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Linköping University, Sweden

jonob@mai.liu.se

Abstract

Supporting high availability by checkpointing and
switching to a backup upon failure of a primary has a cost.
Trade-off studies help system architects to decide whether
higher availability at the cost of higher response time is
to strive for. The decision will lead to configuring a fault-
tolerant server for best performance. This paper provides a
mathematical model employing queuing theory that helps to
compute the optimal checkpointing interval for a primary-
backup replicated server. The optimization criterion is sys-
tem availability. The model guides towards the checkpoint-
ing interval that is short enough to give low failover time,
but long enough to utilize most of the system resources for
servicing client requests. The novelty of the work is the de-
tailed modelling of service times, wait times for earlier calls
in the queue, and priority of checkpointing calls over client
calls within the queues. Studies on the model in Mathe-
matica and validation of a modelling assumption through
simulations are included.

1 Introduction
High availability is a core requirement of many services

on which the society depends. A great challenge for the sys-
tem architect is how to perform the availability-performance
trade-off in the light of changing service contexts. Today’s
open systems have varying workloads and complex struc-
ture. The failure of one component may well lead to col-
lapse of a whole range of services due to uninformed deci-
sions made during system configuration and dimensioning.
The vision for our work is to build up a tool set that supports
the engineer in adaptation of a networked service to chang-
ing circumstances. We propose modelling and analysis of
mechanisms for dealing with failures and maintaining an
acceptable service while the system is recovering from the
results of a server crash. In particular, we illustrate the ap-
plication of this approach to mechanisms that are embedded
in every middleware that supports delivery of fault-tolerant
services. One example is a CORBA-based infrastructure in
which primary-backup replication mechanism is one way

for the system architect to implement fault-tolerant services
[14].
A common problem faced by system developers that aim

to use automatic support for fault detection and failover is
the complexity of the platforms that are suggested for this
purpose. There are simply too many parameters that can af-
fect the performance of a system and setting/changing one
parameter in one way or the other is deemed to have unpre-
dictable influence in the range of scenarios that the system
will face.
In cold primary-backup replication style that we consider

in this paper, a backup is only started when the primary
fails. Furthermore, the state of the primary has to be check-
pointed periodically to some local storage. With frequent
checkpointing the time required to switch the service to a
backup server, also called failover time, is lower because
fewer calls need to be replayed on the backup server. How-
ever, during checkpointing, the system stops serving update
client requests. With less frequent checkpointing the sys-
tem has a better steady state behaviour at the expense of a
longer failover time. Normally the system architect has no
systematic means of finding the optimum in this trade-off.
This paper applies our modelling and analysis methodology
to derive optimal checkpointing intervals for a given repli-
cated service. As well as a theoretic ground for analyzing
the above trade-off, one can see the approach as a basis for
implementing a systematic tool for adaptation of a system
to changing circumstances.
The contributions of the paper are as follows. We pro-

pose a detailed model that includes an application server
and a server that supports the failover mechanisms by log-
ging the client requests and the computed replies. The
model includes waiting times in both servers’ queues us-
ing queuing theory, as well as both servers’ service times. It
also characterizes the available intervals of the application
server both as intervals of steady state and intervals in which
backlog processing due to failover from a primary takes
place. The paper illustrates the application of the model to
compute an optimal checkpointing interval that maximizes
the average system availability. This optimal value is then
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tested in a simulation model of a system in which the check-
pointing interval is considered as a constant (as in the real
world). We show that the mathematical computations yield
results that are good enough to be used in a constant interval
setting. To place the work in perspective, we recall that the
average availability as optimization criterion is typically not
suitable for hard real-time applications [7]. However, we
consider the model powerful enough for meaningful anal-
ysis in a wide range of high-availability applications. This
can be confirmed by other researchers that use a similar cri-
terion (Plank et al. [10] and Vaidya [17]). A recent survey
by Elnozahy et al. [5] provides an excellent overview of
rollback-recovery protocols. However, analysis of optimal
checkpointing interval in different contexts is not covered
by the references therein.
Several researchers studied the above trade-off, i.e. the

