man. Concurrency control and recovery in database sys-
tems. Addison-Wesley Publishing Company, 1987.

[7] Giorgio C. Buttazzo.Hard Real-Time Computing Systems.
Kluwer Academic Publishers, 1997.

[8] Marc H. Graham. How to get serializability for real-time
transactions without having to pay for it. InProceedings
of the Real-Time Systems Symposium 1993, pages 56–65,
1993.

[9] Thomas Gustafsson. Maintaining data consistency in
embedded databases for vehicular systems. Linköping
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APPENDIX

REAL-TIME SYSTEMS

A real-time system consists of tasks, where some/all have time
constraints on their execution. It is important to finish a task
with a time constraint before its deadline, i.e., it is important to
react to an event in the environment before a predefined time.

The correct behavior of a real-time system depends not only
on the values produced by tasks but also on the time when the
values are produced [7]. A value that is produced too late can
be useless to the system or even have dangerous consequences.
A task is, thus, associated with a deadline relative to the start
time of the task. Note that a task has an arrival time when the
system is notified of the existence of the ready task, and a start
time when the task starts to execute. Tasks are generally divided
into three types:

• Hard real-time tasks. The missing of a deadline of a task
with a hard requirement on meeting the deadline has fatal
consequences on the environment under control. For in-
stance, the landing gear of an aeroplane needs to be ejected

at a specific altitude in order for the pilot to be able to com-
plete the landing.

• Soft real-time tasks. If the deadline is missed the envi-
ronment is not severely damaged and the overall system
behavior is not at risk but the performance of the system
degrades.

• Firm real-time tasks. The deadline is soft, i.e., if the dead-
line is missed it does not result in any damages to the en-
vironment, but the value the task produces has no meaning
after the deadline of the task. Thus, tasks that do not com-
plete in time should be aborted as late results are of no use.

Scheduling algorithms determine the order tasks are executed.
Two well-known real-time scheduling algorithms are rate-
monotonic (RM) and earliest deadline first (EDF). Using RM
means that a task is assigned a priority that is proportional to
the inverse of its invocation frequency. This means that tasks
with high frequency get higher priority than tasks with low fre-
quency. The priority of a task, using EDF, is commensurate
with the distance to the deadline, and the shorter the distance
the higher the priority.

DATABASE

The following benefits of using a database for data storage are
given in database textbooks [5]: (i) data storage is centralized,
(ii) data storage is hidden behind an API or query language, and
the data storage details are hidden for the users of the database,
(iii) the database can seamlessly handle data freshness and con-
currency control, (iv) meta-information, e.g., timestamps and
deadlines, can be stored with the data, and (v) the relationships
among data items can be stored in the database.

TRANSACTIONS

We define a transaction as computational work carried out in
the database, e.g., a calculation. The database has integrity con-
straints on the data, and transactions must be executed such that
the constraints are always fulfilled. In some applications, e.g.,
in bank applications moving money between accounts, the ex-
ecution of transactions must conform to the following proper-
ties [5]:

• Atomicity. All operations of a transaction are reflected in
the database, or none of them are.

• Consistency.The execution of transactions preserves the
consistency of the database.

• Isolation. Each transaction is unaware of other transac-
tions executing in the database system.

• Durability. The results of a committed transaction persist
even in the course of system failure.

Transactions should avoid the four effects of conflicting opera-
tions that are described below.
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• Lost update,where a transaction overwrites the result of
another transaction, and, hence, the result from the over-
written transaction is lost.

• Dirty read, where a transaction reads and uses a result of
a transaction that is aborted later on, i.e., the transaction
should not have used the results.

• Inconsistent read,a transaction reading the same data item
several times gets, because of the effects of concurrent
transactions, different values.

• Ghost update,where a transaction only sees some of the
effects of another transaction, and, thus, consistency con-
straints do not hold any longer. For example [5], con-
sider two transactions,τ1 andτ2, and the constraints =
x+y + z = 1000. The operations are executed in an order
such that the value ofs in τ1 at commit time is 1100 since
τ1 has seen intermediate results fromτ2.

Consistency constraints can be constructed for the following
types of consistency requirements: internal consistency, ex-
ternal consistency, temporal consistency, and dynamic consis-
tency. Below each type of consistency is described [15].

• Internal consistencymeans that the consistency of data
items is based on other items in the database. For instance,
a data item Total is the sum of all accounts in a bank, and
an internal consistency constraint for Total is true if, and
only if, Total represents the total sum.

• External consistencymeans that the consistency of a data
item depends on values in the external environment that
the system is running in.

• Temporal consistencymeans that the values of data items
read by a transaction are sufficiently correlated in time.

• Dynamic consistencyrefers to several states of the
database. For instance, if the value of a data item was
higher than a threshold then some action is taken that af-
fects values on other data items.
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