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Abstract

This paper promotes compositional reasoning in the context of safety-critical systems, and demonstrates a
safety-oriented component model using an application from the automotive industry: an Adaptive Cruise
Controller (ACC). The application consists of four components for which a set of 18 fault modes have
been identified. We show the impact of all single faults and double faults selected from this set, on a
safety property associated with the ACC assembly. Analysis related to each fault mode is performed using
compositional rules and derived safety interfaces for each component.

The derivation of safety interfaces for the ACC components has been supported by implementation of two
extensions to the SCADE tool set: (1) a front end that iteratively and automatically builds the environment
in which the component is resilient in presence of a given fault, (2) fault mode libraries that can be reused
for modeling several classes of faults affecting the input of a component. The result of the study is the
illustration of system level safety in presence of certain single and double faults, based on compositional
reasoning and the automatically generated interfaces. The component model uses reactive modules as the
formal notation. The instantiation of the model in terms of modules specified in SCADE provides a link
between formal analysis of components in safety-critical systems and the traditional engineering processes
supported by model-based development.

Keywords: Component-based system development, safety, component assemblies, safety interfaces, fault
modes, SCADE

1 Introduction

Component-based software development [32,8] (CBSD) has emerged as a promising
approach for developing complex software systems by composing smaller indepen-
dently developed components into larger component assemblies. This approach
offers means to increase software reuse, achieve higher flexibility and shorter time-
to-market by the use of off-the-shelf components (COTS). However, the use of COTS
in safety-critical system is highly unexplored.

First, system safety engineers need to present arguments that justify depend-
ability of the system, based on any information available from the COTS. Typically
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COTS are not developed with generation of such arguments to certification authori-
ties in mind. Specially, whether or not fault tolerance in components affects system
properties, is not currently part of component interfaces. Secondly, the process
that leads to this assurance needs to be rigorous, efficient, and easily applicable
for upgrades at a later stage of the system life cycle. Thus, support for rigorous,
compositional analysis from components to assemblies, and with specific focus on
faults that can jeopardize system safety is a relevant area of work [16,26].

Following the trend of software components in system development, the use of
critical software in complex safety-critical systems has increased. Since safety has to
be addressed at the system level, an overall analysis of the component assembly is
necessary. This implies that effect of possible component failures must be analysable
as foreseen hazards at the system level. Also, for efficiency, there is a desire not
only to reuse components, but also to reuse analysis results upon future upgrades.
The use of formal models and analyses is generally accepted as a means of rigorous
safety assessment in software [33,31]. However, as of now, no industrial tools exist
for assessing dependability in a system built from components [12].

During recent years, a wide range of models and methods for developing systems
from components have emerged [6,11]. In particular, an analytical component model
has been presented that provides the means for reasoning about system safety, by
reasoning about known component behaviour in presence of specified faults (i.e.
safety interfaces [13]). This work is built on the component model presented therein.
By generating safety interfaces of components, the component developer may specify
the effects and the assumptions needed for the component to be resilient to specific
faults. This characterises how a component might contribute towards jeopardizing
a given safety property at system level [13]. The framework has so far been applied
to an aerospace application with only Boolean variables in the Esterel Studio tool
set.

In this paper, we apply the proposed technique to a non-trivial case study,
namely an automotive Adaptive Cruise Controller (ACC) with non-Boolean vari-
ables. In order to cope with the analysis on integer functions we utilise the tool set
SCADE [15]. A methodology for building fault mode libraries in order to use this
method efficiently is illustrated. We have also implemented parts of the framework
as a front-end to SCADE for generating safety interfaces. This application illus-
trates the possibility of reuse of previous partial analysis results in future upgrade
scenarios.

The paper is structured as follows. In section 2 we present some basic definitions
and recall our earlier work upon which the rest of the paper builds. In section 3,
an overview of the ACC case study is given. Section 4 presents the methodology
for use of fault mode libraries and the front-end to SCADE. In sections 5 and 6,
the activities seen from the two perspectives (system developer and component
developer) are described and the result of the analysis is presented. Section 7
presents related work while section 8 concludes the paper.
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2 Preliminaries

Our general formalism for modules is a special class of reactive modules [2] with
synchronous composition, finite variable domains and non-blocking transitions, that
we call synchronous modules (from now on simply called modules).

