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jonob@mai.liu.se

Abstract
When using primary-backup replication, one check-

points the primary’s state to reduce the failover time to
a backup, upon failure of the primary. A trade-off is in-
volved: by frequent checkpointing the response time for re-
quests during “no-failure” intervals is increased. On the
other hand, when checkpointing frequency is low, failover
takes longer. In this paper� we provide a theoretical ground
for computing the optimal checkpointing interval that min-
imizes the average response time of requests, given param-
eters such as load, failure rate and service rates. We use
queuing theory for modelling the support for failover in a
system where a logging server records client update opera-
tions. The novelty of the model is inclusion of the backlog
processing time for requests accumulated during failover.
Also, our model considers the waiting times in the queue of
the logging server as well as the application server.

1 Introduction
To ensure high availability of a server system that may

crash, three fault tolerance mechanisms are commonly
used: replication by primary-backup, checkpointing and a
failure recovery mechanism. Although high availability is a
core requirement, obtaining fast enough response to a client
query is also a major concern of the architects of such sys-
tems.

Checkpointingis a mechanism for reading and logging
the state of the primary. In a typical fault-tolerant server sys-
tem,update2 calls (client requests) arriving at the primary
are also logged, in a so-calledcall log so that the state of
a crashed server can be reconstructed by replaying the calls
since checkpointing. After each checkpointing, the content
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2Update operations are those that change the state of the server object.

of the call log isprunedto contain only the records of calls
that arrived after the checkpoint request. When the primary
crashes,failover takes place, i.e. the checkpointed state is
transferred to the back-up, and the calls present in the log
are replayed on the back-up server. The time taken to recon-
struct the state of the crashed server is calledfailover time.
There is a major trade-off between the checkpointing fre-
quency, and the length of the failover time. If checkpoint-
ing is done often, then the chance to have pruned the log
shortly before the failure, and thus to have low failover time,
is increased. However, during no-failure periods, when the
checkpointing request is served on the servers, client re-
quests have to wait.

In this paper we use mathematical analysis employing
queuing theory, to configure a fault-tolerant server system
for bestaverage response time. We determine an expres-
sion of thecheckpointing intervalthat minimizes average
response time, given load, failure rate and other parameters
of the system, like e.g. service rates. The model is an ex-
tension of a basic model that was developed for maximizing
a server’s availability interval [11]. The idea is to support
the system architect by providing the machinery so that the
above parameters are input and the checkpointing interval
that leads to minimal average response time is obtained. It
further helps in making an informed rather than empirical
choice of the checkpointing interval.

The main contribution of the paper is the detailed mod-
elling includingbacklog processingtime, i.e. the extra time
spent to process the requests that queue up during failover.
This time is crucial in the study of the minimal average re-
sponse time. Another contribution of the work is to show
how long the maximum average response time for the ser-
vice can become if the load, in terms of client request arrival
rate, is increased beyond the value for which the infrastruc-
ture was optimized. This constitutes a kind of worst case
analysis.

Several researchers have studied similar checkpointing
problems in the context of fault-tolerant processing sys-
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tems. Most results are obtained for settings where a long-
running job performing heavy calculations, is checkpointed
from time-to-time [15, 7, 8, 3, 9]. Other models include
request processing or message logging systems [5, 13, 10].
Two works that use the average response time as optimiza-
tion criterion are [6] and [5]. Both works are different from
ours in that the authors consider failover time to be pro-
portional to the checkpointing interval. A recent survey
by Elnozahy et al. [4] provides an excellent overview of
rollback-recovery protocols. However, analysis of optimal
checkpointing interval in different contexts is not covered
by the references therein.

To our knowledge this is the first time a mathematical
model of a logging and failover mechanism is done at such
a detailed level, i.e. including backlog processing, aiming
to define the checkpointing interval that minimizes average
response time.

2 Background and scope

Our mathematical model is based on an FT-CORBA
infrastructure extensively used in earlier empirical studies
[12]. This paper generalizes the approach to similar infras-
tructures. The model encompasses the logging and check-
pointing unit, plus part of the application (the server object).
The work in this paper aims at supporting the tuning of one
parameter (the checkpointing interval) in order to achieve
minimal average response time.