problem of the “optimum checkpointing interval” in the
context of fault-tolerant processing systems, in settings
where a long-running job (performing heavy calculations),
or a process, is from time-to-time checkpointed [19, 7, 8,
4, 10, 9]. Other models include request processing or mes-
sage logging systems [6, 16, 12] and request processing in
mobile environments [3]. Our analysis fits in this second
category. However, we provide a more precise optimum by
explicitly modelling number of replayed calls as part of the
failover time.
Next we place the work in the context of own earlier

works. In the empirical studies of an implemented platform
that was tested with a telecom service, the checkpointing in-
terval was fixed ad hoc and the resulting middleware over-
head was emphasized [14]. Later, a basic framework was
suggested in which checkpointing interval was optimized
for finding the shortest average response time. In that model
the checkpointing request was treated in the same way as
other calls at the logging and application servers [15]. This
work extends that approach by using priority queues and
considering average availability as optimizing criterion.
2 Background and scope
In this paper, we model a proposed implementation of a

standard-compliant FT-CORBA infrastructure [14]in which
the logging and checkpointing infrastructure unit is as-
sumed not to fail 1. This means that information stored to
enable a failover will never be lost.
Figure 1 shows the checkpointing and logging proce-

dures as they take place in a standard compliant FT-CORBA
infrastructure . The Logging server updates a state log
and a call log. The main server that handles the applica-
tion object is denoted by Application server. The
state log contains information about the last recorded state.
Upon arrival from the client, the calls to update operations

1To combine the effects of infrastructure failure and application fail-
ure it is also possible to use a non-standard (fully available) FA-CORBA
infrastructure [14] but that is outside the scope of this paper.
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Figure 2: The checkpointing procedure time slices
are logged as records containing enough information (e.g.
operation name and parameters) to be able to replay them
on the backup if needed. Update operations are those that
change the state of the server object (in contrast with read-
only operations that leave the object state unchanged after
execution). Each time a new state record is saved in the
state log, the records corresponding to calls that were ex-
ecuted on the object before the current state reading took
place, are removed from the call log. The log also includes
information about the result of executing a client query on
the application server. This is used by the middleware to
avoid multiple executions of the query. In the initial model
we assume that no client request is resent. Extending the
model to multiple calls from the client is straightforward.
We analyze the primary-backup service availability as if

there were sufficient number of backups available for the
given failure frequency. A special case of this is the as-
sumption of one backup, and that there will be no failures
until the state of the recently failed primary has been recon-
structed. If the number of backups is limited or the latter
assumption is not valid in the circumstances then the anal-
ysis in this paper has to be extended to include the repair
time for a server.
After recording its call information in the log, an up-

date request proceeds to the Application server for
being processed on the object and accomplishing the ac-
tual serving of the client’s request. After this, it “re-
turns” to the Logging server to write its reply in the
log. From time to time the infrastructure initiates a check-
pointing request (by initiating a get state call on the
Application server). A get state operation ar-
riving at the Application server, despite being a
read operation, has to wait until the currently executing
update call finishes execution and leaves the server in a
“frozen” state. This means that the call to get state is
treated in a non-preemptive prioritized way.
To summarize, there are two categories of call infor-

mation logging: (1) calls corresponding to the client re-



quests and (2) calls corresponding to the get state re-
quest. There are two categories of reply logging: (1) the
returned result by the client initiated calls, and (2) the result
of the get state call, i.e. the completed checkpointing of
the state. In all cases, the calls are executed sequentially in
a run to completion manner at the Logging server (i.e.
no interruptions of one execution by another). However, re-
ply logging operations are prioritized over the call logging
operations. Thus, our model includes extra wait times for
call logging operations. For state consistency reasons, the
Application server also processes requests in a run
to completion manner in the same order that call informa-
tion was logged.