Definition 2.1 [Module] A synchronous module M is a tuple (V,Q0, δ) where

• V = (Vi, Vo, Vp) is a set of typed variables, partitioned into sets of input variables
Vi, output variables Vo and private variables Vp. The controlled variables are
Vctrl = Vo ∪ Vp and the observable variables are Vobs = Vi ∪ Vo;

• A state over V is a function mapping variables to their values. The set of con-
trolled states over Vctrl is denoted Qctrl and the set of input states over Vi as Qi.
The set of states for M is QM = Qctrl ×Qi;

• Q0 ⊆ Qctrl is the set of initial states;
• δ ⊆ Qctrl ×Qi ×Qctrl is the transition relation.

A state q of a module M is an interpretation of the variables in V and the succes-
sor of a state is obtained at each transition by updating the controlled variables of
the module. This is essentially the definition of a module’s function as a transition
system. The execution of a module produces a state sequence q̄ = q0 . . . qn. A trace
σ̄ is the corresponding sequence of observations on q̄, with σ̄ = q0[Vobs] . . . qn[Vobs],
where q[V ′] is the projection of q onto a set of variables V ′ ⊆ V . The trace lan-
guage of M , denoted LM , is the set of traces of M . A property ϕ, a set of traces
on V ′ ⊆ V , is a safety property iff σ̄ ∈ ϕ ⇔ σ̄′ ∈ ϕ for any finite prefix σ̄′ of σ̄.

Definition 2.2 [Model] A module M models a property ϕ, denoted M |= ϕ, iff
every trace of M belongs to the traces of ϕ.

Definition 2.3 [Parallel composition] Let M = (V M , QM
0 , δM ) and N = (V N , QN

0 , δN )
be two modules with V M

ctrl∩V N
ctrl = ∅. The parallel composition of M and N , denoted

by M ‖ N , is defined as

• Vp = V M
p ∪ V N

p

• Vo = V M
o ∪ V N

o

• Vi = (V M
i ∪ V N

i ) \ Vo

• Q0 = QM
0 ×QN

0

• δ ⊆ Qctrl × Qi × Qctrl where (q, i, q′) ∈ δ iff (q[V M
ctrl], (i ∪ q)[V M

i ], q′[V M
ctrl]) ∈ δM

and (q[V N
ctrl], (i ∪ q)[V N

i ], q′[V N
ctrl]) ∈ δN .

Reactive modules can be related via trace semantics: a module M refines module
N if all possible traces of M also are possible traces of N .

Definition 2.4 [Refinement] Let M = (V M , QM
0 , δM ) and N = (V N , QN

0 , δN ) be
two synchronous modules. M refines N , written M � N , if (1) V N

o ⊆ V M
o , (2)

V N
i ⊆ V M

obs and (3) {σ̄[V N
obs] : σ̄ ∈ LM} ⊆ LN .

To be able to apply formal analysis of the behaviour of a component in presence
of faults in its environment, we need to define a formal model of the faults.
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Definition 2.5 [Input Fault Mode] An input fault mode Fk of a module M is a
module with one input variable vf

k 6∈ V M and one output variable vk ∈ V M
i , both

of the same type Dk.

Faults in the environment of a component are modelled as faulty inputs to the
component, and each such faulty input creates a fault mode for the component. The
input fault of one component thereby captures the output fault of a component con-
necting to it. By using modules as means of modelling fault modes, the fault mod-
elling is only limited by the expressiveness of modules. Various fault mode classes
can be derived by specifying the corresponding fault modules. In traditional safety
analysis, faults can be classified into the following high-level categories: omission
faults, value faults (coarse and subtle), commission faults and timing faults [4,13].
In this work, we do not focus on timing faults and our work does not include the
process of determining fault modes, and hazard analysis, which is itself a different
research topic. Fault modes are assumed as given, and the result of the analysis is
knowledge about the potential impact of a given fault on a component assembly.