In the FT-CORBA infrastructure, the logging and check-
pointing unit is assumed not to fail . In addition, the work
assumes that there are enough backups available for the
given failure frequency. If this assumption does not hold
in some context then the analysis in this paper has to be
extended to include the repair time of the failed primary.

2.1 The checkpointing and logging procedure

Note that throughout this paper, capital letters (e.g.�,��)
designate random variables, and� ��� designates the average
value of�.

Figure 1 shows the general scheme of checkpointing and
logging procedures. Upon arrival from the client, update
method calls are logged by aLogging server, if no
reply to the call is found in the log. Reply information
(when present) is used by the middleware to avoid reexe-
cuting a call, when a client resends it due to a late response.
The main server that handles the application object is de-
noted byApplication server. Thus, when no reply
is present in the log, the request proceeds to this server for
being processed on the object and accomplishing the actual
serving of the client’s request. After this, the request “re-
turns” to theLogging server to log its reply. Here,
calls are executed sequentially in a run to completion man-
ner (a reply logging request waits for a call logging request
to finish, and vice-versa). For state consistency reasons, the
Application server also processes requests in a run
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Figure 1: The logging and application servers and their relation
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Figure 2: Servers and queues

to completion manner, in the same order that call informa-
tion was logged.

From time to time the infrastructure initiates a check-
pointing request (get state call). This call is treated in a
similar manner to the calls generated by clients. The check-
pointing procedure has six phases:

Upon arrival of aget state request, the last call
record from the log has to be marked. This is needed in
order to know which call records to remove from the log
after recording the state. Thus, the call toget state first
spends some time in the queue of theLogging server ,
and then effectively performs the marking . Next, the call to
get state waits for all update calls in the queue of the
Application server to finish execution on the ob-
ject. After this, the state of the object, as left by the last
update operation executed beforeget state, is read. Fi-
nally, the state is recorded at theLogging server, after
queuing behind calls at that server.

The above six phases are repeated� (the checkpointing
interval) time units after the last phase was completed.

Figure 2 depicts some variables in our model: request
arrival rates (e.g. ��) and service rates (e.g.� �). In
terms of queuing theory, we model the ensemble given by
the logging and application servers as a set of two servers
(server 1, i.e. theLogging server andserver
2, i.e. the Application server). Customers of
server 1 are client calls as well as checkpointing re-
quests, so-called “external” customers. These customers,
when departing fromserver 1, become customers of
server 2. Customers ofserver 2 when departing, re-
turn toserver 1 as “internal” customers.

2.2 Modelling assumptions

In line with earlier works [13, 5, 15, 7, 3] we assume that
a failure is detected as soon as it occurs. We also assume
that no failures occur during a failover [15, 5, 3].

To simplify computations we will approximate the in-
terarrival time between two consecutive checkpointing re-
quests with independent identically distributed random vari-
ables, with exponential distribution with average�	
 .
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We assume that the probability distribution of service
times on the two servers does not depend on the type of
request the server is processing. This means, for example,
that the probability distribution for the service time of a call
logging request onserver 1 is the same as the distribu-
tion for the service time of a reply logging request. The state
transfer part of the failover time is assumed to be a constant
(similar to [5, 13]).

Client request (“external” customer) interarrival times
are independent identically distributed variables with ex-
ponential distribution. Service times on the two servers
and call replay time are also exponentially distributed. By
Burke’s theorem ([2]) it follows that interdeparture times
are also exponentially distributed. This implies that “in-
ternal” customer interarrival time distributions are also ex-
ponential. As all interarrival time and service time distri-
butions for the two queues are exponentially distributed,
the two queuing systems are� �� �� [1]. We assume that
no infinite queues build up at any of the servers, i.e. the
relations�� � �� � � � and��� � ��� � � � hold between
�� � ��, � �, and� �. Also, we assume that the service rate
on theserver 1 is much larger than the service rate on
server 2, i.e. � � �� � �.

The failure interarrival time distribution is also exponen-
tial (similar to [15, 9, 7, 5]). The average failure rate is�	 .
We also assume that the first failure arrives after the first
checkpoint operation was completed.