3 The checkpointing procedure

The checkpointing procedure has six phases: (1) wait-
ing to log the get state call record, (2) logging the
get state call record, (3) waiting to execute the “state
reading” on the Application server, (4) reading the
state from the server, (5) waiting to record the state, (6)
recording the state in the Logging server. In what fol-
lows we explain the above in more detail.
Upon arrival of a get state request, it is logged at

the Logging server. This is needed to know which
calls arrived before this get state request. Out of
them, those executed at the Application server be-
fore get state have to be removed from the call log once
the result of the get state is recorded.
Thus, the call to get state spends some time waiting

for and receiving service at the Logging server (phase
1 and 2 above, denoted by “Wait log call” and “Log call” in
Figure 2).
Next, the call to get state arrives at the

Application server, and waits for the currently
executing update call to finish execution on the object.
After this, the get state request is executed on the
application object: the state of the object (as left by the
update operation executed before get state) is read
(phases 3 and 4 above, denoted by “Wait read state” and
“Read state” in Figure 2).
Finally, the state that was read by get state is

recorded at the Logging server, after waiting for all
reply logging calls that are in the queue in that server. Thus,
before “exiting the system”, the completed get state re-
quest again spends some time in the queue of the Logging
server and on it (phases 5 and 6 above, denoted by “Wait
log state” and “Log state” in Figure 2).
The six phases constitute the whole checkpointing pro-

cedure, and are repeated every TC (checkpointing interval)
time units. Failures can occur even during the six phases of
checkpointing mentioned above.
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Figure 3: Failover, backlog processing, and equilibrium
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4 The model
The aim of the model is to express the average avail-

ability for client request processing, as a function of the
“unknown” quantity that is the average checkpointing in-
terval, and the rest of “known” system parameters. Once
this function is found, the main goal of finding the (aver-
age) checkpointing interval that maximizes availability, can
be achieved.
Throughout this paper, capital letters (with or without

subscript, e.g. SA, F) designate random variables, and E[F]
designates the average value of F.
As shown in Figure 3, the time line (0,∞) will be sliced

in groups of failover (F), backlog processing and equilib-
rium intervals. Equilibrium corresponds to normal process-
ing. Backlog processing is the interval during which the
server system (mainly server 2, as its service rate is
the lowest) has to process all requests queued up during
failover.
Following the description in Section 2, we model the

server side of the application (see the two servers in Fig-
ure 1) as a Jackson network [1]. The first server, where
client and checkpointing requests perform call (and later re-
ply) information logging is named server 1 in Figure 4.
The second server at which requests arrive for processing
on the application object is named server 2 in Figure 4.
The two servers form a pipeline. Call logging (i.e. external)
customers of server 1, when departing from it, become
customers of server 2. Customers of server 2 when
departing, return to server 1 as reply logging customers.
From server 1 they depart as “reply to client”. The ser-
vice rates of the two servers - µ1 and µ2 - are shown in Fig-
ure 4 under the respective boxes. The customer arrival rates
- λ1 for client requests and λ2 for checkpointing requests -
are shown on the respective flows. Parameter µ3 (not shown
in the picture) will be used as the call replay rate.
In this model, at server 1 we have three types of cus-

tomers, each of them having its own priority. At server
2we have two types of customers with two priorities. These
two priority queues in the model suffice to implement the



non-preemptive prioritized policy mentioned earlier.
4.1 Modelling assumptions
As in earlier models [16, 6, 19, 7, 4, 9] we assume that a

failure is detected as soon as it occurs. We also assume that
no failure occurs during a failover [19, 6, 9, 4]. The first
failure arrives after the first checkpoint operation was com-
pleted. Failure interarrival time distribution is exponential,
as in [19, 10, 17, 7, 6, 3].
We assume that checkpointing request interarrival times

are independent identically distributed random variables,
with exponential distribution (a). Also, client request in-
terarrival times are independent identically distributed vari-
ables with exponential distribution (b). Service times on the
two servers and call replay time are also exponentially dis-
tributed (c). From (a), (b), and (c) and Burke’s law [2] it
follows that the internal customers of the two servers have
also exponentially distributed interarrival times. Related to
queue analysis, we assume that no infinite queues build up
at any of the servers. This means that the following relations
hold: λ1 + λ2 < µ2 and 2λ1 + 2λ2 < µ1. Also, we assume
that the service rate on server 1 is much larger than the
service rate on server 2, i.e. µ1 >> µ2. The average ar-
rival rate of client requests is assumed to be larger than the
average arrival rate of checkpointing requests, i.e. λ1 > λ2.
A simplifying assumption we make is that the proba-

bility distribution of service times on the two servers does
not depend on the type of request the server is processing.
This means, for example, that the probability distribution
for the service time of a call information logging request on
server 1 is the same as the distribution for the service
time of a reply logging request. Also, the state transfer part
of the failover time is assumed to be a constant.
We assume that all client requests arriving at server