Definition 2.6 Let E be a module with vk ∈ V E
o and Fk be a fault mode with

input vf
k and output vk. We denote E ◦ Fk = E[vk/vf

k ] ‖ Fk where E[vk/vf
k ] is the

module E with the substitution vf
k for vk.

Consider a module M , an environment E and a fault mode Fk that affects the
input vk from E to M . In the resulting faulty environment E ◦ Fk, the original
output vk of E becomes the input vf

k of Fk, which produces the faulty output vk as
input to M . Thus, E ◦ Fk has the same number of observable variables as E and
can be composed with M .

Now, we can define a safety interface.

Definition 2.7 [Safety Interface] Given a module M , a system-level safety property
ϕ, and a set of fault modes F for M , a safety interface SIϕ for M is a tuple
〈single, double, Eϕ〉 where

• single = {〈F s
1 , As

1〉, . . . , 〈F s
n, As

n〉} where F s
j ∈ F and As

j is a module composable
with M , such that M ‖ (As

j ◦ F s
j ) |= ϕ

• double = {〈F d
1 , Ad

1〉, . . . , 〈F d
n , Ad

n〉} with F d
k = {〈F 1

k , F 2
k 〉 | F 1

k , F 2
k ∈ F, F 1

k 6= F 2
k }

such that M ‖ (Ad
k ◦ (F 1

k ‖ F 2
k )) |= ϕ

• Eϕ is an environment in which M ‖ Eϕ |= ϕ.

The safety interface makes explicit which single and double faults the component
tolerates when placed in a specific environment (abstracted by the element A in the
tuples above). These environments can be seen as requirements that the component
places on its environment in order to be resilient to the declared faults with respect
to the safety property ϕ. In particular, Eϕ is an environment abstraction in which M

functions if there are no faults. Similarly, As
j and Ad

k are environment abstractions
in which the component is resilient to the specific single fault Fj and double fault
Fk respectively. Note that the safety interface does not have to treat all faults in F

(and in fact could be empty), meaning that the component developer only specifies
what is known about the component in presence of faults.
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Fig. 1. The environment abstraction generation algorithm (EAG-algorithm).

Definition 2.8 [Component] Let M be a module and SIϕ a safety interface for M .
A component C is defined as the tuple 〈M,SIϕ〉.

2.1 Environment Abstraction Generation Algorithm

Creating the safety interface is not a trivial task. Major element of a safety inter-
face are the environment abstractions. We now recall the environment abstraction
generation algorithm (EAG, see Figure 1) that generates these environment ab-
stractions.

Let M be a module, ϕ be a safety property and A0 an unconstrained environ-
ment. Then the least restrictive (weakest) environment Eϕ

w that composed with M

satisfies ϕ can be generated as demonstrated in Figure 1. The algorithm uses a
model checker to check whether the module M in parallel with the environment Aϕ

satisfies the safety property ϕ: M ‖ Aϕ |= ϕ.
Initially, the algorithm starts out with an empty constraint Aϕ

0 on the environ-
ment. At each iteration i, the algorithm strengthens the constraints Aϕ

i by analysing
the counter-example generated by the model checker and removing the forbidden
traces (represented by f in Figure 1). This corresponds to removing behaviours
from (or strengthening) the environment. In the next iteration, the environment
Aϕ

i+1 should at least not exhibit the behaviour reflected by the counter-example
at iteration i. The infinite value range of variables creates an infinite state space.
By bounding the value range we can create a finite number of states. Thus, the
algorithm will terminate and stops at a fixpoint when Aϕ

i+1 = Aϕ
i = Eϕ

w. As usual,
there is the risk of combinatorial explosion, but the treatment of that is a separate
research topic on improvements of this naive algorithm.