We assume that reply logging “customers” ofserver
1 have higher priority than other customers (client request
or checkpointing). As a consequence, the failover time
consists of (1) state transfer time (denoted by a constant),
(2) wait time for all reply logging customers present in
server 1’s queue to be served, before the call informa-
tion log can be read for the replay, (3) replay time of calls
corresponding to requests arrived after the last checkpoint.

In the current work we assume thatno client request ar-
riving atserver 1 has been resent by the client, i.e.is one
that finds a reply in the call log.

3 Backlog and the average response time

As shown in Figure 3, the time line
� � �  will be
sliced in groups of failover (�), backlog processing (�) and
equilibrium intervals. Equilibrium corresponds to normal
processing. The backlog processing is the interval during
which the server system (mainlyserver 2, as its service
rate is the lowest) has to process all requests queued up dur-
ing failover. During this time,server 2 is busier with
request processing and more prone to failures. Therefore,
the average rate of failures during this time will be larger
than the “equilibrium” failure rate.

3.1 Expressing the average response time

The average response time is the average time a request
spends in the system given byserver 1 andserver 2,

EquilibriumBF EquilibriumBF

time

Figure 3: Equilibrium, failover and backlog processing

from its arrival in the queue ofserver 1 as call logging
request, until it leavesserver 1 as reply to the client.

The server system’s life cycle can be divided in two types
of phases: failover when the response flow is stopped, and
equilibrium and backlog processing, when the system is
processing requests. Hence, the average response time is
basically given by two parts: the average time spent when
actual processing of the request takes place plus the average
extra time spent in the queue of some server due to failover.

Details about the computation of the formula for the up-
per bound on the average response time (used in the min-
imization) with all its four terms and the formula of the
checkpointing interval (�) as function of�� can be found
in [11].

An abstraction of the four terms present in the formula
used to minimize the average response time is given below.

� Term 1 expresses the average processing and wait time
spent by requests that arrive and leave during equilib-
rium, weighted by the fraction of time the system is in
equilibrium while enough time is left for a request to
finish execution onserver 2� Term 2 expresses the average processing and wait time
spent by requests arrived during backlog processing,
weighted by the fraction of time the system spends in
backlog processing� Term 3 expresses the average processing, wait and ex-
tra wait time spent by requests that arrive while the
system is executing a failover (before backlog process-
ing), weighted by the fraction of time the system is ex-
ecuting failover� Term 4 expresses the average processing, wait and ex-
tra wait time spent by requests that arrived during equi-
librium, but did not have enough time to complete their
execution onserver 2, weighted by the fraction of
time left of equilibrium till the failure occurrence, dur-
ing which there is no time to leaveserver 2

We use the tool Mathematica [14] to perform the minimiza-
tion of the average response time (� ��� �). The value of� that
minimizes the average response time, can be computed by
substituting the obtained value for�� in the equation that
expresses the checkpointing interval. In the next section
we will present interesting relations between the functions
involved in our analytical studies (e.g.�� that minimizes
� ��� �, minimal� ��� �, etc.) and some of the system parame-
ters�� � �	 � � � � � � and� �.
4 Model analysis

In this section we show how studies of the model using
Mathematica provided insights about the optimized vari-
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ables and the input parameters of the model.
We begin by fixing some application dependent param-

eters as expected to be done by the system architect. In
the series of studies that we will show below,� � (av-
erage service rate onserver 1), � � (average service
rate on server 2) and � � (average call replay rate)
are fixed at values� � � ��, � � � �

, and � � � ��. The
choice of the two values50 and5 was based on the need
to impose a large ratio between the average service rate
on theLogging server and on theApplication
server. Also, the choice of the value of� � such that
� � � � � was based on the assumption that replay does
not involve middleware related overhead, and thus happens
faster.

Among input parameters is also�, the time taken for
state transfer (constant). We performed experiments using
several values of�. We noticed that by varying� the ob-
tained curves kept the same shape, while only moving on
one of the axes with constant values. All figures in the next
sections use� � �.

We expected the studies to help us to:� find out the behavior of the minimum average response
time when considered as a function of��, and how the
average response time in the absence of failures and
checkpointing, relates to this minimum.� find out the relation between�� that minimizes the av-
erage response time, when considering it as a function
of �� with a fixed (assumed)�	 .