1, will proceed to the queue of server 2 and will be pro-
cessed on server 2.
To be able to use similar terms in the formulas that model

backlog and equilibrium respectively, two different average
failure arrival rates are considered, one for the equilibrium
interval and one for the backlog interval. We assume a fail-
ure arrival rate λf for the system during equilibrium and
derive a backlog failure rate from that.
4.2 The queues
There are two priority queues in our model: one at

server 1, and one at server 2. As all interarrival time
and service time distributions for the two queues are expo-
nentially distributed (see Section 4.1), the two queuing sys-
tems are M/M/1 [1].
The total arrival rate for customers at server 1 is

2λ1 + 2λ2. It is the sum of the arrival rates of all types
of customers in the queue (see Figure 4): (1) customers de-
noted by client requests, having lowest priority 1, (2) cus-
tomers denoted by checkpointing requests, having priority

2, (3) reply and state logging customers, denoted by “feed-
back” of client requests from server 2, having highest
priority 3.
The priority queue at server 2 contains customers

that departed from server 1 and that will eventually re-
turn to server 1. Hence, the total average arrival rate
of customers in the queue at server 2 is λ2 + λ1. Cus-
tomers with highest priority (checkpointing requests) have
average arrival rate λ2, while customers with lowest priority
(client requests) have average arrival rate λ1.
4.3 Optimal checkpointing interval
In this section we will present the aspects involved in

the computation of the checkpointing interval that optimizes
the average availability. Table 1 summarises some random
variables used in our optimization analysis (see also Figure
3 and 4).
The formula of the lower bound on average availabil-

ity used to maximize the average availability is computed
as follows: one has to divide the total time the system is
available for request processing, by the total time between
two consecutive failures occurrng during equilibrium (term
E[TP] + E[F]). The denominator’s value is obtained simply
by subtracting the total time spent in failover due to failures
occurring during backlog processing (term E[NF]E[F]) and
the total time spent in processing checkpointing requests on
the two servers (term E[NC](2E[SL] + E[SA])), from the av-
erage processing time (E[TP]). E[NC] is the average number
of checkpoint operations occuring during the “availability”
period of the server. Therefore E[NC] = E[TP]−E[NF]E[F]

E[TC]
.We de-

scribe the formula below:
E[A] =

E[TP]−E[NF]E[F]− E[TP]−E[NF]E[F]
E[TC]

(2E[SL]+E[SA])

E[TP]+E[F]

=
(E[TP]−E[NF]E[F])(1− 2E[SL]+E[SA]

E[TC]
)

E[TP]+E[F]

=
(E[TP]−E[NF]E[F])(1−λ2( 2

µ1
+ 1
µ2
))

E[TP]+E[F]

We need to compute the following values: the average
failover time (E[F]), the average (non-zero) number of fail-
ures that occur during backlog processing (E[NF]), and the
average processing time from the end of a failover until the
moment of the next failure (E[TP]). More detailed informa-
tion on these rather complex computations that we omit here
due to lack of space, can be found in Chapter 7 of [13]. In
the present work we have added the effect of priority queues
that influences (1) the wait times in the queues of the two
servers, and (2) the way to compute the average number of
requests to replay at failover.
After the above computations E[A] is obtained as a func-

tion of seven parameters: µ1 (server 1 service rate), µ2
(server 2 service rate), λ1 (average load), λ2 (check-
point arrival rate), λf (failure rate), µ3 (call replay rate),
s (state transfer time). Considering all parameters beside
λ2, as so-called constants, we obtain E[A] as a function f
in only one unknown. To obtain the optimal checkpointing



A availability −
TP processing time from the end of failover i until failure i+ 1 −
NF number of failures during the backlog processing interval −
F failover time −
TC time between two checkpoint request arrivals E[TC] =

1
λ2

SL service (processing) time on the Logging server E[SL] =
1
µ1

SA service (processing) time on the Application server E[SA] =
1
µ2

s state transfer time s appears in the formula of the average failover time E[F]

Table 1: Variables used in the model

interval it remains to maximize f(λ2). In the rest of this pa-
per the Mathematica tool [18] has been used to numerically
perform maximization.