As mentioned above, a safety interface also expresses how a module behaves in
presence of specific faults; in particular in which environment the module tolerates
a given fault. The EAG-algorithm can also be used to derive these environment
abstractions. Input to the algorithm is now M and Eϕ

w ◦ Fk, i.e. the faulty envi-
ronment. The output Ak, is the environment abstraction in which the module M

tolerates Fk. Two cases may occur during the above process:

• Unconstrained environment: Those cases when a component itself satisfies
the safety property for all inputs to the component, i.e. M |= ϕ. This implies
that the component tolerates the given fault in all possible environments.

• Contrained environment: The normal case when the EAG-algorithm termi-
nates with a constrained environment. The generated environment abstraction
together with the specific fault is added to the safety interface. The special case
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when the generated environment abstraction has no traces indicates that the com-
ponent is not tolerant of this fault no matter in which environment it is placed.
This is a valuable knowledge for the component developer.

A special class of constrained environments are those in which ∀vk ∈ V M
o , vk 6∈

V ϕ
i , which practically means that the safety property is not directly affected by

the outputs of this component. For those cases, the abstraction trivially becomes
As

k = ϕ and terminates immediately.

3 Case study: Adaptive Cruise Control

In this section we introduce an automotive application to illustrate our methodology;
the Adaptive Cruise Control (ACC) (informally described in [21]). Beside its safety
and real-time aspects, the case study is particularly interesting because structuring
and reuse is of importance in competitive industries today, especially the automotive
industry. However, we are well aware that such formal safety analysis is only a small
part of the puzzle that corresponds to developing complex automotive electronics
in a competitive market.

3.1 General description and safety requirements

The ACC is an extension of the conventional in-vehicle cruise control function that
can be found in most cars today. As well as the traditional functionality of a cruise
control, i.e. adapting the vehicle to a specific speed set by the driver, the ACC may
also adapt the distance to a vehicle in front or adapt to the current speed limit of
the specific road section.

If the ACC application discovers a target vehicle in front of the own vehicle, the
ACC will adapt the speed of the own vehicle to ensure a safe distance to the target
vehicle. If the target vehicle disappeares, the ACC will work as a conventional cruise
control. For safety reasons, the driver should at any time be able to take control of
the car by braking or using the throttle.

3.2 ACC architectural decomposition

To reduce the complexity and to apply a component-based approach to this case
study, the functionality of the ACC is divided into the following four components
(see Figure 2):

• Speed Limit Component Calculates and controls the speed that the ACC
should adapt. The driver sets a maximum speed limit which the vehicle should
not exceed when the ACC is activated.

• Object Recognition Component Responsible for detecting when vehicles ap-
pear within a fixed distance in front of the car.

• Mode Switch Controls the mode of the ACC, i.e. whether the ACC is in
STANDBY, ON or OFF mode depending on the inputs from the driver and the
current speed of the car.

• ACC Controller Component Handles the adaptation to speed or distance
using two different controllers, one for speed control and one for distance control.
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Fig. 2. The ACC architecture.

Components communicate through typed signals that are either Boolean or in-
tegers. In some cases, Boolean variables may also be triggering signals that trigger
the execution of the connected component.

3.3 Formalizing Safety Properties

When introducing an in-vehicle function into a subsystem such as the ACC, system
engineers need to verify that safety properties are assured and all new hazards that
are introduced into the system are carefully analysed. In our exposure of the case
study in this paper, we will consider and analyse the following safety property for
the ACC:

ϕ : When the ACC is in ACC-Mode, the speed is higher than 50 km/h, and there
is a vehicle closer than 50 meters in front, the system should not accelerate.

3.4 Fault modes

A part of the preliminary safety assessment procedure is to identify, as far as pos-
sible, faults in the system and evaluate their impact as described in Section 2. For
example, each triggering signal can be effected by an omission or commission fault.
Every variable can be effected by a value fault, i.e. an unintended change in the
value of the signal. More specifically, signals can get stuck at a certain value giving
rise to a StuckAt-fault.

Table 1 shows a selection of fault modes that were identified in the ACC system
and referred to in the forthcoming section. Other fault modes can be handled
analogously, but are not treated in the following sections.