4.1 Relating average response time to arrival rates
This section reports on two studies on the average re-

sponse time as function of the load (��). The first one ar-
rives at the minimal average response time for various fail-
ure rates including failure rate zero (note that when�	 � �
no checkpointing is needed). The second analysis covers
sensitivity of the average response time to load variations.
Given that the system is configured to checkpoint so that
average response time is minimized, we would like to see
the variations in the average response time if the actual load
is very different from the assumed load.

Figure 4(a) summarizes the somewhat unexpected re-
sults on the relation between the minimum average response
time and failure rate. The curves show that the response
time is highly dependent on the load after arriving at a cer-
tain load (in this study� �, quite close to the limit� � � �

).
The unexpected phenomena is that the curves are so close
to each other for most values of��. That is, the minimal av-
erage response times for very different average failure rates
are almost identical.

One would expect that the curve for the average response
time when no failures occur is much lower than the other
four curves. We can see, however, that this curve always
stays below the others, but is very close to them.

The graph in Figure 4(b) presents the case when the sys-
tem is configured to give the minimum average response

time for a given load (�� � � and�� � � ��� respectively).
Thus, the system is configured to checkpoint with a rate��
that minimizes the average response time for the respective
loads at a given failure rate (�	 � � �� �). We see that as the
load is increased the average response time does not vary
that much (almost constant) for both configurations until
the load reaches a limit. We also see that the two config-
urations are behaving similarly below their respective lim-
its. After the load reaches this limit (for one configuration
around four times the assumed load, and for the second con-
figuration twice the assumed load) average response time
diverges. This is due to increase in failover time, which is
now so large that the value of one element in the formula of
the average response time cannot be computed, due to the
expression in the logarithm present therein becoming nega-
tive.

A dual study (not shown here), varying failure rates,
shows similar results. Somewhat expected, if the failure rate
is low (�	 � � ����� �), it takes a large variation in the load
to reach the worst-case average response time (more than
twice the assumed load), compared with the case where the
failure rate is high,�	 � � �� �, and the worst-case average
response time is reached earlier. However, before this ex-
treme load the response times are similar.

4.2 Relating checkpoint arrival rate to request ar-
rival rates

This section will present the checkpointing rate�� that
minimizes the average response time (� ��� �), as a function
of ��, in presence of certain failure patterns.

One may ask why is it interesting to study checkpointing
rate as a function of��? Because we wanted to find out
how increasing load is handled by the system in presence
of checkpointing requests and failures, and how the average
checkpoint rate should behave to obtain minimal average
response time.

The graph in Figure 5 presents the variation of the value
of �� that minimizes the average response time, when
considered as a function of��, and four different failure
rates (�	 ). We found that the behavior of�� is approx-
imately independent of the failure rate. Until a certain
value of �� (� � ���), the value of�� increases and then
it starts decreasing. The variation and the magnitude of
�� is, however, different from one failure rate to another.
For �	 � � ����� �, the variation is between� � � ����; for
�	 � � �� � the variation is between� ���� � � ���. For a
quite high failure rate (�	 � � ���) the value of�� is almost
constantly increasing. Thus the magnitude and the variation
are both larger.

5 Conclusion

In this paper we proposed a detailed mathematical model
of a primary-backup replicated server with logging of client
calls. We used this model to study the average response
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time as optimization criterion. An element crucial for the
minimization was elaborated: the backlog processing.

The type of analysis presented can also be used to study
e.g. the 99th percentile response time. This might give
an insight on what are the worst-case response time behav-
iors of a system, given the (minimal) average response time.
While these figures can easily be approximated (by an up-
per bound), by using Markov’s inequality [1], we believe
that they are too pessimistic to be useful in analysis of dis-
tributed service-oriented architectures. Rather, we propose
the sensitivity analysis with respect to the load for which the
system was configured for, as demonstrated in the paper.

In this work we looked at the failover time in terms of
probability distribution of the number of calls to replay,
while assuming the distribution of replay time to be inde-
pendent of the call to replay. However, to deal with more
complex systems, where different calls may have different
replay times, an immediate extension to the model is to con-
sider different probability distributions depending on the
call to replay. Similar arguments apply to the assumption
about the state transfer time considered a constant here. For
more complex applications we may need to use a random
variable to model state transfer time. These are directions
for future extensions of this work.
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