5 Numerical studies
This section summarizes our studies using the presented

model. The goals of the studies were:
1. to find out the behaviour of the highest average avail-
ability when considered as a function of the load (λ1),
respectively failure rate (λf), and the extent (especially
the scale) of the dependency. We also wanted to see
how a fixed λf, respectively λ1 influenced the studied
behaviours.

2. to provide guidelines to the system architect in de-
termining the optimal checkpointing interval given a
fixed λ1 and λf. For a given load, when considering
λ2 as a function of failure rate, we expect to find out
the critical failure rate that invalidates the desired re-
lation “(on average) checkpointing is done more often
than failures occur” (i.e. the point at which λ2 > λf
no longer holds).

In the series of studies that we will show below, µ1, µ2
(average service rates on server 1 and server 2), and
µ3 (average call replay rate) are fixed at values µ1 = 50,
µ2 = 5, and µ3 = 12. With these infrastructure/application
related measures fixed, it is meaningful to study how the
system handles different external conditions such as differ-
ent loads (λ1), and different average failure rates (λf). The
choice of the first two values (50 and 5) was based on the
need to impose a large ratio between the two server’s ser-
vice rates. The choice of the value of µ3 such that µ3 > µ2
was based on the assumption that replay does not involve
middleware related overhead, and thus happens faster. The
studies included experiments for different values of s (state
transfer time). Our observations confirmed our expecta-
tions: by varying s the obtained curves kept the same shape,
while only moving on one of the axes with constant values.
All figures in the next sections use s = 0.
5.1 Relating checkpointing interval to load
Figure 5(a) shows the dependency of the maximizing av-

erage checkpointing interval ( 1λ2 ) on the chosen failure rate
and its variation with load. The maximizing 1

λ2
presents

similar behaviour when the load grows, independent of fail-
ure rates. The value of the checkpointing interval decreases

as load grows. However, the variation and the magnitude of
the maximizing checkpointing interval is different from one
failure rate to another. For example, when λf = 0.0005, the
variation is approximately between 30− 120 (time units);
for λf = 0.01 the variation is between 6− 30. This be-
haviour is somewhat expected. It is interesting to see that
as the failure rate increases the checkpointing interval be-
comes smaller and smaller (for same load) in order to maxi-
mize average availability. What is not visible in this picture
is the approximate number of checkpoints that take place
between two consecutive failures. The variation of this
number with load and the dependency of this behaviour on
the failure rate is illustrated in Figure 5(b). The picture tells
us that as failures become sparser the approximate average
number of checkpointing operations that occur between two
failures increases. This somewhat strange phenomenon has
a rather simple explanation: when the distance between fail-
ures is large, checkpointing has to be done more often in
order to increase the chance of a state recording to happen
shortly before the next failure.
Next, we study maximum average availability in relation

to λ1 for different failure rates. Figure 5(c) shows that the
behaviour of maximum average availability (E[A]) in rela-
tion to λ1 is similar for all chosen failure rates : it decreases,
as λ1 grows. However, for λf = 0.005, the decrease hap-
pens with a much smaller slope than for the larger λfs.
5.2 Relating checkpointing interval to failure rate
Next we try to answer the question: from which fail-

ure rate (λf), if any, the desired property that “on average
checkpointing happens at least once between two failures”
(λ2 > λf) ceases to hold? To make this study we plot the
variation of the maximizing checkpoint arrival rate (λ2, the
inverse of the checkpointing interval) against failure rate.
We plot two graphs in Figure 6(a), both shedding light on
this question and at the same time giving new insights about
the relationship between λ1 (load), λf and the maximizing
λ2. We choose two arbitrary values for λ1 (1 and 4), one
representing light load compared with the average service
rate of server 2 (1 compared to 5) and one representing
high load (4 compared to 5). For each value of λ1 we fur-
ther study the dependence of another parameter, namely the
average failover time, on failure rate (Figure 6(b)). Finally,
we consider the effect on the maximum average availability
when varying λf (Figure 6(c)). A summary of our insights
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Figure 5: Checkpointing interval, number of checkpoints and maximum average availability (y axis) plotted against load λ1 (x axis)

is given below:

• the average failover time is relatively large for small
failure rates. The rapid decrease towards almost con-
stant values is present for both the small and the large
load. This insight supports the engineer that may
choose to use our tool for analysis: is it good enough
to have a few but long failovers, or would one pre-
fer many failovers that are shorter? Note that when
failures are sparse (i.e. mean time between failures is
e.g. 100000 time units), even if the average availabil-
ity is maximized, individual failover times can be quite
large.