4 Tool support for deriving Safety Interfaces

Existing tools with an ambition to support component-based development are mainly
based on UML 2.0 which is promoted for representing and describing (software) com-
ponents. However, none of these tools supports automatic derivation of any kind of
interfaces. This section introduces an overview of our safety analysis methodology
and presents an approach to aid the component developer in this process.
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Fault Type Component Input Fault Type Component Input

F1 StuckAt ModeSwitch On F11 StuckAt AccCtrl RegulON

F2 StuckAt ModeSwitch Off F12 StuckAt AccCtrl RegulOFF

F3 Value ModeSwitch SpeedOK F13 StuckAt AccCtrl ACCMode

F4 StuckAt ModeSwitch Resume F14 Value AccCtrl Accel

F5 Value ModeSwitch Brake F15 Commission AccCtrl RegulON

F6 Value ModeSwitch Accel F16 Omission AccCtrl RegulON

F7 StuckAt AccCtrl On F17 StuckAt SpeedLimit RSEnabled

F8 StuckAt AccCtrl Set F18 Value SpeedLimit Speed

F9 Value AccCtrl Speed F19 Value SpeedLimit RoadSign

F10 Value AccCtrl Distance F20 Value ObjectRecognition Distance

Table 1
Identified possible faults in the system.

Fig. 3. The component-based system development process.

4.1 Safety Analysis Methodology

The idea behind component-based system development is to divide the system devel-
opment between two parties: the system integrator and the component developers.
The responsibility of the component developers is to design and implement compo-
nents according to the specification given by the system integrators. Adopting a
component-based approach to the development of safety-critical systems is not triv-
ial since safety is a system level attribute. Thus, it is not possible to outsource the
complete safety assessment process to the component developers. Hence, tradition-
ally, safety analysis is done at the system level by the system safety engineers during
system integration. Our methodology of component-based safety analysis based on
safety interfaces divides the effort of safety analysis between the above two parties;
the system integrator and the component developer as depicted in Figure 3.

In order to make the system-level safety analysis possible, the component devel-
opers must supply the system integrators with a model of a component including
a safety interface. One method for generating the safety interface was introduced
in Section 2. However, the iterative generation of the environment abstraction is in
practice too tedious to do manually since it may involve placing a very large num-
ber of constraints on the environment. To make the process of generating safety
interfaces efficient, some tools are necessary to aid the component developers in
this process. Several tools are being extended to handle component (interaction
or functional) interfaces , e.g. Autofocus [22], Matlab [24]. Our focus here is the
interfaces specific to fault tolerance and safety.
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4.2 Front-end to SCADE

In this study, the development environment SCADE and the built-in Design Verifier 2 [14]
was used. By modelling the system in SCADE, and specifying the safety properties
in the underlying language Lustre [19], the Design Verifier is used to verify whether
a certain safety property holds in the system or not.

If the system violates the property, the Design Verifier has found a bad state
and terminates the analysis. Output from the analysis is the trace (i.e. sequence of
variable assignments 3 ) that leads to that specific bad state, i.e. a counter-example.
Thus, SCADE and the Design Verifier can help to implement the algorithm for
generating the environment abstraction described in Section 2.1.

To make the application of the EAG-algorithm more practical in large state
spaces, a front-end to SCADE was implemented to automate the procedure. By
automatic analysis of the counter-examples that the Design Verifier returns, the
environment of each component may be constrained using assertions in Lustre.

For example, if the environment consists of the signals On, Off, and Resume
and the counter example returns the following trace

Step 0: On=false, Off=false, Resume=true;
Step 1: On=true, Off=true, Resume=false;

that violates the safety property, we may use the following assertion construction
to remove this trace during the next iteration.

assert not (Pre(On)=false and Pre(Off)=false and Pre(Resume)=true
and (On=true and Off=true and Resume=false);

Figure 4 (a) depicts the application of the EAG-algorithm within the SCADE
environment, and the role of our implemented front-end. The initial call to the
model checker is done with an unconstrained environment Aϕ

0 and new environ-
ments Aϕ

i are generated by analysing counter examples and creating constraints.
By adding these constraints to the environment of the component, and running
the model checker again with the new environment Aϕ

i+1, the bad behaviour from
the iterations is removed from the environment. Finally, all bad behaviours of the
environment with respect to the property ϕ will be removed and the algorithm will
terminate with an environment abstraction (Eϕ

w) constrained enough to make the
safety property valid when composed with the module in question.