• for both the small and the large loads considered, the
checkpointing rate that leads to maximal average avail-
ability is always larger than the failure rate. Figure
6(a) also shows that, as expected, with larger load, one
needs to checkpoint more often to maximize average
availability. This is due to the need to reduce the re-
playing element in the failover time with larger loads.

• as expected, the maximum average availability de-
creases as failure rate increases. The slope of the de-
crease is much slower in the situation when low load
is applied, than when the load is large.

6 Simulations
When building the mathematical model we approxi-

mated the checkpoint interarrival time with an exponentially
distributed random variable. This assumption was needed
to make the computation of the maximizing checkpointing
interval 1

λ2
based on the (random variable) inputs possible.

In reality, the checkpointing interval is a deterministic value
chosen by the system architect and configured in the mid-
dleware. The main goal of this section is to check how sig-
nificant this approximation in the mathematical model is.
That is, are all the observations in Section 5 valid in a world

where all parameters are as in the model except that check-
pointing is done regularly? In particular, if the system ar-
chitect takes the result of the mathematical computations,
i.e. the computed maximizing λ2 based on a set of fixed in-
put parameters, does this indeed produce maximum average
availability or not?
6.1 Experimental setup
A simulation model was built within the SIMULA [11]

programming environment. It uses assumptions similar to
those in the mathematical model, i.e. exponentially dis-
tributed request interarrival, service times and failure inter-
arrival. However, the checkpointing interarrival time is a de-
terministic value here. In the simulations each checkpoint-
ing request is scheduled exactly 1

λ2
units after the previous

one, modelling a deterministic checkpointing interval.
To check whether the simulation runs confirm our intu-

itive expectations, we compared the average availabilities
resulting from the following sets of simulations. For each
value of λ1 we considered several checkpointing intervals:
one corresponding to the (average availability) maximiz-
ing checkpointing interval obtained from our mathematical
analysis, and others with values both below and above the
maximizing value. The failure rate λf remained unchanged
in all these experiments.
To do the comparisons we plotted sets of curves repre-

senting the simulated average availability as a function of
load (λ1). To confirm the validity of the approximation in
the model we would expect that for all choices of check-
pointing interval when 1

λ2
was different from the maximiza-

tion result, i.e. both below and above the maximizing 1
λ2
,

the simulations would show lower average availability E[A].
And, even if for some of the values, average availability is
higher than that obtained for the maximizing checkpoint-
ing interval, the “computed” maximum (from the Mathe-
matica model) is not much lower than the simulated values.
Hence, the approximation in the mathematical model leads
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Figure 6: Checkpoint arrival rate, failover time and average availability (y axis) plotted against failure rate (x axis)

to a valid result in the (simulated) reality. These will pro-
vide evidence that the mathematical studies indeed lead to
results applicable in reality.
To repeat the studies in the same framework as the

mathematical analyses, we began by choosing failure rate
λf = 0.001 and performed a set of 100 experiments for
each value of λ2, and for each selected λ1. For λf = 0.001
we chose 18 values for λ1 (0.25, 0.5, etc). Thus, in total
we ran 18× 100 experiments for each value of λ2. Each
experiment consisted of a simulation run lasting 10000 log-
ical time units. For each experiment we computed the time
the servers are not available for request processing. This
sum was subtracted from the total simulation logical time
(10000) essentially computing the value of the denomina-
tor in the formula of E[A] (see Section 4.3). For each of the
100 experiments the average availability was computed by
dividing this value by the length of the simulation interval
(10000). Finally, for each value of λ2 and λ1, the average
of the 100 average availability values was obtained.
6.2 Results
Figure 7 shows how the average availability of the sys-

tem varied with λ1 in the simulations, using respectively the
maximizing λ2 as obtained after the maximization of E[A]
performed in Mathematica, and other values of λ2 obtained
by decreasing or increasing the maximizing checkpointing
interval ( 1λ2 ). We considered decreasing the maximizing