2 A SAT-based model checker.
3 The Design Verifier only present variable assignment of signals that are critical to the falsification of the
safety property and omits others (i.e. don’t care)[14].
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(a) (b)

Fig. 4. a) The SCADE front-end. b) Example of fault mode (StuckAt)

4.3 Fault mode library

As mentioned in Section 2, faults can be classified into a set of high-level fault
modes. In order to create a safety interface of a component, environment abstrac-
tions must be generated for each fault that the component is resilient to. To make
this procedure more efficient for the component developer, a fault library may be
used. The SCADE environment allows to store and import models as libraries to
enable reuse. By modelling the high-level fault modes, e.g. a StuckAt-fault (see Fig-
ure 4 (b)), and importing them into the component analysis process, much work can
be reused and time can be saved, as shown later on in the example (see Section 6.1).

5 Safety Interfaces for ACC components

The whole ACC system and its four components were divided into 12 SCADE nodes
which can be translated into over 2000 lines of automatically generated C code.
The front-end to SCADE and the fault mode library were both used to generate
safety interfaces for the four ACC components. In this section, we will present the
development and the safety interface generation of the ModeSwitch component.

5.1 ModeSwitch

An initial design was first created based on the functional requirements derived in
the initial phase of the development process. When a satisfactory functional design
M was implemented in SCADE for the ModeSwitch component, the next step in
the process was to generate the safety interface of the component. As depicted in
Figure 4, input to this process is the module M , the safety property ϕ (from Section
3.3) and the set of faults F (from Table 1). The safety interface SIϕ

ModeSwitch

consists of three elements: the two tuples single and double and the environment
Eϕ. First of all, the EAG-algorithm was used to generate the environment Eϕ by
using the front-end to SCADE. The tool terminated with an environment Eϕ with
232 unique constraints on the output variables of Eϕ. Note that the EAG-algorithm
does not only lead to some matching environment. It may also present weaknesses
in the component design to the component developer. By analysing the constraints
generated by the process, design flaws may be found. For example, while generating
Eϕ for ModeSwitch, 2 major and 4 minor design flaws were caught and corrected
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during the process. As an example, one mode switch from ACC ON to ACC OFF
was omitted in the initial design, but this error was fixed after the first run of the
EAG-algorithm. This presents an added value to the component developer.

For each single fault Fj in Table 1 affecting ModeSwitch, the front-end to SCADE
was used to generate the specific environment As

j . Each combination of double faults
that affects only ModeSwitch was also considered. The final result of the analysis
was that this component tolerates all single faults but not in all environments. For
example, a StuckAtTrue-fault affecting the signal On (i.e fault F1) generates an
environment with 17 constraints.

All other components were designed in a similar fashion and the safety interfaces
for the components were all generated using the front-end to SCADE.

6 Safety of ACC assembly

For complex systems such as the ACC, it is difficult to reason about its impact
on safety, especially in presence of faults in the multiple (upgraded) components.
Assume-guarantee reasoning is one method for handling manageability and scalabil-
ity of complex systems. This section presents a technique that enables the system
integrator to perform system level safety analysis based on component models.

6.1 System Level Safety Analysis

The goal of the system integrator when analysing the assembly of components is
to determine whether the whole assembly satisfies the specific safety properties in
presence of faults, i.e. for a fault Fj ∈ F effecting component Mj , check if:

M1 ‖ M2 ‖ . . . ◦ Fj ‖ Mj ‖ . . . ‖ Mn |= ϕ(1)

However, composing all the components may be infeasible for many reasons,
both complexity and lack of efficiency during upgrades. Upgrades typically affect
a local part of a complex design. The idea is to avoid performing global analysis
on all unaffected parts. Instead, we apply an n-module circular assume-guarantee
rule that can be found in [13]. By applying this rule, the system integrator may
investigate Equation 1 without paying the price of an expensive overall composition.
Reasoning is restricted to changes affected by the upgraded module and without
having to redo the entire analysis each time a component changes.