1
λ2

with e.g. 10%, 50%, 75%, or 90% of its value respectively.
When increasing the maximizing 1

λ2
we considered a fixed

number of percentage values (20) that were computed based
on the ratio between the maximizing λ2 (for the considered
λ1) and λf (in the presented graph λf = 0.001). For ex-
ample, when λ1 = 1, and the maximizing λ2 had the value
0.025 (i.e. 1

λ2
= 40, and λ2

λf
= 25), we considered for sim-

ulation, values of the checkpointing interval obtained by in-
creasing 40 with e.g. 120% or 240% of its value respec-
tively.
The result depicted in Figure 7 gives us the following

1 2 3 4
82

84

86

88

90

92

94

96

98

client request arrival rate λ
1

av
er

ag
e 

av
ai

la
bi

lit
y

λ
f
=0.001

average availability obtained 
when using the optimal        
checkpointing interval        

thin lines 
average availability obtained 
when using "sub−optimal"      
checkpointing intervals       

Figure 7: Average availability (y axis) plotted against λ1 (x axis)
insight: if the system architect decides to configure the op-
timal checkpointing interval according to computations of-
fered by our mathematical tool, he/she will be able to obtain
values for average availability very close to a maximum.
The graph in Figure 7 shows indeed that there are a few
values of the checkpointing interval (always larger than the
mathematically computed optimum) for which, for a given
load (λ1) and a given failure rate (λf), higher values for the
average availability of the system can be obtained (see the
solid line with circles, very close to the thick line in Figure
7). Still, one can argue that these values are much closer
to the “expected” maximum than, for example, the values
that are obtained when checkpointing with a smaller inter-
val (see e.g. the dashed line triangle curve in Figure 7).
Also, one could say that it is still better to checkpoint with
an interval that does not always lead to the “absolute” max-
imum, but to a value very close to it, than to start guessing
the checkpointing interval and possibly ending up in an ex-
treme where the average availability is significantly lower
than the maximal one.



All simulations of this section were repeated for
λf = 0.01, λf = 0.05 and λf = 0.005. The validity of our
approximation from the mathematical model was exhibited
again with similar results as in the curves already presented
in this section.

7 Conclusion and future work
In this paper we proposed a mathematical model that

leads to a formula of the average system availability, as
a function of the checkpointing interval. Furthermore we
showed how to obtain an optimal value for this important
parameter of a primary-backup replicated service. By using
a numerical tool, such as Mathematica, a system architect
can easily feed the other system parameters such as load,
failure rate, service rates, and simply obtain the checkpoint-
ing interval that is used to configure the underlying middle-
ware leading to maximum availability.
A major result of our studies was that for a given load,

with values that yield maximal average availability, the av-
erage failover time decreases as failure rate grows. Another
insight was on the value of the maximizing checkpointing
interval considered as a function of load: it varies accord-
ing to a shape that is independent of a fixed failure rate. A
counter intuitive result that has a quite simple explanation
was that the average number of checkpointing requests ar-
riving between two consecutive failures decreases as failure
rate grows.
To validate our model assumption on the checkpointing

interval as a random variable, we performed simulations
of a system where the checkpointing interval is chosen as
a constant. The outcome is that by using the mathemati-
cally computed maximizing checkpointing interval one in-
deed obtains an average system availability that is extremely
close to an obtainable (simulated) maximum.
A major contribution of this work as compared with ear-

lier ones is that it includes prioritized middleware opera-
tions compared to application calls, and a detailed model
of backlog processing. Furthermore, it looks deeper at the
failover time in terms of probability distribution of the num-
ber of calls to replay, while considering the distribution of
replay time to be independent of the call to be replayed. To
deal with more complex systems, an immediate extension to
the model is possible where different calls may have differ-
ent replay times. Similar arguments apply to the assumption
about the state transfer time, considered a constant here. A
constant is reasonable in the sense that one may well be able
to derive such values for state transfer time in the context of
each different application. However, for more complex ap-
plications we may need to vary state transfer times for dif-
ferent invocations, thus needing a random variable to model
state transfer time. Future works include the use of such
mathematically obtained optimal parameters in run-time re-
configuration of middleware.
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[13] D. Szentiványi. Performance Studies of Fault-Tolerant
Middleware. PhD thesis, Linköping University, March
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