The system integrator checks whether the fault Fj is in the safety interface for
any component that has an input affected by Fj . All single faults in F that do not
appear in single in the safety interface of the relevant components will actually be
a threat to the overall system safety in relation to the safety property under study.

In the case of the ACC, we present here the application of the rule to the 4-
component assembly in presence of fault F1. Let MM ,MA,MS ,MO represent the
ModeSwitch, the AccCtrl, the SpeedLimit, and the ObjectRecognition modules
respectively. Analogously, Eϕ

A, Eϕ
S , Eϕ

O denote the environments that are provided
in the safety interfaces associated with MA, MS and MO respectively. Then:
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MM ‖ As
1 ◦ F1 |= ϕ MM ‖ As

1 ◦ F1 � Eϕ
A

MM ‖ As
1 ◦ F1 � Eϕ

S

MM ‖ As
1 ◦ F1 � Eϕ

O

MA ‖ Eϕ
A |= ϕ MA ‖ Eϕ

A � As
1 ◦ F1

MA ‖ Eϕ
A � Eϕ

S

MA ‖ Eϕ
A � Eϕ

O

MS ‖ Eϕ
S |= ϕ MS ‖ Eϕ

S � As
1 ◦ F1

MS ‖ Eϕ
S � Eϕ

A

MS ‖ Eϕ
S � Eϕ

O

MO ‖ Eϕ
O |= ϕ MO ‖ Eϕ

O � As
1 ◦ F1

MO ‖ Eϕ
O � Eϕ

A

MO ‖ Eϕ
O � Eϕ

S

MM ‖ (MA ‖ MS ‖ MO) ◦ F1 |= ϕ

The first premise in the left column above is trivially true if 〈F1, A
s
1〉 ∈ single

in the safety interface of ModeSwitch. The three other premises in the left column
are trivially true based on the definition of safety interfaces. Checking the rest of
the premises above is possible using the Design Verifier, pair-wise composing the
constraint on the environment with the modules and launching the model checker.
Also, as seen above, many of these checks will be needed more than once which
means that the result of the analysis of the first fault F1 ∈ F can be reused when
analysing other faults in F . For example, when analysing the effect of fault F2 that
also affects MM , only 6 out of the 12 premises on the right column are needed. The
result of the other 6 premises can be reused from earlier analysis.

If all premises are true, we can conclude that the system will tolerate the specific
single fault. If one or more of the premises do not hold, we can conclude that this
fault is a threat to overall system safety of the assembly.

When two single faults appear simultaneously, they create a double fault. If
both of these faults affect the same component, then the system level analysis of
this double fault is handled analogously to single faults, except that the double
element is used instead of single. However, when the individuals in a double fault
affect two different components, the safety analysis process becomes a bit more
complex.

Consider a double fault 〈F1, F7〉 where the individual faults according to Table 1
affect ModeSwith and AccCtrl. In this case, the premises that are needed to prove
resilience to these faults have to be changed in accordance with environment ab-
stractions in the safety interfaces of the effected components. Each EA has to be
replaced with As

7 ◦ F7 in order to achieve the correct result. In a similar fashion as
with single faults, if one or more of the premises are falsified, then the system does
not tolerate this specific double fault.
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6.2 Result

The result of the safety analysis for the whole system, using all faults in Table 1
shows that:

• the ACC assembly is only resilient to 8 single faults, F1, F3, F4, F7, F8, F12, F16

and F19.
• the ACC assembly is resilient to two double faults 〈F1, F4〉 and 〈F4, F8〉.

These faults can individually or in pairs, e.g. 〈F1, F4〉, appear in the system
without jeopardising the overall safety with respect to the safety property ϕ. From
now on the task of the system engineer will be focused on single faults not in the
list above, and double faults that constitute a threat. The work proceeds with
quantifying the risk associated with each fault (or fault combination) and providing
mitigations against them.

7 Related Work

We consider related works in the following three areas in sequel: components and
safety assessment, modular verification techniques, and model-based development.

Our work is rooted in earlier efforts to combine functional design and safety
analysis using the same formal model [1,5,20]. Attempts to study component be-
haviour in this context are recent and few. Bishop et. al. [3] addressess the problem
of safety of software components (COTS) by classifying the criticality of software
components and by adapting HAZOP [30] to assess the safety impact of software
component failures. However, their work focuses more on a high-level safety anal-
ysis and does not include any formal verification techniques. The B-method which
is a formal development method used to produce industrial safety-critical software
has also been applied to component based systems [28]. That work allows users to
create more trustable components with the aid of formal proofs, testing and runtime
checking, and also to generate target code from the component specifications. How-
ever, in the referred work, they only reason about local component properties and
do not address global system properties. The idea of supplying COTS components
with specific safety information has been proposed by Dawkins et al [9] but without
any support for formal analysis.

UML 2.0 is promoted as a suitable language for component modelling. Jürjens
defines an extension of the UML syntax in which stereotypes, tags, and values can
be used to capture failure modes of components in a system (corruption, delay,
loss), including nodes and links [25]. This model has the benefit that it narrows the
gap between a system realised as a set of functions and a system realised as a set
of components (by adopting UML-based notation). The model has been described
in a formal notation that has a potential for connection to formal verification tools.
Other formal component models include the SaveCCM that so far focuses on timing
properties [6].

Using modular verification techniques within component assemblies is an ac-
tive area of work. For example, in [23] system properties are proved by indepen-
dent model-checking of a group of small state spaces with the help of interface
automata [10]. However, their work focuses on communication protocols while ab-
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stracting away from the data values being communicated. Similarly, Chaki et al [7]
present methods for finite state abstractions of low-level C components. The ap-
proach of [17] is related to ours in terms of environment assumptions. They present
a model checking algorithm for linear transition systems that returns an assumption
that characterizes exactly those environments in which the component satisfies the
property. Our work can be considered as extension of that work to analysis of fault
tolerance by considering environment faults as input to the analysis.

Some research in the area of model-based development focus on fault modelling.
For example, [24] presents a method for model-based safety analysis with fault
modelling and formal verification as means for safety assessment. Their work how-
ever, does not address modular verification techniques. Other works on safety and
UML includes [27] which presents methods and tools for automated safety checking
in UML statecharts specifications. Grunske et al. [18] present a methodology for
model-based hazard analysis for component-based software systems based on State
Event Fault Trees. However, safety analysis is performed on the composed system
and it requires modelling of failure behaviour and propagation inside a component.
In our work, fault propagation inside the components is already captured by the
formal functional model. The Altarica language [29] was designed to formally spec-
ify the behaviour of systems when faults occur. Tools such as a fault tree generator
and a model checker exist for analysing Altarica models. However, components
and interfaces are not considered and the language does not differentiate between
transient and permanent faults which our model of faults can do.

The relation of our approach to the traditional FTA/FMEA techniques in system
safety are described in earlier work [13,20].

8 Conclusions

This paper illustrates a component-based safety analysis framework with the help of
formal models and tools to support the process. Our work shows promising results
on an automotive application with 4 non-trivial components and 20 fault modes.
We show how the component-based methodology can be cast in terms of models
underlying traditional engineering processes by illustrating the extension needed to
apply the method with the SCADE tool set, namely analysis front-end and fault
libraries.

However, more work needs to be done towards a more efficient method of gener-
ating safety interfaces and refinement checking. Also, employing such techniques in
development environments that are specifically built around the notion of compo-
nents is worthwhile to pursue. More advanced methods for analysing environment
constraints could also be useful to increase the possibility for component developers
to find design flaws early in the development process.
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